1
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Grandin N, Charbonneau M. Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints. Cells 2024; 13:1605. [PMID: 39404369 PMCID: PMC11475793 DOI: 10.3390/cells13191605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France;
| |
Collapse
|
3
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
4
|
Wysong BC, Schuck PL, Sridharan M, Carrison S, Murakami Y, Balakrishnan L, Stewart JA. Human CST Stimulates Base Excision Repair to Prevent the Accumulation of Oxidative DNA Damage. J Mol Biol 2024; 436:168672. [PMID: 38908783 PMCID: PMC11864811 DOI: 10.1016/j.jmb.2024.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol β, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.
Collapse
Affiliation(s)
- Brandon C Wysong
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Madhumita Sridharan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Sophie Carrison
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Yuichihiro Murakami
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA.
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, USA; Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
5
|
Cai SW, Takai H, Zaug AJ, Dilgen TC, Cech TR, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024; 187:3638-3651.e18. [PMID: 38838667 PMCID: PMC11246235 DOI: 10.1016/j.cell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teague C Dilgen
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Vriend J, Liu XQ. Survival-Related Genes on Chromosomes 6 and 17 in Medulloblastoma. Int J Mol Sci 2024; 25:7506. [PMID: 39062749 PMCID: PMC11277021 DOI: 10.3390/ijms25147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4β, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiao-Qing Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
8
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-polymerase α-primase solves a second telomere end-replication problem. Nature 2024; 627:664-670. [PMID: 38418884 PMCID: PMC11160940 DOI: 10.1038/s41586-024-07137-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joseph T P Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Gullulu O, Ozcelik E, Tuzlakoglu Ozturk M, Karagoz MS, Tazebay UH. A multi-faceted approach to unravel coding and non-coding gene fusions and target chimeric proteins in ataxia. J Biomol Struct Dyn 2024:1-21. [PMID: 38411012 DOI: 10.1080/07391102.2024.2321510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omer Gullulu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emrah Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoglu Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mustafa Safa Karagoz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
10
|
Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet 2024; 40:175-186. [PMID: 37957036 DOI: 10.1016/j.tig.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China; Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China; Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China.
| |
Collapse
|
11
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
12
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-Polymeraseα-primase solves a second telomere end-replication problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564248. [PMID: 37961611 PMCID: PMC10634868 DOI: 10.1101/2023.10.26.564248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ("the end-replication problem"2). We report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand by lagging-strand synthesis. This problem is solved by CST-Polymeraseα(Polα)-primase fill-in synthesis. In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in an ~150-nt zone more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost ~50-60 nt of CCCTAA repeats per population doubling (PD). The C-strands of leading-end telomeres shortened by ~100 nt/PD, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading-ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Joseph T. P. Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
13
|
Li B. Unwrap RAP1's Mystery at Kinetoplastid Telomeres. Biomolecules 2024; 14:67. [PMID: 38254667 PMCID: PMC10813129 DOI: 10.3390/biom14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1's functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Dunn PL, Logeswaran D, Chen JJL. Telomerase-Mediated Anti-Ageing Interventions. Subcell Biochem 2024; 107:1-20. [PMID: 39693017 DOI: 10.1007/978-3-031-66768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans. Telomeres shorten progressively with each round of DNA replication due to the inability of conventional DNA polymerase to completely replicate the chromosome ends, known as the "end-replication problem". The telomerase enzyme counteracts the telomeric DNA loss by de novo addition of telomeric repeats onto chromosomal ends. Germline and stem cells maintain significant levels of telomerase activity to maintain telomere length and can divide almost indefinitely. However, the differentiation of stem cells accompanies the inactivation of telomerase gene expression, resulting in the progressive shortening of telomeres in somatic cells over successive divisions. Critically short telomeres elicit and sustain a persistent DNA damage response leading to permanent growth arrest of cells known as cellular senescence, a hallmark of cellular ageing. The accumulation of senescent cells in tissues and organs contributes to organismal ageing. Thus, the prevention of telomere shortening is a promising means to delay or even reverse cellular ageing. In this chapter, we summarize potential anti-ageing interventions that mitigate telomere shortening through increasing telomerase level or activity and discuss these strategies' risks, benefits, and future outlooks.
Collapse
Affiliation(s)
- Phoebe L Dunn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
16
|
Jaiswal RK, Lei KH, Chastain M, Wang Y, Shiva O, Li S, You Z, Chi P, Chai W. CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection. Nat Commun 2023; 14:7882. [PMID: 38036565 PMCID: PMC10689503 DOI: 10.1038/s41467-023-43685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Olga Shiva
- Office of Research, Washington State University, Spokane, WA, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
17
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal Telomeres Derived from Excessive Strand Displacements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551186. [PMID: 37577643 PMCID: PMC10418088 DOI: 10.1101/2023.07.31.551186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication (BIR), evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), unique to ALT cells, are considered potential precursors of C-circles, their generation process remains undefined. Here, we introduce a highly sensitive method to detect single stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear C-rich ssDNA accumulation may indeed precede C-circle formation. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a new model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
19
|
He Q, Lim CJ. Models for human telomere C-strand fill-in by CST-Polα-primase. Trends Biochem Sci 2023; 48:860-872. [PMID: 37586999 PMCID: PMC10528720 DOI: 10.1016/j.tibs.2023.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Telomere maintenance is essential for the genome integrity of eukaryotes, and this function is underpinned by the two-step telomeric DNA synthesis process: telomere G-overhang extension by telomerase and complementary strand fill-in by DNA polymerase alpha-primase (polα-primase). Compared to the telomerase step, the telomere C-strand fill-in mechanism is less understood. Recent studies have provided new insights into how telomeric single-stranded DNA-binding protein CTC1-STN1-TEN1 (CST) and polα-primase coordinate to synthesize the telomeric C-strand for telomere overhang fill-in. Cryogenic electron microscopy (cryo-EM) structures of CST-polα-primase complexes have provided additional insights into how they assemble at telomeric templates and de novo synthesize the telomere C-strand. In this review, we discuss how these latest findings coalesce with existing understanding to develop a human telomere C-strand fill-in mechanism model.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Hara T, Nakaoka H, Miyoshi T, Ishikawa F. The CST complex facilitates cell survival under oxidative genotoxic stress. PLoS One 2023; 18:e0289304. [PMID: 37590191 PMCID: PMC10434909 DOI: 10.1371/journal.pone.0289304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Genomic DNA is constantly exposed to a variety of genotoxic stresses, and it is crucial for organisms to be equipped with mechanisms for repairing the damaged genome. Previously, it was demonstrated that the mammalian CST (CTC1-STN1-TEN1) complex, which was originally identified as a single-stranded DNA-binding trimeric protein complex essential for telomere maintenance, is required for survival in response to hydroxyurea (HU), which induces DNA replication fork stalling. It is still unclear, however, how the CST complex is involved in the repair of diverse types of DNA damage induced by oxidizing agents such as H2O2. STN1 knockdown (KD) sensitized HeLa cells to high doses of H2O2. While H2O2 induced DNA strand breaks throughout the cell cycle, STN1 KD cells were as resistant as control cells to H2O2 treatment when challenged in the G1 phase of the cell cycle, but they were sensitive when exposed to H2O2 in S/G2/M phase. STN1 KD cells showed a failure of DNA synthesis and RAD51 foci formation upon H2O2 treatment. Chemical inhibition of RAD51 in shSTN1 cells did not exacerbate the sensitivity to H2O2, implying that the CST complex and RAD51 act in the same pathway. Collectively, our results suggest that the CST complex is required for maintaining genomic stability in response to oxidative DNA damage, possibly through RAD51-dependent DNA repair/protection mechanisms.
Collapse
Affiliation(s)
- Tomohiko Hara
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hidenori Nakaoka
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoicihiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Abstract
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
22
|
Wang H, Ma T, Zhang X, Chen W, Lan Y, Kuang G, Hsu SJ, He Z, Chen Y, Stewart J, Bhattacharjee A, Luo Z, Price C, Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res 2023; 51:4914-4928. [PMID: 37021555 PMCID: PMC10250220 DOI: 10.1093/nar/gkad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a telomere associated complex that binds ssDNA and is required for multiple steps in telomere replication, including termination of G-strand extension by telomerase and synthesis of the complementary C-strand. CST contains seven OB-folds which appear to mediate CST function by modulating CST binding to ssDNA and the ability of CST to recruit or engage partner proteins. However, the mechanism whereby CST achieves its various functions remains unclear. To address the mechanism, we generated a series of CTC1 mutants and studied their effect on CST binding to ssDNA and their ability to rescue CST function in CTC1-/- cells. We identified the OB-B domain as a key determinant of telomerase termination but not C-strand synthesis. CTC1-ΔB expression rescued C-strand fill-in, prevented telomeric DNA damage signaling and growth arrest. However, it caused progressive telomere elongation and the accumulation of telomerase at telomeres, indicating an inability to limit telomerase action. The CTC1-ΔB mutation greatly reduced CST-TPP1 interaction but only modestly affected ssDNA binding. OB-B point mutations also weakened TPP1 association, with the deficiency in TPP1 interaction tracking with an inability to limit telomerase action. Overall, our results indicate that CTC1-TPP1 interaction plays a key role in telomerase termination.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tengfei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Lan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guotao Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shih-Jui Hsu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Zhenhua Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Carolyn Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Xuyang Feng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Olson CL, Barbour AT, Wieser TA, Wuttke DS. RPA engages telomeric G-quadruplexes more effectively than CST. Nucleic Acids Res 2023; 51:5073-5086. [PMID: 37140062 PMCID: PMC10250233 DOI: 10.1093/nar/gkad315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
G-quadruplexes (G4s) are a set of stable secondary structures that form within guanine-rich regions of single-stranded nucleic acids that pose challenges for DNA maintenance. The G-rich DNA sequence at telomeres has a propensity to form G4s of various topologies. The human protein complexes Replication Protein A (RPA) and CTC1-STN1-TEN1 (CST) are implicated in managing G4s at telomeres, leading to DNA unfolding and allowing telomere replication to proceed. Here, we use fluorescence anisotropy equilibrium binding measurements to determine the ability of these proteins to bind various telomeric G4s. We find that the ability of CST to specifically bind G-rich ssDNA is substantially inhibited by the presence of G4s. In contrast, RPA tightly binds telomeric G4s, showing negligible changes in affinity for G4 structure compared to linear ssDNAs. Using a mutagenesis strategy, we found that RPA DNA-binding domains work together for G4 binding, and simultaneous disruption of these domains reduces the affinity of RPA for G4 ssDNA. The relative inability of CST to disrupt G4s, combined with the greater cellular abundance of RPA, suggests that RPA could act as a primary protein complex responsible for resolving G4s at telomeres.
Collapse
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| |
Collapse
|
24
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
25
|
Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, et alShi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Sihoe ADL, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Hsiung CA, Amos CI, Shen H, Chanock SJ, Rothman N, Kohno T, Lan Q. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat Commun 2023; 14:3043. [PMID: 37236969 PMCID: PMC10220065 DOI: 10.1038/s41467-023-38196-z] [Show More Authors] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Young Tae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bao Song
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Maria Pik Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Brian Douglas Richardson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shilan Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Lap Ping Chung
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Yang Yang
- Shanghai Pulmonary Hospital, Shanghai, China
| | - She-Juan An
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yasushi Yatabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jiang Chang
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James Chung Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Shiga, Japan
| | - Minsun Song
- Department of Statistics & Research Institute of Natural Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dean H Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Ohe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihiro Shimizu
- Department of Surgery, Division of General Thoracic Surgery, Shinshu University School of Medicine Asahi, Nagano, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoichi Ohtaki
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Kazumi Tanaka
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jian Su
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, and school of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University, Hwasun, Republic of Korea
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Biyun Qian
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Margaret R Spitz
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Ivan P Gorlov
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Xifeng Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Angela Risch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Helmholtz Center Munich, Institute of Epidemiology, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | | | | | | | - Paul Brennan
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Sanjay S Shete
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hyo-Sung Jeon
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jae Sook Sung
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yoo Jin Jung
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Junwen Wang
- Department of Biochemistry, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Li
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jin Eun Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sook Whan Sung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Wen Tan
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Ying Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yi Young Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jun Suk Kim
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ho-Il Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ping Xu
- Department of Oncology, Wuhan Iron and Steel (Group) Corporation Staff-Worker Hospital, Wuhan, China
| | - Qincheng He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Roel C H Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei-Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, China
| | - Hongyan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hsien-Chih Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhehai Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Sensen Cheng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Ann Chao
- Center for Global Health, National Cancer Institute, Bethesda, MD, USA
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Junjie Zhu
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Ke Fei
- Shanghai Pulmonary Hospital, Shanghai, China
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing, China
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jinming Yu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | | | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Olga Y Gorlova
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
26
|
Nguyen DD, Kim E, Le NT, Ding X, Jaiswal RK, Kostlan RJ, Nguyen TNT, Shiva O, Le MT, Chai W. Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair. SCIENCE ADVANCES 2023; 9:eadd8023. [PMID: 37163605 PMCID: PMC10171824 DOI: 10.1126/sciadv.add8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Despite the high lethality of colorectal cancers (CRCs), only a limited number of genetic risk factors are identified. The mammalian ssDNA-binding protein complex CTC1-STN1-TEN1 protects genome stability, yet its role in tumorigenesis is unknown. Here, we show that attenuated CTC1/STN1 expression is common in CRCs. We generated an inducible STN1 knockout mouse model and found that STN1 deficiency in young adult mice increased CRC incidence, tumor size, and tumor load. CRC tumors exhibited enhanced proliferation, reduced apoptosis, and elevated DNA damage and replication stress. We found that STN1 deficiency down-regulated multiple DNA glycosylases, resulting in defective base excision repair (BER) and accumulation of oxidative damage. Collectively, this study identifies STN1 deficiency as a risk factor for CRC and implicates the previously unknown STN1-BER axis in protecting colon tissues from oxidative damage, therefore providing insights into the CRC tumor-suppressing mechanism.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Eugene Kim
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Nhat Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Raymond Joseph Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Thi Ngoc Thanh Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Olga Shiva
- Office of Research, Washington State University-Spokane, Spokane, WA, USA
| | - Minh Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
27
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
28
|
Madru C, Martínez-Carranza M, Laurent S, Alberti AC, Chevreuil M, Raynal B, Haouz A, Le Meur RA, Delarue M, Henneke G, Flament D, Krupovic M, Legrand P, Sauguet L. DNA-binding mechanism and evolution of replication protein A. Nat Commun 2023; 14:2326. [PMID: 37087464 PMCID: PMC10122647 DOI: 10.1038/s41467-023-38048-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes.
Collapse
Affiliation(s)
- Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Sébastien Laurent
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Alessandra C Alberti
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Maelenn Chevreuil
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Rémy A Le Meur
- Biological NMR Platform & HDX, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Didier Flament
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 6047, Paris, France
| | - Pierre Legrand
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
29
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
30
|
Chen X, Hao Z, Pan H, Liu W, Lu L, Zhang M, He X, Yi H, Tang S. Relationship between common telomere length-related genetic variations, telomere length, and risk of antituberculosis drug-induced hepatotoxicity in Chinese Han population: As assessed for causality using the updated Roussel Uclaf Causality Assessment Method. Fundam Clin Pharmacol 2023. [PMID: 36855016 DOI: 10.1111/fcp.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Antituberculosis drug-induced hepatotoxicity (ATDH) is a significant threat to tuberculosis control, and two recent studies indicated that leukocyte telomere length (LTL) might be a potential biomarker for ATDH. This study aimed to investigate the relationship between common telomere length-related genetic variations, LTL, and risk of ATDH in Eastern Chinese antituberculosis treatment patients. A 1:4 matched case-control study was conducted among 79 ATDH cases assessed for causality using the updated RUCAM and 316 controls. LTL was determined by quantitative real-time PCR, and nine SNPs involved in telomere biology reported by previous GWAS were assessed. Conditional logistic regression model was used to estimate the association between genotypes and risk of ATDH with odds ratios (ORs) and 95% confidence intervals (CIs). The average RUCAM score of cases was 7.1. The average LTL in cases was significantly shorter than that in controls (median = 1.239 vs. 1.481, P = 0.032). Differences in the distribution of LTL were statistically significant among three genotypes of SNP rs2736098 (CC vs. CT vs. TT, median = 1.544 vs. 1.356 vs. 1.337, P = 0.026) and rs2853677 (AA vs. AG vs. GG, median = 1.511 vs. 1.544 vs. 1.159, P = 0.005) in TERT. SNP rs7675998 in NAF1 was statistically associated with the risk of ATDH under the dominant model (adjusted OR = 1.725, 95% CI: 1.021-2.913, P = 0.042). This is the first study to investigate the relationship of LTL, common telomere length-related variations, and risk of ATDH. SNP rs2736098 and rs2853677 in TERT were significantly associated with LTL, and SNP rs7675998 in NAF1 may be associated with ATDH in Chinese population.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Wenpei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Mirman Z, Cai S, de Lange T. CST/Polα/primase-mediated fill-in synthesis at DSBs. Cell Cycle 2023; 22:379-389. [PMID: 36205622 PMCID: PMC9879193 DOI: 10.1080/15384101.2022.2123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a major threat to the genome, so the efficient repair of such breaks is essential. DSB processing and repair is affected by 53BP1, which has been proposed to determine repair pathway choice and/or promote repair fidelity. 53BP1 and its downstream effectors, RIF1 and shieldin, control 3' overhang length, and the mechanism has been a topic of intensive research. Here, we highlight recent evidence that 3' overhang control by 53BP1 occurs through fill-in synthesis of resected DSBs by CST/Polα/primase. We focus on the crucial role of fill-in synthesis in BRCA1-deficient cells treated with PARPi and discuss the notion of fill-in synthesis in other specialized settings and in the repair of random DSBs. We argue that - in addition to other determinants - repair pathway choice may be influenced by the DNA sequence at the break which can impact CST binding and therefore the deployment of Polα/primase fill-in.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, HHMI, Boston, MA, USA
| | - Sarah Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Laboratory for Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
32
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Ha SJ, Kwag E, Kim S, Park JH, Park SJ, Yoo HS. Effect of Traditional Korean Medicine Oncotherapy on the Survival, Quality of Life, and Telomere Length: A Prospective Cohort Study. Integr Cancer Ther 2023; 22:15347354231154267. [PMID: 37615075 PMCID: PMC10467224 DOI: 10.1177/15347354231154267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 08/25/2023] Open
Abstract
A 4-year prospective cohort study on patients with lung, gastric, hepatic, colorectal, breast, uterine, and ovarian cancer was conducted at the East-West Cancer Center (EWCC) of Daejeon Korean Medicine Hospital in Daejeon, Korea. We divided patients into 2 groups based on how long they had been receiving TKM oncotherapy and compared event-free survival (EFS), telomere length change, and quality of life (QoL). The study collected data on 83 patients from October 2016 to June 2020 and discovered no statistical differences in EFS based on the duration of TKM oncotherapy. In the analysis of changes in QoL outcomes, there were no statistically significant group differences between the groups. After controlling for covariates that could affect telomere length, the long-term TKM oncotherapy group had a higher daily telomere attrition rate. The study of the relationship between telomere length and prognostic factors discovered that patients with advanced N stage at the time of diagnosis and who had previously received radiotherapy had shorter telomere length. When examining associations between SNP genotype and percentile score of telomere length, this study was able to confirm an association between telomere length and rs4387287. This study is significant because it is the first to assess the effects of TKM oncotherapy and investigate telomere length-related factors. To assess the effects of TKM oncotherapy on cancer patients' survival and QoL, a longer-term observational study with a larger sample size is required.
Collapse
Affiliation(s)
- Su-Jung Ha
- Daejeon University, Daejeon City, Republic of Korea
| | - Eunbin Kwag
- Daejeon University, Daejeon City, Republic of Korea
| | - Soodam Kim
- Daejeon University, Daejeon City, Republic of Korea
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ji-Hye Park
- Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Pusan National University Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | | |
Collapse
|
34
|
Joseph NA, Chen LY. Tethering CST to the telomerase catalytic core—the p50 linchpin. Structure 2022; 30:1563-1564. [DOI: 10.1016/j.str.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Structural and functional insights into CST tethering in Tetrahymena thermophila telomerase. Structure 2022; 30:1565-1572.e4. [DOI: 10.1016/j.str.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/11/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
|
36
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
37
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
38
|
Olson CL, Barbour AT, Wuttke DS. Filling in the blanks: how the C-strand catches up to the G-strand at replicating telomeres using CST. Nat Struct Mol Biol 2022; 29:730-733. [PMID: 35948770 DOI: 10.1038/s41594-022-00818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
39
|
He Q, Lin X, Chavez BL, Agrawal S, Lusk BL, Lim CJ. Structures of the human CST-Polα-primase complex bound to telomere templates. Nature 2022; 608:826-832. [PMID: 35830881 DOI: 10.1038/s41586-022-05040-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/29/2022] [Indexed: 01/26/2023]
Abstract
The mammalian DNA polymerase-α-primase (Polα-primase) complex is essential for DNA metabolism, providing the de novo RNA-DNA primer for several DNA replication pathways1-4 such as lagging-strand synthesis and telomere C-strand fill-in. The physical mechanism underlying how Polα-primase, alone or in partnership with accessory proteins, performs its complicated multistep primer synthesis function is unknown. Here we show that CST, a single-stranded DNA-binding accessory protein complex for Polα-primase, physically organizes the enzyme for efficient primer synthesis. Cryogenic electron microscopy structures of the CST-Polα-primase preinitiation complex (PIC) bound to various types of telomere overhang reveal that template-bound CST partitions the DNA and RNA catalytic centres of Polα-primase into two separate domains and effectively arranges them in RNA-DNA synthesis order. The architecture of the PIC provides a single solution for the multiple structural requirements for the synthesis of RNA-DNA primers by Polα-primase. Several insights into the template-binding specificity of CST, template requirement for assembly of the CST-Polα-primase PIC and activation are also revealed in this study.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiuhua Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bianca L Chavez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sourav Agrawal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin L Lusk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Zaug AJ, Goodrich KJ, Song JJ, Sullivan AE, Cech TR. Reconstitution of a telomeric replicon organized by CST. Nature 2022; 608:819-825. [PMID: 35831508 PMCID: PMC9402439 DOI: 10.1038/s41586-022-04930-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. This replication requires telomerase3 extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)n); the synthesis of the complementary C-strand ((CCCTAA)n) is much less well characterized. The CST (CTC1–STN1–TEN1) protein complex, a DNA polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6–9, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST–Polα–primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3′ overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα–primase to telomeric ssDNA4,12,13 but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics. The Polα–primase-associated CST complex organizes telomeric C-strand DNA synthesis, and, in combination with telomerase, it carries out complete replication of the single-stranded DNA overhang found at human telomeres.
Collapse
Affiliation(s)
- Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Jessica J Song
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Ashley E Sullivan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
41
|
Shu H, Zhang R, Xiao K, Yang J, Sun X. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules 2022; 12:biom12050648. [PMID: 35625576 PMCID: PMC9138358 DOI: 10.3390/biom12050648] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical secondary nucleic acid structures. Sequences with the potential to form G4s are abundant in regulatory regions of the genome including telomeres, promoters and 5′ non-coding regions, indicating they fulfill important genome regulatory functions. Generally, G4s perform various biological functions by interacting with proteins. In recent years, an increasing number of G-quadruplex-binding proteins have been identified with biochemical experiments. G4-binding proteins are involved in vital cellular processes such as telomere maintenance, DNA replication, gene transcription, mRNA processing. Therefore, G4-binding proteins are also associated with various human diseases. An intensive study of G4-protein interactions provides an attractive approach for potential therapeutics and these proteins can be considered as drug targets for novel medical treatment. In this review, we present biological functions and structural properties of G4-binding proteins, and discuss how to exploit G4-protein interactions to develop new therapeutic targets.
Collapse
|
42
|
Pan-cancer analysis reveals that CTC1-STN1-TEN1 (CST) complex may have a key position in oncology. Cancer Genet 2022; 262-263:80-90. [DOI: 10.1016/j.cancergen.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
|
43
|
Lim YS, Nguyen MT, Pham TX, Huynh TT, Park EM, Choi DH, Kang SM, Tark D, Hwang SB. Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV. Mol Cells 2022; 45:148-157. [PMID: 34949741 PMCID: PMC8926864 DOI: 10.14348/molcells.2021.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for viral propagation. Using protein microarray analysis, we identified 90 cellular proteins as HCV nonstructural 5A (NS5A) interacting partners, and selected telomere length regulation protein (TEN1) for further study. TEN1 forms a heterotrimeric complex with CTC and STN1, which is essential for telomere protection and maintenance. Telomere length decreases in patients with active HCV, chronic liver disease, and hepatocellular carcinoma. However, the molecular mechanism of telomere length shortening in HCV-associated disease is largely unknown. In the present study, protein interactions between NS5A and TEN1 were confirmed by immunoprecipitation assays. Silencing of TEN1 reduced both viral RNA and protein expression levels of HCV, while ectopic expression of the siRNA-resistant TEN1 recovered the viral protein level, suggesting that TEN1 was specifically required for HCV propagation. Importantly, we found that TEN1 is re-localized from the nucleus to the cytoplasm in HCV-infected cells. These data suggest that HCV exploits TEN1 to promote viral propagation and that telomere protection is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the telomere shortening in HCV-infected cells.
Collapse
Affiliation(s)
- Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Men T.N. Nguyen
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Thuy X. Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Trang T.X. Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Eun-Mee Park
- Center for Immunology and Pathology, National Institute of Health, Korea Center for Disease Control & Prevention, Cheongju 28159, Korea
| | - Dong Hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Sang Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| |
Collapse
|
44
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
45
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
46
|
Zaug AJ, Lim CJ, Olson CL, Carilli MT, Goodrich K, Wuttke D, Cech T. CST does not evict elongating telomerase but prevents initiation by ssDNA binding. Nucleic Acids Res 2021; 49:11653-11665. [PMID: 34718732 PMCID: PMC8599947 DOI: 10.1093/nar/gkab942] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The CST complex (CTC1-STN1-TEN1) has been shown to inhibit telomerase extension of the G-strand of telomeres and facilitate the switch to C-strand synthesis by DNA polymerase alpha-primase (pol α-primase). Recently the structure of human CST was solved by cryo-EM, allowing the design of mutant proteins defective in telomeric ssDNA binding and prompting the reexamination of CST inhibition of telomerase. The previous proposal that human CST inhibits telomerase by sequestration of the DNA primer was tested with a series of DNA-binding mutants of CST and modeled by a competitive binding simulation. The DNA-binding mutants had substantially reduced ability to inhibit telomerase, as predicted from their reduced affinity for telomeric DNA. These results provide strong support for the previous primer sequestration model. We then tested whether addition of CST to an ongoing processive telomerase reaction would terminate DNA extension. Pulse-chase telomerase reactions with addition of either wild-type CST or DNA-binding mutants showed that CST has no detectable ability to terminate ongoing telomerase extension in vitro. The same lack of inhibition was observed with or without pol α-primase bound to CST. These results suggest how the switch from telomerase extension to C-strand synthesis may occur.
Collapse
Affiliation(s)
- Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Maria T Carilli
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
47
|
Lei KH, Yang HL, Chang HY, Yeh HY, Nguyen DD, Lee TY, Lyu X, Chastain M, Chai W, Li HW, Chi P. Crosstalk between CST and RPA regulates RAD51 activity during replication stress. Nat Commun 2021; 12:6412. [PMID: 34741010 PMCID: PMC8571288 DOI: 10.1038/s41467-021-26624-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.
Collapse
Affiliation(s)
- Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Han-Lin Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Tzu-Yu Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Xinxing Lyu
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Yamamoto I, Nakaoka H, Takikawa M, Tashiro S, Kanoh J, Miyoshi T, Ishikawa F. Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions. Nucleic Acids Res 2021; 49:10465-10476. [PMID: 34520548 PMCID: PMC8501966 DOI: 10.1093/nar/gkab767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.
Collapse
Affiliation(s)
- Io Yamamoto
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hidenori Nakaoka
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masahiro Takikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sanki Tashiro
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomoichiro Miyoshi
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Fuyuki Ishikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
49
|
Spivakovsky-Gonzalez E, Polleys EJ, Masnovo C, Cebrian J, Molina-Vargas AM, Freudenreich CH, Mirkin SM. Rad9-mediated checkpoint activation is responsible for elevated expansions of GAA repeats in CST-deficient yeast. Genetics 2021; 219:6343461. [PMID: 34849883 DOI: 10.1093/genetics/iyab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Large-scale expansion of (GAA)n repeats in the first intron of the FXN gene is responsible for the severe neurodegenerative disease, Friedreich's ataxia in humans. We have previously conducted an unbiased genetic screen for GAA repeat instability in a yeast experimental system. The majority of genes that came from this screen encoded the components of DNA replication machinery, strongly implying that replication irregularities are at the heart of GAA repeat expansions. This screen, however, also produced two unexpected hits: members of the CST complex, CDC13 and TEN1 genes, which are required for telomere maintenance. To understand how the CST complex could affect intra-chromosomal GAA repeats, we studied the well-characterized temperature-sensitive cdc13-1 mutation and its effects on GAA repeat instability in yeast. We found that in-line with the screen results, this mutation leads to ∼10-fold increase in the rate of large-scale expansions of the (GAA)100 repeat at semi-permissive temperature. Unexpectedly, the hyper-expansion phenotype of the cdc13-1 mutant largely depends on activation of the G2/M checkpoint, as deletions of individual genes RAD9, MEC1, RAD53, and EXO1 belonging to this pathway rescued the increased GAA expansions. Furthermore, the hyper-expansion phenotype of the cdc13-1 mutant depended on the subunit of DNA polymerase δ, Pol32. We hypothesize, therefore, that increased repeat expansions in the cdc13-1 mutant happen during post-replicative repair of nicks or small gaps within repetitive tracts during the G2 phase of the cell cycle upon activation of the G2/M checkpoint.
Collapse
Affiliation(s)
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jorge Cebrian
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Madrid 28040, Spain
| | - Adrian M Molina-Vargas
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
50
|
Paiano J, Zolnerowich N, Wu W, Pavani R, Wang C, Li H, Zheng L, Shen B, Sleckman BP, Chen BR, Nussenzweig A. Role of 53BP1 in end protection and DNA synthesis at DNA breaks. Genes Dev 2021; 35:1356-1367. [PMID: 34503990 DOI: 10.1101/gad.348667.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.
Collapse
Affiliation(s)
- Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas Zolnerowich
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chen Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Barry P Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|