1
|
Kotz J, Martz EJ, Nelson M, Savoie N, Schmitt L, States J, Holton N, Hansen K, Johnson AM. Novel interactions within the silent information regulator heterochromatin complex potentiate inter-subunit communication and gene repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630195. [PMID: 39763739 PMCID: PMC11703230 DOI: 10.1101/2024.12.23.630195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The S. cerevisiae Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner. Subsequently, the same complexes are incorporated stably with nucleosomes, driving compaction and repression of the underlying chromatin domain. These two distinct functions of SIRc have each been characterized in much detail, but the mechanism by which the dynamic spreading state switches to stable compaction is not well-understood. This incomplete knowledge of intra-complex communication is partly due to a lack of structural information of the complex as a whole; only structures of fragments have been determined to date. Using cross-linking mass spectrometry in solution, we identified a novel inter-subunit interaction that physically connects the two states of SIRc. The Sir2 deacetylase makes direct interactions with the scaffolding subunit Sir4 through its coiled-coil domain, which also interacts with the Sir3 compaction/repression subunit. Within the hub of interactions are conserved residues in Sir2 that can sense deacetylation state, as well as amino acids that likely diverged and co-evolved to interact with Sir4, promoting species-specific functions. Mutation of this interaction hub disrupts heterochromatic repression, potentially by disrupting a conserved mechanism that communicates completion of deacetylation to switch to compaction. Our work highlights how a single multi-functional chromatin regulatory complex can stage a step-wise mechanism that requires a major transition in activities to achieve epigenetic gene repression.
Collapse
Affiliation(s)
- Jenna Kotz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - E. J. Martz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - Maya Nelson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nicole Savoie
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Lauren Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Jordan States
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nathan Holton
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Aaron M. Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| |
Collapse
|
2
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
3
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
4
|
Movilla Miangolarra A, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains Saccharomyces cerevisiae heterochromatin bistability. Proc Natl Acad Sci U S A 2024; 121:e2403316121. [PMID: 38593082 PMCID: PMC11032488 DOI: 10.1073/pnas.2403316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.
Collapse
Affiliation(s)
| | - Daniel S. Saxton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Zhi Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
5
|
Miangolarra AM, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains S. cerevisiae heterochromatin bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.552948. [PMID: 37645983 PMCID: PMC10461966 DOI: 10.1101/2023.08.12.552948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. Here, we propose a broader view: chromatin compaction can be both a cause and a consequence of the histone modification state, and this tight bidirectional interaction can underpin bistable transcriptional states. To test this theory, we developed a mathematical model for the dynamics of the HMR locus in S. cerevisiae, that incorporates activating histone modifications, silencing proteins and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states, and vice versa, and protein binding levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. This bidirectional feedback between chromatin compaction and the histone modification state may be an important regulatory mechanism at many loci.
Collapse
Affiliation(s)
- Ander Movilla Miangolarra
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel S Saxton
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhi Yan
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jasper Rine
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martin Howard
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Jeon J, Friedman LJ, Seo HD, Adeleke A, Graham B, Patteson E, Gelles J, Buratowski S. Single-molecule analysis of transcription activation: dynamics of SAGA co-activator recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552353. [PMID: 37609355 PMCID: PMC10441308 DOI: 10.1101/2023.08.07.552353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Transcription activators are said to stimulate gene expression by "recruiting" coactivators to promoters, yet this term fits several different kinetic models. To directly analyze dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator, and the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex within nuclear extract. SAGA readily, but transiently, binds nucleosome-free DNA without activator, while chromatin template association occurs nearly exclusively when activator is present. On both templates, activator increases SAGA association rates by up to an order of magnitude, and dramatically extends its dwell times. These effects reflect direct interactions with the transactivation domain, as VP16 or Rap1 activation domains produce different SAGA dynamics. Despite multiple bromodomains, acetyl-CoA or histone H3/H4 tail acetylation only modestly improves SAGA binding. Unexpectedly, histone acetylation more strongly affects activator residence. Our studies thus reveal two modes of SAGA interaction with the genome: a short-lived activator-independent interaction with nucleosome-free DNA, and a state tethered to promoter-bound transcription activators that can last up to several minutes.
Collapse
|
7
|
Kim U, Lee DS. Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques. Mol Cells 2023; 46:86-98. [PMID: 36859473 PMCID: PMC9982057 DOI: 10.14348/molcells.2023.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/03/2023] Open
Abstract
The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.
Collapse
Affiliation(s)
- Uijin Kim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
8
|
Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun 2022; 13:4947. [PMID: 35999198 PMCID: PMC9399094 DOI: 10.1038/s41467-022-32657-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes.
Collapse
Affiliation(s)
- Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Syros Pharmaceuticals, Cambridge, MA, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Brothers M, Rine J. Distinguishing between recruitment and spread of silent chromatin structures in Saccharomyces cerevisiae. eLife 2022; 11:75653. [PMID: 35073254 PMCID: PMC8830885 DOI: 10.7554/elife.75653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The formation of heterochromatin at HML, HMR, and telomeres in Saccharomyces cerevisiae involves two main steps: Recruitment of Sir proteins to silencers and their spread throughout the silenced domain. We developed a method to study these two processes at single base-pair resolution. Using a fusion protein between the heterochromatin protein Sir3 and the non-site-specific bacterial adenine methyltransferase M.EcoGII, we mapped sites of Sir3-chromatin interactions genome-wide using long-read Nanopore sequencing to detect adenines methylated by the fusion protein and by ChIP-seq to map the distribution of Sir3-M.EcoGII. A silencing-deficient mutant of Sir3 lacking its Bromo-Adjacent Homology (BAH) domain, sir3-bah∆, was still recruited to HML, HMR, and telomeres. However, in the absence of the BAH domain, it was unable to spread away from those recruitment sites. Overexpression of Sir3 did not lead to further spreading at HML, HMR, and most telomeres. A few exceptional telomeres, like 6R, exhibited a small amount of Sir3 spreading, suggesting that boundaries at telomeres responded variably to Sir3 overexpression. Finally, by using a temperature-sensitive allele of SIR3 fused to M.ECOGII, we tracked the positions first methylated after induction and found that repression of genes at HML and HMR began before Sir3 occupied the entire locus.
Collapse
Affiliation(s)
- Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
10
|
Chiu YC, Tseng MC, Hsu CH. Expanding the Substrate Specificity of Macro Domains toward 3″-Isomer of O-Acetyl-ADP-ribose. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Baek I, Friedman LJ, Gelles J, Buratowski S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol Cell 2021; 81:3576-3588.e6. [PMID: 34384542 DOI: 10.1016/j.molcel.2021.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023]
Abstract
RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.
Collapse
Affiliation(s)
- Inwha Baek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Endo Y, Takemori N, Nagy SK, Okimune KI, Kamakaka R, Onouchi H, Takasuka TE. De novo reconstitution of chromatin using wheat germ cell-free protein synthesis. FEBS Open Bio 2021; 11:1552-1564. [PMID: 33960726 PMCID: PMC8167859 DOI: 10.1002/2211-5463.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
DNA is packaged with histones to form chromatin that impinges on all nuclear processes, including transcription, replication and repair, in the eukaryotic nucleus. A complete understanding of these molecular processes requires analysis of chromatin context in vitro. Here, Drosophila four core histones were produced in a native and unmodified form using wheat germ cell‐free protein synthesis. In the assembly reaction, four unpurified core histones and three chromatin assembly factors (dNAP‐1, dAcf1 and dISWI) were incubated with template DNA. We then assessed stoichiometry with the histones, nucleosome arrays, supercoiling and the ability of the chromatin to serve as a substrate for histone‐modifying enzymes. Overall, our method provides a new avenue to produce chromatin that can be useful in a wide range of chromatin research.
Collapse
Affiliation(s)
- Yaeta Endo
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nobuaki Takemori
- Division of Proteomics Research Proteo-Science Center, Ehime University, Toon, Japan
| | - Szilvia K Nagy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kei-Ichi Okimune
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Rohinton Kamakaka
- Department of Molecular Cell and Developmental Biology, University of California at Santa Cruz, CA, USA
| | - Hitoshi Onouchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Ray A, Khan P, Nag Chaudhuri R. Deacetylation of H4 lysine16 affects acetylation of lysine residues in histone H3 and H4 and promotes transcription of constitutive genes. Epigenetics 2020; 16:597-617. [PMID: 32795161 DOI: 10.1080/15592294.2020.1809896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Histone modification map of H4 N-terminal tail residues in Saccharomyces cerevisiae reveals the prominence of lysine acetylation. Previous reports have indicated the importance of lysine acetylation in maintaining chromatin structure and function. H4K16, a residue with highly regulated acetylation dynamics has unique functions not overlapping with the other H4 N- terminal acetylable residues. The present work unravels the role of H4K16 acetylation in regulating expression of constitutive genes. H4K16 gets distinctly deacetylated over the coding region of constitutively expressed genes. Deacetylation of H4K16 reduces H3K9 acetylation at the cellular and gene level. Reduced H3K9 acetylation however did not negatively correlate with active gene transcription. Significantly, H4K16 deacetylation was found to be associated with hypoacetylated H4K12 throughout the locus of constitutive genes. H4K16 and K12 deacetylation is known to favour active transcription. Sas2, the HAT mutant showed similar patterns of hypoacetylated H3K9 and H4K12 at the active loci, clearly implying that the modifications were associated with deacetylation state of H4K16. Deacetylation of H4K16 was also concurrent with increased H3K56 acetylation in the promoter region and ORF of the constitutive genes. Combination of all these histone modifications significantly reduced H3 occupancy, increased promoter accessibility and enhanced RNAPII recruitment at the constitutively active loci. Consequently, we found that expression of active genes was higher in H4K16R mutant which mimic deacetylated state, but not in H4K16Q mimicking constitutive acetylation. To summarize, H4K16 deacetylation linked with H4K12 and H3K9 hypoacetylation along with H3K56 hyperacetylation generate a chromatin landscape that is conducive for transcription of constitutive genes.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | | |
Collapse
|
14
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
15
|
Goodnight D, Rine J. S-phase-independent silencing establishment in Saccharomyces cerevisiae. eLife 2020; 9:58910. [PMID: 32687055 PMCID: PMC7398696 DOI: 10.7554/elife.58910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of silent chromatin, a heterochromatin-like structure at HML and HMR in Saccharomyces cerevisiae, depends on progression through S phase of the cell cycle, but the molecular nature of this requirement has remained elusive despite intensive study. Using high-resolution chromatin immunoprecipitation and single-molecule RNA analysis, we found that silencing establishment proceeded via gradual repression of transcription in individual cells over several cell cycles, and that the cell-cycle-regulated step was downstream of Sir protein recruitment. In contrast to prior results, HML and HMR had identical cell-cycle requirements for silencing establishment, with no apparent contribution from a tRNA gene adjacent to HMR. We identified the cause of the S-phase requirement for silencing establishment: removal of transcription-favoring histone modifications deposited by Dot1, Sas2, and Rtt109. These results revealed that silencing establishment was absolutely dependent on the cell-cycle-regulated interplay between euchromatic and heterochromatic histone modifications.
Collapse
Affiliation(s)
- Davis Goodnight
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
16
|
Liu Q, Zhu X, Lindström M, Shi Y, Zheng J, Hao X, Gustafsson CM, Liu B. Yeast mismatch repair components are required for stable inheritance of gene silencing. PLoS Genet 2020; 16:e1008798. [PMID: 32469861 PMCID: PMC7286534 DOI: 10.1371/journal.pgen.1008798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/10/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Alterations in epigenetic silencing have been associated with ageing and tumour formation. Although substantial efforts have been made towards understanding the mechanisms of gene silencing, novel regulators in this process remain to be identified. To systematically search for components governing epigenetic silencing, we developed a genome-wide silencing screen for yeast (Saccharomyces cerevisiae) silent mating type locus HMR. Unexpectedly, the screen identified the mismatch repair (MMR) components Pms1, Mlh1, and Msh2 as being required for silencing at this locus. We further found that the identified genes were also required for proper silencing in telomeres. More intriguingly, the MMR mutants caused a redistribution of Sir2 deacetylase, from silent mating type loci and telomeres to rDNA regions. As a consequence, acetylation levels at histone positions H3K14, H3K56, and H4K16 were increased at silent mating type loci and telomeres but were decreased in rDNA regions. Moreover, knockdown of MMR components in human HEK293T cells increased subtelomeric DUX4 gene expression. Our work reveals that MMR components are required for stable inheritance of gene silencing patterns and establishes a link between the MMR machinery and the control of epigenetic silencing.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| | - Michelle Lindström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Yonghong Shi
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
| | - Ju Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | | | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| |
Collapse
|
17
|
Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 2019; 46:189-202. [PMID: 29136238 PMCID: PMC5758876 DOI: 10.1093/nar/gkx1010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)—a novel histone H3 modification—participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | - Ying Li
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| |
Collapse
|
18
|
Structure and function of the Orc1 BAH-nucleosome complex. Nat Commun 2019; 10:2894. [PMID: 31263106 PMCID: PMC6602975 DOI: 10.1038/s41467-019-10609-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/03/2022] Open
Abstract
The Origin Recognition Complex (ORC) is essential for replication, heterochromatin formation, telomere maintenance and genome stability in eukaryotes. Here we present the structure of the yeast Orc1 BAH domain bound to the nucleosome core particle. Our data reveal that Orc1, unlike its close homolog Sir3 involved in gene silencing, does not appear to discriminate between acetylated and non-acetylated lysine 16, modification states of the histone H4 tail that specify open and closed chromatin respectively. We elucidate the mechanism for this unique feature of Orc1 and hypothesize that its ability to interact with nucleosomes regardless of K16 modification state enables it to perform critical functions in both hetero- and euchromatin. We also show that direct interactions with nucleosomes are essential for Orc1 to maintain the integrity of rDNA borders during meiosis, a process distinct and independent from its known roles in silencing and replication. The Origin Recognition Complex (ORC) plays conserved and diverse roles in eukaryotes. Here the authors present the structure of a chromatin interacting domain of yeast Orc1 in complex with the nucleosome core particle, revealing that Orc1 interacts with the histone H4 tail irrespective of K16 acetylation; a modification that regulates accessibility to chromatin.
Collapse
|
19
|
Joo YJ, Ficarro SB, Marto JA, Buratowski S. In vitro assembly and proteomic analysis of RNA polymerase II complexes. Methods 2019; 159-160:96-104. [PMID: 30844430 DOI: 10.1016/j.ymeth.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
The RNA polymerase II (RNApII) transcription cycle consists of multiple steps involving dozens of protein factors. Here we describe a useful approach to study the dynamics of initiation and early elongation, comprising an in vitro transcription system in which complexes are assembled on immobilized DNA templates and analyzed by quantitative mass spectrometry. This unbiased screening system allows quantitation of RNApII complex components on either naked DNA or chromatin templates. In addition to transcription, the system reproduces co-transcriptional mRNA capping and multiple transcription-related histone modifications. In combination with other biochemical and genetic methods, this approach can provide insights into the mechanistic details of gene expression by RNApII.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
20
|
Swygert SG, Senapati S, Bolukbasi MF, Wolfe SA, Lindsay S, Peterson CL. SIR proteins create compact heterochromatin fibers. Proc Natl Acad Sci U S A 2018; 115:12447-12452. [PMID: 30455303 PMCID: PMC6298083 DOI: 10.1073/pnas.1810647115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Subhadip Senapati
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Mehmet F Bolukbasi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Scot A Wolfe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Stuart Lindsay
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
21
|
Zukowski A, Phillips J, Park S, Wu R, Gygi SP, Johnson AM. Proteomic profiling of yeast heterochromatin connects direct physical and genetic interactions. Curr Genet 2018; 65:495-505. [PMID: 30310994 DOI: 10.1007/s00294-018-0889-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 11/27/2022]
Abstract
Heterochromatin domains are stably repressed chromatin structures composed of a core assembly of silencing proteins that condense adjacent nucleosomes. The minimal heterochromatin structure can serve as a platform for recruitment of complementary regulatory factors. We find that a reconstituted budding yeast heterochromatin domain can act as a platform to recruit multiple factors that play a role in regulating heterochromatin function. We uncover the direct interaction between the SIR heterochromatin complex and a chromosomal boundary protein that restricts the spread of heterochromatin. We find that the SIR complex relieves a mechanism of auto-inhibition within the boundary protein Yta7, allowing the Yta7 bromodomain to engage chromatin. Our results suggest that budding yeast shares with other eukaryotes the ability to establish complex heterochromatin domains that coordinate multiple mechanisms of silencing regulation through physical interactions.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juliana Phillips
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Soyeon Park
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80309, USA
| | - Ronghu Wu
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO, 80045, USA.
- Molecular Biology Program, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Ray A, Khan P, Nag Chaudhuri R. Regulated acetylation and deacetylation of H4 K16 is essential for efficient NER in Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 72:39-55. [PMID: 30274769 DOI: 10.1016/j.dnarep.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Acetylation status of H4 K16, a residue in the histone H4 N-terminal tail plays a unique role in regulating chromatin structure and function. Here we show that, during UV-induced nucleotide excision repair H4 K16 gets hyperacetylated following an initial phase of hypoacetylation. Disrupting H4 K16 acetylation-deacetylation by mutating H4 K16 to R (deacetylated state) or Q (acetylated state) leads to compromised chromatin functions. In the silenced mating locus and telomere region H4 K16 mutants show higher recruitment of Sir proteins and spreading beyond the designated boundaries. More significantly, chromatin of both the H4 K16 mutants has reduced accessibility in the silenced regions and genome wide. On UV irradiation, the mutants showed higher UV sensitivity, reduced NER rate and altered H3 N-terminal tail acetylation, compared to wild type. NER efficiency is affected by reduced or delayed recruitment of early NER proteins and chromatin remodeller Swi/Snf along with lack of nucleosome rearrangement during repair. Additionally UV-induced expression of RAD and SNF5 genes was reduced in the mutants. Hindered chromatin accessibility in the H4 K16 mutants is thus non-conducive for gene expression as well as recruitment of NER and chromatin remodeller proteins. Subsequently, inadequate nucleosomal rearrangement during early phases of repair impeded accessibility of the NER complex to DNA lesions, in the H4 K16 mutants. Effectively, NER efficiency was found to be compromised in the mutants. Interestingly, in the transcriptionally active chromatin region, both the H4 K16 mutants showed reduced NER rate during early repair time points. However, with progression of repair H4 K16R repaired faster than K16Q mutants and rate of CPD removal became differential between the two mutants during later NER phases. To summarize, our results establish the essentiality of regulated acetylation and deacetylation of H4 K16 residue in maintaining chromatin accessibility and efficiency of functions like NER and gene expression.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
23
|
Balas MM, Porman AM, Hansen KC, Johnson AM. SILAC-MS Profiling of Reconstituted Human Chromatin Platforms for the Study of Transcription and RNA Regulation. J Proteome Res 2018; 17:3475-3484. [PMID: 30192551 DOI: 10.1021/acs.jproteome.8b00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA packaged into chromatin is the core structure of the human genome. Nearly all eukaryotic genome regulation must interface with this genomic structure, and modification of the chromatin can influence molecular mechanisms that regulate the underlying DNA. Many processes are governed by regulated stepwise assembly mechanisms that build complex machinery on chromatin to license a specific activity such as transcription. Transcriptional activators drive the initial steps of gene expression, regulated in part by chromatin. Here we describe tools to study the stepwise assembly of protein complexes on chromatin in a highly controlled manner using reconstituted human chromatin platforms and quantitative proteomic profiling. We profile the early steps in transcriptional activation and highlight the potential for understanding the multiple ways chromatin can influence transcriptional regulation. We also describe modifications of this approach to study the activity of a long noncoding RNA to act as a dynamic scaffold for proteins to be recruited to chromatin. This approach has the potential to provide a more comprehensive understanding of important macromolecular complex assembly that occurs on the human genome. The reconstituted nature of the chromatin substrate offers a tunable system that can be trapped at specific substeps to understand how chromatin interfaces with genome regulation machinery.
Collapse
|
24
|
Zukowski A, Johnson AM. The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Curr Genet 2018; 64:799-806. [PMID: 29464330 DOI: 10.1007/s00294-018-0812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Mono-ubiquitinated histone H2B (H2B-Ub) is important for chromatin regulation of transcription, chromatin assembly, and also influences heterochromatin. In this review, we discuss the effects of H2B-Ub from nucleosome to higher-order chromatin structure. We then assess what is currently known of the role of H2B-Ub in heterochromatic silencing in budding and fission yeasts (S. cerevisiae and S. pombe), which have distinct silencing mechanisms. In budding yeast, the SIR complex initiates heterochromatin assembly with the aid of a H2B-Ub deubiquitinase, Ubp10. In fission yeast, the RNAi-dependent pathway initiates heterochromatin in the context of low H2B-Ub. We examine how the different silencing machineries overcome the challenge of H2B-Ub chromatin and highlight the importance of using these microorganisms to further our understanding of H2B-Ub in heterochromatic silencing pathways.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
25
|
Zukowski A, Al-Afaleq NO, Duncan ED, Yao T, Johnson AM. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly. J Biol Chem 2017; 293:2498-2509. [PMID: 29288197 DOI: 10.1074/jbc.ra117.000498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/22/2017] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin formation in budding yeast is regulated by the silent information regulator (SIR) complex. The SIR complex comprises the NAD-dependent deacetylase Sir2, the scaffolding protein Sir4, and the nucleosome-binding protein Sir3. Transcriptionally active regions present a challenge to SIR complex-mediated de novo heterochromatic silencing due to the presence of antagonistic histone post-translational modifications, including acetylation and methylation. Methylation of histone H3K4 and H3K79 is dependent on monoubiquitination of histone H2B (H2B-Ub). The SIR complex cannot erase H2B-Ub or histone methylation on its own. The deubiquitinase (DUB) Ubp10 is thought to promote heterochromatic silencing by maintaining low H2B-Ub at sub-telomeres. Here, we biochemically characterized the interactions between Ubp10 and the SIR complex machinery. We demonstrate that a direct interaction between Ubp10 and the Sir2/4 sub-complex facilitates Ubp10 recruitment to chromatin via a co-assembly mechanism. Using hydrolyzable H2B-Ub analogs, we show that Ubp10 activity is lower on nucleosomes compared with H2B-Ub in solution. We find that Sir2/4 stimulates Ubp10 DUB activity on nucleosomes, likely through a combination of targeting and allosteric regulation. This coupling mechanism between the silencing machinery and its DUB partner allows erasure of active PTMs and the de novo transition of a transcriptionally active DNA region to a silent chromatin state.
Collapse
Affiliation(s)
- Alexis Zukowski
- From the Department of Biochemistry and Molecular Genetics and.,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Nouf Omar Al-Afaleq
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Emily D Duncan
- From the Department of Biochemistry and Molecular Genetics and.,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Tingting Yao
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Aaron M Johnson
- From the Department of Biochemistry and Molecular Genetics and .,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| |
Collapse
|
26
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
27
|
Behrouzi R, Lu C, Currie MA, Jih G, Iglesias N, Moazed D. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes. eLife 2016; 5. [PMID: 27835568 PMCID: PMC5106214 DOI: 10.7554/elife.17556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.
Collapse
Affiliation(s)
- Reza Behrouzi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Chenning Lu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Mark A Currie
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
28
|
Meredith EK, Balas MM, Sindy K, Haislop K, Johnson AM. An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR. RNA (NEW YORK, N.Y.) 2016; 22:995-1010. [PMID: 27146324 PMCID: PMC4911922 DOI: 10.1261/rna.055830.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 05/19/2023]
Abstract
The human long noncoding RNA (lncRNA) HOTAIR acts in trans to recruit the Polycomb repressive complex 2 (PRC2) to the HOXD gene cluster and to promote gene silencing during development. In breast cancers, overexpression of HOTAIR increases metastatic potential via the repression of many additional genes. It has remained unclear what factors determine HOTAIR-dependent PRC2 activity at specific genomic loci, particularly when high levels of HOTAIR result in aberrant gene silencing. To identify additional proteins that contribute to the specific action of HOTAIR, we performed a quantitative proteomic analysis of the HOTAIR interactome. We found that the most specific interaction was between HOTAIR and the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a member of a family of proteins involved in nascent mRNA processing and RNA matchmaking. Our data suggest that A2/B1 are key contributors to HOTAIR-mediated chromatin regulation in breast cancer cells: A2/B1 knockdown reduces HOTAIR-dependent breast cancer cell invasion and decreases PRC2 activity at the majority of HOTAIR-dependent loci. We found that the B1 isoform, which differs from A2 by 12 additional amino acids, binds with highest specificity to HOTAIR. B1 also binds chromatin and associates preferentially with RNA transcripts of HOTAIR gene targets. We furthermore demonstrate a direct RNA-RNA interaction between HOTAIR and a target transcript that is enhanced by B1 binding. Together, these results suggest a model in which B1 matches HOTAIR with transcripts of target genes on chromatin, leading to repression by PRC2.
Collapse
Affiliation(s)
- Emily K Meredith
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maggie M Balas
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Karla Sindy
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Krystal Haislop
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
29
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
30
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions. Cell Signal 2016; 28:887-95. [PMID: 27010499 DOI: 10.1016/j.cellsig.2016.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat Chem Biol 2016; 12:188-93. [PMID: 26807716 PMCID: PMC4876634 DOI: 10.1038/nchembio.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Specialized chromatin domains contribute to nuclear organization and regulation of gene expression. Gene-poor regions are di- and trimethylated at lysine 9 of histone H3 (H3K9me2/3) by the histone methyltransferase, Suv39h1. This enzyme harnesses a positive feedback loop to spread H3K9me2/3 over extended heterochromatic regions. However, little is known about how feedback loops operate on complex biopolymers such as chromatin, in part because of the difficulty in obtaining suitable substrates. Here we describe the synthesis of multi-domain ‘designer chromatin’ templates and their application to dissecting the regulation of human Suv39h1. We uncovered a two-step activation switch where H3K9me3 recognition and subsequent anchoring of the enzyme to chromatin allosterically promotes methylation activity, and confirmed that this mechanism contributes to chromatin recognition in cells. We propose that this mechanism serves as a paradigm in chromatin biochemistry since it enables highly dynamic sampling of chromatin state combined with targeted modification of desired genomic regions.
Collapse
|
32
|
Larin ML, Harding K, Williams EC, Lianga N, Doré C, Pilon S, Langis É, Yanofsky C, Rudner AD. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin. PLoS Genet 2015; 11:e1005425. [PMID: 26587833 PMCID: PMC4654584 DOI: 10.1371/journal.pgen.1005425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Changes in the locations and boundaries of heterochromatin are critical during development, and de novo assembly of silent chromatin in budding yeast is a well-studied model for how new sites of heterochromatin assemble. De novo assembly cannot occur in the G1 phase of the cell cycle and one to two divisions are needed for complete silent chromatin assembly and transcriptional repression. Mutation of DOT1, the histone H3 lysine 79 (K79) methyltransferase, and SET1, the histone H3 lysine 4 (K4) methyltransferase, speed de novo assembly. These observations have led to the model that regulated demethylation of histones may be a mechanism for how cells control the establishment of heterochromatin. We find that the abundance of Sir4, a protein required for the assembly of silent chromatin, decreases dramatically during a G1 arrest and therefore tested if changing the levels of Sir4 would also alter the speed of de novo establishment. Halving the level of Sir4 slows heterochromatin establishment, while increasing Sir4 speeds establishment. yku70Δ and ubp10Δ cells also speed de novo assembly, and like dot1Δ cells have defects in subtelomeric silencing, suggesting that these mutants may indirectly speed de novo establishment by liberating Sir4 from telomeres. Deleting RIF1 and RIF2, which suppresses the subtelomeric silencing defects in these mutants, rescues the advanced de novo establishment in yku70Δ and ubp10Δ cells, but not in dot1Δ cells, suggesting that YKU70 and UBP10 regulate Sir4 availability by modulating subtelomeric silencing, while DOT1 functions directly to regulate establishment. Our data support a model whereby the demethylation of histone H3 K79 and changes in Sir4 abundance and availability define two rate-limiting steps that regulate de novo assembly of heterochromatin.
Collapse
Affiliation(s)
- Michelle L. Larin
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Harding
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth C. Williams
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carole Doré
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sophie Pilon
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Langis
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Yanofsky
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam D. Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Tatavosian R, Zhen CY, Duc HN, Balas MM, Johnson AM, Ren X. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging. J Biol Chem 2015; 290:28038-28054. [PMID: 26381410 DOI: 10.1074/jbc.m115.671115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Maggie M Balas
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364.
| |
Collapse
|
34
|
Nucleosome avidities and transcriptional silencing in yeast. Curr Biol 2015; 25:1215-20. [PMID: 25891403 DOI: 10.1016/j.cub.2015.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
A classical example of "transcriptional silencing" is found in the yeast S. cerevisiae mating-type switch [1, 2]. The gene pairs a1/a2 and α1/α2, positioned at the loci HMR and HML, respectively, are silenced by Sir proteins recruited by proteins that bind sites flanking each locus. Transfer of either gene pair to the Sir-free MAT locus, or mutation of the Sirs, allows expression of those genes at levels sufficient to foster yeast mating. Here we confirm that, in the absence of Sirs, a1 and a2 at HMR are expressed at low levels [3]. This level is low because, we show, the relevant transcriptional activators, which work from regulatory sites located between the divergently transcribed genes, are weak. That property-weak activation-is a prerequisite for effective silencing upon recruitment of Sirs. We use our quantitative nucleosome occupancy assay to show that Sirs (which bind nucleosomes) increase the avidities with which those nucleosomes form at the promoters. That increase can account for at least part of the repressive effects of the Sirs and can explain why silencing is effective in countering weak activation only. We suggest that "silencing" in higher eukaryotes (e.g., by Polycomb or HP1) follows similar rules [4, 5] and note where such effects could be important.
Collapse
|
35
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
36
|
Kirkland JG, Peterson MR, Still CD, Brueggeman L, Dhillon N, Kamakaka RT. Heterochromatin formation via recruitment of DNA repair proteins. Mol Biol Cell 2015; 26:1395-410. [PMID: 25631822 PMCID: PMC4454184 DOI: 10.1091/mbc.e14-09-1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Double-strand-break repair proteins interact with and recruit Sir proteins to ectopic sites in the genome. Recruitment results in gene silencing, which depends on Sir proteins, as well as on histone H2A modification. Silencing also results in the localization of the locus to the nuclear periphery. Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Misty R Peterson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christopher D Still
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Leo Brueggeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Namrita Dhillon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
37
|
Affiliation(s)
- Robert K McGinty
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme. Proc Natl Acad Sci U S A 2014; 111:17827-32. [PMID: 25453095 DOI: 10.1073/pnas.1420096111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.
Collapse
|
39
|
Bi X. Heterochromatin structure: lessons from the budding yeast. IUBMB Life 2014; 66:657-66. [PMID: 25355678 DOI: 10.1002/iub.1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 12/28/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compactness and its inhibitory effect on DNA transactions such as gene expression. Formation of heterochromatin involves special histone modifications and the recruitment and spread of silencing complexes and causes changes in the primary and higher order structures of chromatin. The past two decades have seen dramatic advances in dissecting the molecular aspects of heterochromatin because of the identification of the histone code for heterochromatin as well as its writers and erasers (histone-modifying enzymes) and readers (silencing factors recognizing histone modifications). How heterochromatic histone modifications and silencing factors contribute to the special primary and higher order structures of heterochromatin has begun to be understood. The budding yeast Saccharomyces cerevisiae has long been used as a model organism for heterochromatin studies. Results from these studies have contributed significantly to the elucidation of the general principles governing the formation, maintenance, and function of heterochromatin. This review is focused on investigations into the structural aspects of heterochromatin in S. cerevisiae. Current understanding of other aspects of heterochromatin including how it promotes gene silencing and its epigenetic inheritance is briefly summarized.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
40
|
Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun 2014; 5:4751. [PMID: 25163529 PMCID: PMC4151189 DOI: 10.1038/ncomms5751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the HM silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy, and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibers are less compact than canonical – magnesium-induced 30 nm fibers. We suggest that heterochromatin proteins promote silencing by “coating” nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
Collapse
|
41
|
Park SH, Yu SE, Chai YG, Jang YK. CDK2-dependent phosphorylation of Suv39H1 is involved in control of heterochromatin replication during cell cycle progression. Nucleic Acids Res 2014; 42:6196-207. [PMID: 24728993 PMCID: PMC4041437 DOI: 10.1093/nar/gku263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 02/26/2014] [Accepted: 03/19/2014] [Indexed: 01/24/2023] Open
Abstract
Although several studies have suggested that the functions of heterochromatin regulators may be regulated by post-translational modifications during cell cycle progression, regulation of the histone methyltransferase Suv39H1 is not fully understood. Here, we demonstrate a direct link between Suv39H1 phosphorylation and cell cycle progression. We show that CDK2 phosphorylates Suv39H1 at Ser391 and these phosphorylation levels oscillate during the cell cycle, peaking at S phase and maintained during S-G2-M phase. The CDK2-mediated phosphorylation of Suv39H1 at Ser391 results in preferential dissociation from chromatin. Furthermore, phosphorylation-mediated dissociation of Suv39H1 from chromatin causes an enhanced occupancy of JMJD2A histone demethylase on heterochromatin and alterations in inactive histone marks. Overexpression of phospho-mimic Suv39H1 induces early replication of heterochromatin, suggesting the importance of Suv39H1 phosphorylation in the replication of heterochromatin. Moreover, overexpression of phospho-defective Suv39H1 caused altered replication timing of heterochromatin and increases sensitivity to replication stress. Collectively, our data suggest that phosphorylation-mediated modulation of Suv39H1-chromatin association may be an initial step in heterochromatin replication.
Collapse
Affiliation(s)
- Su Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seung Eun Yu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Young Gyu Chai
- Division of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
42
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
43
|
Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 2013; 47:275-306. [PMID: 24016189 DOI: 10.1146/annurev-genet-021313-173730] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
44
|
Oppikofer M, Kueng S, Gasser SM. SIR–nucleosome interactions: Structure–function relationships in yeast silent chromatin. Gene 2013; 527:10-25. [DOI: 10.1016/j.gene.2013.05.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
|
45
|
Johnson A, Wu R, Peetz M, Gygi SP, Moazed D. Heterochromatic gene silencing by activator interference and a transcription elongation barrier. J Biol Chem 2013; 288:28771-82. [PMID: 23940036 PMCID: PMC3789973 DOI: 10.1074/jbc.m113.460071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heterochromatin silences transcription, contributing to development, differentiation, and genome stability in eukaryotic organisms. Budding yeast heterochromatic silencing is strictly dependent on the silent information regulator (SIR) complex composed of the Sir2 histone deacetylase and the chromatin-interacting proteins Sir3 and Sir4. We use reconstituted SIR heterochromatin to characterize the steps in transcription that are disrupted to achieve silencing. Transcriptional activator binding is permitted before and after heterochromatin assembly. A comprehensive proteomic approach identified heterochromatin-mediated disruption of activator interactions with coactivator complexes. We also find that if RNA polymerase II (Pol II) is allowed to initiate transcription, the SIR complex blocks elongation on chromatin while maintaining Pol II in a halted conformation. This Pol II elongation barrier functions for even one nucleosome, is more effective when assembled with multiple nucleosomes, and is sensitive to a histone mutation that is known to disrupt silencing. This dual mechanism of silencing suggests a conserved principle of heterochromatin in assembling a specific structure that targets multiple steps to achieve repression.
Collapse
|
46
|
Wan Y, Zuo X, Zhuo Y, Zhu M, Danziger SA, Zhou Z. The functional role of SUMO E3 ligase Mms21p in the maintenance of subtelomeric silencing in budding yeast. Biochem Biophys Res Commun 2013; 438:746-52. [PMID: 23911609 DOI: 10.1016/j.bbrc.2013.07.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae, subtelomeric silencing is involved in the propagation of Silent Information Regulator (SIR) proteins toward euchromatin. Numerous mechanisms are involved in antagonizing the local spread of Sir-dependent silent chromatin into neighboring euchromatin. Here, we identified a novel role for sumoylation E3 ligase Mms21 in the maintenance of subtelomeric silencing. We found that disruption of E3 ligase activity of Mms21 results in the de-repression of subtelomeric silencing. Deletion of E3 ligase domain of Mms21 led to decreased binding of Sir2p, Sir3p and Sir4 at subtelomeric chromatins and increased H3K4 tri-methylation at telomere-distal euchromatin regions, correlating with increased gene expression in two subtelomeric reporter genes. In addition, a mms21Δsl mutant caused a severe growth defect in combination with htz1Δ deletion and showed an enhanced association of Htz1 with telomere proximal regions. Taken together, our findings suggest an important role of Mms21p; it contributes to subtelomeric silencing during the formation of a heterochromatin boundary.
Collapse
Affiliation(s)
- Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | |
Collapse
|
47
|
Oksenych V, Zhovmer A, Ziani S, Mari PO, Eberova J, Nardo T, Stefanini M, Giglia-Mari G, Egly JM, Coin F. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet 2013; 9:e1003611. [PMID: 23861670 PMCID: PMC3701700 DOI: 10.1371/journal.pgen.1003611] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/18/2013] [Indexed: 12/12/2022] Open
Abstract
UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEFDOT1L) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack. Through the deformation of the genomic DNA structure, UV-induced DNA lesions have repressive effect on various nuclear processes including replication and transcription. As a matter of fact, the removal of these lesions is a priority for the cell and takes place at the expense of fundamental cellular processes that are paused to circumvent the risks of mutations that may lead to cancer. The molecular mechanism underlying transcription inhibition and recovery is not clearly understood and appears more complicated than anticipated. Here we analyzed the process of transcription recovery after UV-irradiation and found that it depends on DOT1L, a histone methyltransferase that promotes the reformation of the transcription machinery at the promoters of UV-repressed genes. Our discovery shows that transcription recovery after a genotoxic attack is an active process under the control of chromatin remodelling enzymes.
Collapse
Affiliation(s)
- Valentyn Oksenych
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
| | - Alexander Zhovmer
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
| | - Salim Ziani
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
| | | | - Jitka Eberova
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
| | - Tiziana Nardo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Miria Stefanini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | - Jean-Marc Egly
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
| | - Frédéric Coin
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, C. U. Strasbourg, France
- * E-mail:
| |
Collapse
|
48
|
Zhang L, Chen H, Bi X, Gong F. Detection of an altered heterochromatin structure in the absence of the nucleotide excision repair protein Rad4 in Saccharomyces cerevisiae. Cell Cycle 2013; 12:2435-42. [PMID: 23839037 DOI: 10.4161/cc.25457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rad4p is a DNA damage recognition protein essential for global genomic nucleotide excision repair in Saccharomyces cerevisiae. Here, we show that Rad4p binds to the heterochromatic HML locus. In a yeast mutant lacking Rad4p, an increased level of SIR complex binding at the HML locus is accompanied by an altered, more compact heterochromatin structure, as revealed by a topological analysis of chromatin circles released from the locus. In addition, gene silencing at the HML locus is enhanced in the rad4Δ mutant. Importantly, re-expression of Rad4p in the rad4Δ mutant restores the altered heterochromatin structure to a conformation similar to that detected in wild-type cells. These findings reveal a novel role of Rad4p in the regulation of heterochromatin structure and gene silencing.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology; University of Miami Miller School of Medicine; Miami, FL USA
| | | | | | | |
Collapse
|
49
|
Grunstein M, Gasser SM. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a017491. [PMID: 23818500 DOI: 10.1101/cshperspect.a017491] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin, in which a nonhistone protein complex--the SIR complex--represses genes by spreading in a sequence-independent manner, much like heterochromatin in higher eukaryotes. The ability to study mutations in histones and to screen genome-wide for mutations that impair silencing has yielded an unparalleled depth of detail about this system. Recent advances in the biochemistry and structural biology of the SIR-chromatin complex bring us much closer to a molecular understanding of how Sir3 selectively recognizes the deacetylated histone H4 tail and demethylated histone H3 core. The existence of appropriate mutants has also shown how components of the silencing machinery affect physiological processes beyond transcriptional repression.
Collapse
Affiliation(s)
- Michael Grunstein
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
50
|
Hizume K, Yagura M, Araki H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cells 2013; 18:764-79. [DOI: 10.1111/gtc.12073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 01/21/2023]
Affiliation(s)
| | - Masaru Yagura
- Division of Microbial Genetics; National Institute of Genetics; Mishima; 411-8540; Japan
| | | |
Collapse
|