1
|
Weyer Y, Teis D. The Dsc complex and its role in Golgi quality control. Biochem Soc Trans 2024; 52:2023-2034. [PMID: 39324639 PMCID: PMC11555709 DOI: 10.1042/bst20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
Membrane proteins play crucial roles in cellular functions. However, processes such as the insertion of membrane proteins into the endoplasmic reticulum (ER), their folding into native structures, the assembly of multi-subunit membrane protein complexes, and their targeting from the ER to specific organelles are prone to errors and have a relatively high failure rate. To prevent the accumulation of defective or orphaned membrane proteins, quality control mechanisms assess folding, quantity, and localization of these proteins. This quality control is vital for preserving organelle integrity and maintaining cellular health. In this mini-review, we will focus on how selective membrane protein quality control at the Golgi apparatus, particularly through the defective for SREBP cleavage (Dsc) ubiquitin ligase complex, detects orphaned proteins and prevents their mis-localization to other organelles.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Xiang Z, Hou G, Zheng S, Lu M, Li T, Lin Q, Liu H, Wang X, Guan T, Wei Y, Zhang W, Zhang Y, Liu C, Li L, Lei QY, Hu Y. ER-associated degradation ligase HRD1 links ER stress to DNA damage repair by modulating the activity of DNA-PKcs. Proc Natl Acad Sci U S A 2024; 121:e2403038121. [PMID: 39226359 PMCID: PMC11406283 DOI: 10.1073/pnas.2403038121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Proteostasis and genomic integrity are respectively regulated by the endoplasmic reticulum-associated protein degradation (ERAD) and DNA damage repair signaling pathways, with both pathways essential for carcinogenesis and drug resistance. How these signaling pathways coordinate with each other remains unexplored. We found that ER stress specifically induces the DNA-PKcs-regulated nonhomologous end joining (NHEJ) pathway to amend DNA damage and impede cell death. Intriguingly, sustained ER stress rapidly decreased the activity of DNA-PKcs and DNA damage accumulated, facilitating a switch from adaptation to cell death. This DNA-PKcs inactivation was caused by increased KU70/KU80 protein degradation. Unexpectedly, the ERAD ligase HRD1 was found to efficiently destabilize the classic nuclear protein HDAC1 in the cytoplasm, by catalyzing HDAC1's polyubiquitination at lysine 74, at a late stage of ER stress. By abolishing HDAC1-mediated KU70/KU80 deacetylation, HRD1 transmits ER signals to the nucleus. The resulting enhanced KU70/KU80 acetylation provides binding sites for the nuclear E3 ligase TRIM25, resulting in the promotion of polyubiquitination and the degradation of KU70/KU80 proteins. Both in vitro and in vivo cancer models showed that genetic or pharmacological inhibition of HADC1 or DNA-PKcs sensitizes colon cancer cells to ER stress inducers, including the Food and Drug Administration-approved drug celecoxib. The antitumor effects of the combined approach were also observed in patient-derived xenograft models. These findings identify a mechanistic link between ER stress (ERAD) in the cytoplasm and DNA damage (NHEJ) pathways in the nucleus, indicating that combined anticancer strategies may be developed that induce severe ER stress while simultaneously inhibiting KU70/KU80/DNA-PKcs-mediated NHEJ signaling.
Collapse
Affiliation(s)
- Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Guixue Hou
- Beijing Genomics Institute-Shenzhen, Shenzhen518083, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Tianyu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yuhan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Chaoran Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Li Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin150040, China
| | - Qun-ying Lei
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| |
Collapse
|
3
|
Lin LL, Wang HH, Pederson B, Wei X, Torres M, Lu Y, Li ZJ, Liu X, Mao H, Wang H, Zhou LE, Zhao Z, Sun S, Qi L. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat Commun 2024; 15:1440. [PMID: 38365914 PMCID: PMC10873344 DOI: 10.1038/s41467-024-45633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.
Collapse
Affiliation(s)
- Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Brent Pederson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Hui Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Linyao Elina Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Moochickal Assainar B, Ragunathan K, Baldridge RD. Direct observation of autoubiquitination for an integral membrane ubiquitin ligase in ERAD. Nat Commun 2024; 15:1340. [PMID: 38351109 PMCID: PMC10864399 DOI: 10.1038/s41467-024-45541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The endoplasmic reticulum associated degradation (ERAD) pathway regulates protein quality control at the endoplasmic reticulum. ERAD of lumenal and membrane proteins requires a conserved E3 ubiquitin ligase, called Hrd1. We do not understand the molecular configurations of Hrd1 that enable autoubiquitination and the subsequent retrotranslocation of misfolded protein substrates from the ER to the cytosol. Here, we have established a generalizable, single-molecule platform that enables high-efficiency labeling, stoichiometry determination, and functional assays for any integral membrane protein. Using this approach, we directly count Hrd1 proteins reconstituted into individual proteoliposomes. We report that Hrd1 assembles in different oligomeric configurations with mostly monomers and dimers detected at limiting dilution. By correlating oligomeric states with ubiquitination in vitro, we conclude that Hrd1 monomers are inefficient in autoubiquitination while dimers efficiently assemble polyubiquitin chains. Therefore, our results reveal the minimal composition of a Hrd1 oligomer that is capable of autoubiquitination. Our methods are broadly applicable to studying other complex membrane protein functions using reconstituted bilayer systems.
Collapse
Affiliation(s)
- Basila Moochickal Assainar
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Kaushik Ragunathan
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Peterson BG, Hwang J, Russ JE, Schroeder JW, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a role for cytosolic regions in Hrd1 function. Cell Rep 2023; 42:113451. [PMID: 37980570 PMCID: PMC10751623 DOI: 10.1016/j.celrep.2023.113451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are degraded through a process called ER-associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identify several regions required for different Hrd1 functions. Most surprisingly, we find two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we define roles for disordered regions between structural elements that are required for Hrd1 autoubiquitination and substrate interaction. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the ER membrane.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy W Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Peterson BG, Hwang J, Russ JE, Schroeder J, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a new role for cytosolic regions in Hrd1 function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535444. [PMID: 37066402 PMCID: PMC10103981 DOI: 10.1101/2023.04.03.535444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Misfolded endoplasmic reticulum proteins are degraded through a process called endoplasmic reticulum associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identified several regions required for different Hrd1 functions. Most surprisingly, we found two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we defined roles for disordered regions between structural elements that were required for Hrd1's ability to autoubiquitinate and interact with substrate. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Brian G. Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E. Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Hwang J, Peterson BG, Knupp J, Baldridge RD. The ERAD system is restricted by elevated ceramides. SCIENCE ADVANCES 2023; 9:eadd8579. [PMID: 36638172 PMCID: PMC9839339 DOI: 10.1126/sciadv.add8579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are removed through a process known as ER-associated degradation (ERAD). ERAD occurs through an integral membrane protein quality control system that recognizes substrates, retrotranslocates the substrates across the membrane, and ubiquitinates and extracts the substrates from the membrane for degradation at the cytosolic proteasome. While ERAD systems are known to regulate lipid biosynthetic enzymes, the regulation of ERAD systems by the lipid composition of cellular membranes remains unexplored. Here, we report that the ER membrane composition influences ERAD function by incapacitating substrate extraction. Unbiased lipidomic profiling revealed that elevation of specific very-long-chain ceramides leads to a marked increase in the level of ubiquitinated substrates in the ER membrane and concomitantly reduces extracted substrates in the cytoplasm. This work reveals a previously unrecognized mechanism in which ER membrane lipid remodeling changes the activity of ERAD.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Brian G. Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
10
|
Pisa R, Rapoport TA. Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic reticulum-associated protein degradation. J Biol Chem 2022; 298:102373. [PMID: 35970394 PMCID: PMC9478403 DOI: 10.1016/j.jbc.2022.102373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and degraded by the ubiquitin-proteasome system, a pathway termed luminal ER-associated protein degradation. Retrotranslocation is mediated by a conserved protein complex, consisting of the ubiquitin ligase Hrd1 and four associated proteins (Der1, Usa1, Hrd3, and Yos9). Photocrosslinking experiments provided preliminary evidence for the polypeptide path through the membrane but did not reveal specific interactions between amino acids in the substrate and Hrd1 complex. Here, we have used site-specific disulfide crosslinking to map the interactions of a glycosylated model substrate with the Hrd1 complex in live S. cerevisiae cells. Together with available electron cryo-microscopy structures, the results show that the substrate interacts on the luminal side with both a groove in Hrd3 and the lectin domain of Yos9 and inserts a loop into the membrane, with one side of the loop interacting with the lateral gate of Der1 and the other with the lateral gate of Hrd1. Our disulfide crosslinking experiments also show that two Hrd1 molecules can interact through their lateral gates and that Hrd1 autoubiquitination is required for the disassembly of these Hrd1 dimers. Taken together, these data define the path of a polypeptide through the ER membrane and suggest that autoubiquitination of inactive Hrd1 dimers is required to generate active Hrd1 monomers.
Collapse
Affiliation(s)
- Rudolf Pisa
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Nakatsukasa K, Wigge S, Takano Y, Kawarasaki T, Kamura T, Brodsky JL. A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. Curr Genet 2022; 68:227-242. [PMID: 35041076 PMCID: PMC9036396 DOI: 10.1007/s00294-022-01227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for ubiquitination and degradation by the proteasome. During this process, known as ER-associated degradation (ERAD), the ER-embedded Hrd1 ubiquitin ligase plays a central role in recognizing, ubiquitinating, and retrotranslocating scores of lumenal and integral membrane proteins. To better define the mechanisms underlying Hrd1 function in Saccharomyces cerevisiae, several model substrates have been developed. One substrate is Sec61-2, a temperature sensitive allele of the Sec61 translocation channel. Cells expressing Sec61-2 grow at 25 °C because the protein is stable, but sec61-2 yeast are inviable at 38 °C because the mutated protein is degraded in a Hrd1-dependent manner. Therefore, deleting HRD1 stabilizes Sec61-2 and hence sec61-2hrd1∆ double mutants are viable at 38 °C. This unique phenotype allowed us to perform a non-biased screen for loss-of-function alleles in HRD1. Based on its importance in mediating substrate retrotranslocation, the screen was also developed to focus on mutations in sequences encoding Hrd1's transmembrane-rich domain. Ultimately, a group of recessive mutations was identified in HRD1, including an ensemble of destabilizing mutations that resulted in the delivery of Hrd1 to the ERAD pathway. A more stable mutant resided in a buried transmembrane domain, yet the Hrd1 complex was disrupted in yeast expressing this mutant. Together, these data confirm the importance of Hrd1 complex integrity during ERAD, suggest that allosteric interactions between transmembrane domains regulate Hrd1 complex formation, and provide the field with new tools to define the dynamic interactions between ERAD components during substrate retrotranslocation.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan.
| | - Sylvia Wigge
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA
| | - Yuki Takano
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
14
|
Wu X, Rapoport TA. Translocation of Proteins through a Distorted Lipid Bilayer. Trends Cell Biol 2021; 31:473-484. [PMID: 33531207 PMCID: PMC8122044 DOI: 10.1016/j.tcb.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Potential Physiological Relevance of ERAD to the Biosynthesis of GPI-Anchored Proteins in Yeast. Int J Mol Sci 2021; 22:ijms22031061. [PMID: 33494405 PMCID: PMC7865462 DOI: 10.3390/ijms22031061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Misfolded and/or unassembled secretory and membrane proteins in the endoplasmic reticulum (ER) may be retro-translocated into the cytoplasm, where they undergo ER-associated degradation, or ERAD. The mechanisms by which misfolded proteins are recognized and degraded through this pathway have been studied extensively; however, our understanding of the physiological role of ERAD remains limited. This review describes the biosynthesis and quality control of glycosylphosphatidylinositol (GPI)-anchored proteins and briefly summarizes the relevance of ERAD to these processes. While recent studies suggest that ERAD functions as a fail-safe mechanism for the degradation of misfolded GPI-anchored proteins, several pieces of evidence suggest an intimate interaction between ERAD and the biosynthesis of GPI-anchored proteins.
Collapse
|
16
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
17
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
18
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
19
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 2020; 368:368/6489/eaaz2449. [PMID: 32327568 DOI: 10.1126/science.aaz2449] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Misfolded luminal endoplasmic reticulum (ER) proteins undergo ER-associated degradation (ERAD-L): They are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome. ERAD-L is mediated by the Hrd1 complex (composed of Hrd1, Hrd3, Der1, Usa1, and Yos9), but the mechanism of retrotranslocation remains mysterious. Here, we report a structure of the active Hrd1 complex, as determined by cryo-electron microscopy analysis of two subcomplexes. Hrd3 and Yos9 jointly create a luminal binding site that recognizes glycosylated substrates. Hrd1 and the rhomboid-like Der1 protein form two "half-channels" with cytosolic and luminal cavities, respectively, and lateral gates facing one another in a thinned membrane region. These structures, along with crosslinking and molecular dynamics simulation results, suggest how a polypeptide loop of an ERAD-L substrate moves through the ER membrane.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Present address: Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vladimir Svetlov
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
22
|
Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. Nat Cell Biol 2020; 22:274-281. [DOI: 10.1038/s41556-020-0473-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023]
|
23
|
Peterson BG, Glaser ML, Rapoport TA, Baldridge RD. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 2019; 8:50903. [PMID: 31713515 PMCID: PMC6914336 DOI: 10.7554/elife.50903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex. Just like factories make mistakes when producing products, cells make mistakes when producing proteins. In cells, a compartment called the endoplasmic reticulum is where about one third of all proteins are produced, and where new proteins undergo quality control. Damaged or misfolded proteins are removed by a process called endoplasmic reticulum-associated degradation (ERAD for short), because if damaged proteins accumulate, cells become stressed. One type of ERAD is driven by a protein called Hrd1. Together with other components, Hrd1 labels damaged proteins with a ubiquitin tag that acts as a flag for degradation. Hrd1 has a paradoxical feature, however. To be active, Hrd1 tags itself with ubiquitin but this also makes it more prone to becoming degraded. How does Hrd1 remain active while avoiding its own degradation? To address this question, Peterson et al. forced budding yeast cells to produce high levels of 23 different enzymes that remove ubiquitin tags. One of these enzymes, called Ubp1, was able remove the ubiquitin tag from Hrd1, though it had not been seen in the ERAD pathway before. Further experiments also showed that Ubp1 was able to regulate Hrd1 activity, making Ubp1 a regulator of Hrd1 dependent protein quality control. Without protein quality control, damaged proteins can contribute to various diseases. ERAD is a common quality control system for proteins, present in many different species, ranging from yeast to animals. Therefore, understanding how ERAD works in budding yeast may also increase understanding of how human cells deal with damaged proteins.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Morgan L Glaser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
24
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
25
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
26
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
27
|
Wu X, Rapoport TA. Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 2018; 53:22-28. [PMID: 29719269 DOI: 10.1016/j.ceb.2018.04.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are discarded by a conserved process, called ER-associated protein degradation (ERAD). ERAD substrates are retro-translocated into the cytosol, polyubiquitinated, extracted from the ER membrane, and ultimately degraded by the proteasome. Recent in vitro experiments with purified components have given insight into the mechanism of ERAD. ERAD substrates with misfolded luminal or intramembrane domains are moved across the ER membrane through a channel formed by the multispanning ubiquitin ligase Hrd1. Following polyubiquitination, substrates are extracted from the membrane by the Cdc48/p97 ATPase complex and transferred to the proteasome. We discuss the molecular mechanism of these processes and point out remaining open questions.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
28
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
29
|
Jiao L, Zhou Q, Su Z, Xu L, Yan Y. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins. Protein Expr Purif 2018; 147:1-12. [PMID: 29452270 DOI: 10.1016/j.pep.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/04/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
Abstract
Rhizopus oryzae lipase (ROL) is an important industrial enzyme limited in application due to its low production in native strains. Here, we used a new combined strategy to overexpress ROL in Pichia pastoris. An efficient method based on bio-brick was developed to construct a series of vectors harboring different copy numbers of ROL gene cassettes, which were then transformed into P. pastoris GS115 to generate a strain with specific copy numbers of ROL. An optimized gene-dosage recombinant strain of GS115/pAOα-5ROL 11# harboring five copies of ROL was screened, revealing production of the highest activity (2700 U/mL), which was 8-fold higher than that of the strain harboring one copy. The activity of GS115/pAOα-5ROL 11# was then enhanced to 3080 U/mL in a shaking flask under optimized culture conditions. Subsequently, the endoplasmic reticulum-associated protein-degradation-related genes Ubc1 or/and Hrd1 were co-expressed with ROL to further increase ROL expression. The activities of the recombinant strains, GS115/5ROL-Ubc1 22#, -Hrd1 15#, and -Hrd1-Ubc1 1#, were 4000 U/mL, 4200 U/mL, and 4750 U/mL, which was 29.9%, 36.4%, and 54.2% higher, respectively, than that observed in GS115/pAOα-5ROL 11#. Using the combined strategy, ROL expression was improved 15.8-fold, with maximum GS115/5ROL-Hrd1-Ubc1 1# activity reaching 33,900 U/mL via a sorbitol/methanol co-feeding strategy in a 3-L fermenter and resulting in a 1.65-, 1.26-, and 1.14-fold enhancement relative to the activities observed in strains GS115/pAOα-5ROL 11#, GS115/5ROL-Ubc1 22#, and GS115/5ROL-Hrd1 15#, respectively. These results indicated that heterologous overexpression of ROL in P. pastoris using this combined strategy is feasible for large-scale industrialization.
Collapse
Affiliation(s)
- Liangcheng Jiao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qinghua Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhixin Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
30
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
31
|
Schulz J, Avci D, Queisser MA, Gutschmidt A, Dreher LS, Fenech EJ, Volkmar N, Hayashi Y, Hoppe T, Christianson JC. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J Cell Sci 2017; 130:3322-3335. [PMID: 28827405 DOI: 10.1242/jcs.206847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
The mammalian ubiquitin ligase Hrd1 is the central component of a complex facilitating degradation of misfolded proteins during the ubiquitin-proteasome-dependent process of ER-associated degradation (ERAD). Hrd1 associates with cofactors to execute ERAD, but their roles and how they assemble with Hrd1 are not well understood. Here, we identify crucial cofactor interaction domains within Hrd1 and report a previously unrecognised evolutionarily conserved segment within the intrinsically disordered cytoplasmic domain of Hrd1 (termed the HAF-H domain), which engages complementary segments in the cofactors FAM8A1 and Herp (also known as HERPUD1). This domain is required by Hrd1 to interact with both FAM8A1 and Herp, as well as to assemble higher-order Hrd1 complexes. FAM8A1 enhances binding of Herp to Hrd1, an interaction that is required for ERAD. Our findings support a model of Hrd1 complex formation, where the Hrd1 cytoplasmic domain and FAM8A1 have a central role in the assembly and activity of this ERAD machinery.
Collapse
Affiliation(s)
- Jasmin Schulz
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Dönem Avci
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Markus A Queisser
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Aljona Gutschmidt
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Lena-Sophie Dreher
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Yuki Hayashi
- Department of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
32
|
Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 2017; 548:352-355. [PMID: 28682307 PMCID: PMC5736104 DOI: 10.1038/nature23314] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Misfolded endoplasmic reticulum (ER) proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the ER membrane, and degraded by the proteasome 1–4, a pathway termed ER-associated protein degradation (ERAD). Proteins with misfolded domains in the ER lumen or membrane are discarded through the ERAD-L and –M pathways, respectively. In S. cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain 5,6. Hrd1 is the crucial membrane component for retro-translocation 7,8, but whether it forms a protein-conducting channel is unclear. Here, we report a cryo-electron microscopy (cryo-EM) structure of S. cerevisiae Hrd1 in complex with its ER luminal binding partner Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight trans-membrane segments, five of which form an aqueous cavity extending from the cytosol almost to the ER lumen, while a segment of the neighboring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features in protein-conducting conduits that facilitate polypeptide movement in the opposite direction, i.e. from the cytosol into or across membranes 9–11. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the ER membrane.
Collapse
Affiliation(s)
- Stefan Schoebel
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Alexander Stein
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sergey Ovchinnikov
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Ryan Pavlovicz
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Huayou Su
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Dongsheng Li
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
34
|
Sopha P, Ren HY, Grove DE, Cyr DM. Endoplasmic reticulum stress-induced degradation of DNAJB12 stimulates BOK accumulation and primes cancer cells for apoptosis. J Biol Chem 2017; 292:11792-11803. [PMID: 28536268 DOI: 10.1074/jbc.m117.785113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
DNAJB12 (JB12) is an endoplasmic reticulum (ER)-associated Hsp40 family protein that recruits Hsp70 to the ER surface to coordinate the function of ER-associated and cytosolic chaperone systems in protein quality control. Hsp70 is stress-inducible, but paradoxically, we report here that JB12 was degraded by the proteasome during severe ER stress. Destabilized JB12 was degraded by ER-associated degradation complexes that contained HERP, Sel1L, and gp78. JB12 was the only ER-associated chaperone that was destabilized by reductive stress. JB12 knockdown by siRNA led to the induction of caspase processing but not the unfolded protein response. ER stress-induced apoptosis is regulated by the highly labile and ER-associated BCL-2 family member BOK, which is controlled at the level of protein stability by ER-associated degradation components. We found that JB12 was required in human hepatoma cell line 7 (Huh-7) liver cancer cells to maintain BOK at low levels, and BOK was detected in complexes with JB12 and gp78. Depletion of JB12 during reductive stress or by shRNA from Huh-7 cells was associated with accumulation of BOK and activation of Caspase 3, 7, and 9. The absence of JB12 sensitized Huh-7 to death caused by proteotoxic agents and the proapoptotic chemotherapeutic LCL-161. In summary, JB12 is a stress-sensitive Hsp40 whose degradation during severe ER stress provides a mechanism to promote BOK accumulation and induction of apoptosis.
Collapse
Affiliation(s)
- Pattarawut Sopha
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Program of Applied Biological Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Diane E Grove
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Douglas M Cyr
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
35
|
Römisch K. A Case for Sec61 Channel Involvement in ERAD. Trends Biochem Sci 2016; 42:171-179. [PMID: 27932072 DOI: 10.1016/j.tibs.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
Proteins that misfold in the endoplasmic reticulum (ER) need to be transported back to the cytosol for degradation by proteasomes, a process known as ER-associated degradation (ERAD). The first candidate discussed as a retrograde protein transport conduit was the Sec61 channel which is responsible for secretory protein transport into the ER during biogenesis. The Sec61 channel binds the proteasome 19S regulatory particle which can extract an ERAD substrate from the ER. Nevertheless its role as a general export channel has been dismissed, and Hrd1 and Der1 have been proposed as alternatives. The discovery of export-specific sec61 mutants and of mammalian ERAD substrates whose export is dependent on the 19S regulatory particle suggest that dismissal of a role of Sec61 in export may have been premature.
Collapse
Affiliation(s)
- Karin Römisch
- Department of Biology, Naturwissenschaftlich-technische Fakultät 8, Saarland University, 66123 Saarbruecken, Germany.
| |
Collapse
|
36
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Baldridge RD, Rapoport TA. Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD. Cell 2016; 166:394-407. [PMID: 27321670 DOI: 10.1016/j.cell.2016.05.048] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/19/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
Misfolded proteins of the ER are retrotranslocated to the cytosol, where they are polyubiquitinated, extracted from the membrane, and degraded by the proteasome. To investigate how the ER-associated Degradation (ERAD) machinery can accomplish retrotranslocation of a misfolded luminal protein domain across a lipid bilayer, we have reconstituted retrotranslocation with purified S. cerevisiae proteins, using proteoliposomes containing the multi-spanning ubiquitin ligase Hrd1. Retrotranslocation of the luminal domain of a membrane-spanning substrate is triggered by autoubiquitination of Hrd1. Substrate ubiquitination is a subsequent event, and the Cdc48 ATPase that completes substrate extraction from the membrane is not required for retrotranslocation. Ubiquitination of lysines in Hrd1's RING-finger domain is required for substrate retrotranslocation in vitro and for ERAD in vivo. Our results suggest that Hrd1 forms a ubiquitin-gated protein-conducting channel.
Collapse
Affiliation(s)
- Ryan D Baldridge
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Abstract
The HRD (HMG-CoA reductase degradation) pathway is a conserved route of endoplasmic reticulum-associated degradation (ERAD), by which misfolded ER proteins are ubiquitinated and degraded. ERAD substrates are ubiquitinated by the action of the Hrd1 RING-H2 E3 ligase. Hrd1 is always present in a stoichiometric complex with the ER membrane protein Hrd3, which is also required for HRD-dependent degradation. Despite its conserved presence, unequivocal study of Hrd3 function has been precluded by its central role in Hrd1 stability. Loss of Hrd3 causes unrestricted self-degradation of Hrd1, resulting in significant loss of the core ligase. Accordingly, the degree to which Hrd3 functions independently of Hrd1 stabilization has remained unresolved. By capitalizing on our studies of Usa1 in Hrd1 degradation, we have devised a new approach to evaluate Hrd3 functions in ERAD. We now show that Hrd3 has a direct and critical role in ERAD in addition to Hrd1 stabilization. This direct component of Hrd3 is phenotypically as important as Hrd1 in the native HRD complex. Hrd3 was required the E3 activity of Hrd1, rather than substrate or E2 recruitment to Hrd1. Although Hrd1 can function in some circumstances independent of Hrd3, these studies show an indispensable role for Hrd3 in living cells.
Collapse
|
39
|
Jeong H, Sim HJ, Song EK, Lee H, Ha SC, Jun Y, Park TJ, Lee C. Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Sci Rep 2016; 6:20261. [PMID: 27064360 PMCID: PMC4746701 DOI: 10.1038/srep20261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/31/2015] [Indexed: 11/09/2022] Open
Abstract
Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.
Collapse
Affiliation(s)
- Hanbin Jeong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eun Kyung Song
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hakbong Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Tae Joo Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
41
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
42
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
43
|
The molecular mechanism of azole resistance in Aspergillus fumigatus: from bedside to bench and back. J Microbiol 2015; 53:91-9. [PMID: 25626363 DOI: 10.1007/s12275-015-5014-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The growing use of immunosuppressive therapies has resulted in a dramatic increased incidence of invasive fungal infections (IFIs) caused by Aspergillus fumigatus, a common pathogen, and is also associated with a high mortality rate. Azoles are the primary guideline-recommended therapy agents for first-line treatment and prevention of IFIs. However, increased azole usage in medicinal and agricultural settings has caused azole-resistant isolates to repeatedly emerge in the environment, resulting in a significant threat to human health. In this review, we present and summarize current research on the resistance mechanisms of azoles in A. fumigatus as well as efficient susceptibility testing methods. Moreover, we analyze and discuss the putative clinical (bedside) indication of these findings from bench work.
Collapse
|
44
|
Mehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R, Aebi M, Jarosch E, Sommer T. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell 2014; 26:185-94. [PMID: 25428985 PMCID: PMC4294667 DOI: 10.1091/mbc.e14-07-1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central ubiquitin ligase involved in endoplasmic reticulum (ER)–associated protein degradation is the HRD-ligase. The ER-luminal subunit Hrd3 cooperates with the cochaperone Scj1 in clearing misfolded proteins from the ER. Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.
Collapse
Affiliation(s)
- Martin Mehnert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Maren Berger
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
45
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
46
|
Zattas D, Hochstrasser M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit Rev Biochem Mol Biol 2014; 50:1-17. [PMID: 25231236 DOI: 10.3109/10409238.2014.959889] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here, we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane.
Collapse
Affiliation(s)
- Dimitrios Zattas
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, CT , USA
| | | |
Collapse
|
47
|
Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 2014; 3:824-47. [PMID: 25100021 PMCID: PMC4197631 DOI: 10.3390/cells3030824] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/05/2022] Open
Abstract
Quality control of protein folding inside the endoplasmic reticulum (ER) includes chaperone-mediated assistance in folding and the selective targeting of terminally misfolded species to a pathway called ER-associated protein degradation, or simply ERAD. Once selected for ERAD, substrates will be transported (back) into the cytosol, a step called retrotranslocation. Although still ill defined, retrotranslocation likely involves a protein conducting channel that is in part formed by specific membrane-embedded E3 ubiquitin ligases. Early during retrotranslocation, reversible self-ubiquitination of these ligases is thought to aid in initiation of substrate transfer across the membrane. Once being at least partially exposed to the cytosol, substrates will become ubiquitinated on the cytosolic side of the ER membrane by the same E3 ubiquitin ligases. Ubiquitin on substrates was originally thought to be a permanent modification that (1) promotes late steps of retrotranslocation by recruiting the energy-providing ATPase Cdc48p/p97 via binding to its associated adaptor proteins and that (2) serves to target substrates to the proteasome. Recently it became evident, however, that the poly-ubiquitin chains (PUCs) on ERAD substrates are often subject to extensive remodeling, or processing, at several stages during ERAD. This review recapitulates the current knowledge and recent findings about PUC processing on ERAD substrates and ubiquitination of ERAD machinery components and discusses their functional consequences.
Collapse
|
48
|
Smith MH, Rodriguez EH, Weissman JS. Misfolded proteins induce aggregation of the lectin Yos9. J Biol Chem 2014; 289:25670-7. [PMID: 25086047 DOI: 10.1074/jbc.m114.583344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22-421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22-421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD.
Collapse
Affiliation(s)
- Melanie H Smith
- From the Department of Cellular and Molecular Pharmacology, Graduate Group in Biophysics, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158
| | - Edwin H Rodriguez
- From the Department of Cellular and Molecular Pharmacology, Graduate Group in Biophysics, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158
| | - Jonathan S Weissman
- From the Department of Cellular and Molecular Pharmacology, Graduate Group in Biophysics, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158
| |
Collapse
|
49
|
Abstract
An essential step during the intracellular life cycle of many positive-strand RNA viruses is the rearrangement of host cell membranes to generate membrane-bound replication platforms. For example, Nidovirales and Flaviviridae subvert the membrane of the endoplasmic reticulum (ER) for their replication. However, the absence of conventional ER and secretory pathway markers in virus-induced ER-derived membranes has for a long time hampered a thorough understanding of their biogenesis. Recent reports highlight the analogies between mouse hepatitis virus-, equine arteritis virus-, and Japanese encephalitis virus-induced replication platforms and ER-associated degradation (ERAD) tuning vesicles (or EDEMosomes) that display nonlipidated LC3 at their cytosolic face and segregate the ERAD factors EDEM1, OS-9, and SEL1L from the ER lumen. In this Gem, we briefly summarize the current knowledge on ERAD tuning pathways and how they might be hijacked for viral genome replication. As ERAD tuning components, such as SEL1L and nonlipidated LC3, appear to contribute to viral infection, these cellular pathways represent novel candidate drug targets to combat positive-strand RNA viruses.
Collapse
|
50
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|