1
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
3
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Li S, Tang M, Xiong Y, Feng X, Wang C, Nie L, Huang M, Zhang H, Yin L, Zhu D, Yang C, Ma T, Chen J. Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair. Oncogene 2024; 43:2621-2634. [PMID: 39068216 DOI: 10.1038/s41388-024-03108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiantian Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Egger T, Morano L, Blanchard MP, Basbous J, Constantinou A. Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates. Cell Rep 2024; 43:114064. [PMID: 38578830 DOI: 10.1016/j.celrep.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Laura Morano
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Marie-Pierre Blanchard
- Montpellier Ressources Imageries, BioCampus, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
6
|
Yang X, Ren S, Yang J, Pan Y, Zhou Z, Chen Q, Fang Y, Shang L, Zhang F, Zhang X, Wu Y. Rare variants in FANCJ induce premature ovarian insufficiency in humans and mice. J Genet Genomics 2024; 51:252-255. [PMID: 37062450 DOI: 10.1016/j.jgg.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Xi Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Shuting Ren
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Jialin Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yuncheng Pan
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Zixue Zhou
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Qing Chen
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yunzheng Fang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Lingyue Shang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China.
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China.
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China; National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Boavida A, Napolitano LM, Santos D, Cortone G, Jegadesan NK, Onesti S, Branzei D, Pisani FM. FANCJ DNA helicase is recruited to the replisome by AND-1 to ensure genome stability. EMBO Rep 2024; 25:876-901. [PMID: 38177925 PMCID: PMC10897178 DOI: 10.1038/s44319-023-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Dana Branzei
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy.
| |
Collapse
|
8
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Kulikowicz T, Sommers JA, Fuchs KF, Wu Y, Brosh RM. Purification and biochemical characterization of the G4 resolvase and DNA helicase FANCJ. Methods Enzymol 2024; 695:1-27. [PMID: 38521581 DOI: 10.1016/bs.mie.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.
Collapse
Affiliation(s)
- Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
10
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Zhao Y, Tabet D, Rubio Contreras D, Lao L, Kousholt AN, Weile J, Melo H, Hoeg L, Feng S, Coté AG, Lin ZY, Setiaputra D, Jonkers J, Gingras AC, Gómez Herreros F, Roth FP, Durocher D. Genome-scale mapping of DNA damage suppressors through phenotypic CRISPR-Cas9 screens. Mol Cell 2023; 83:2792-2809.e9. [PMID: 37478847 PMCID: PMC10530064 DOI: 10.1016/j.molcel.2023.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.
Collapse
Affiliation(s)
- Yichao Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daniel Tabet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Linjiang Lao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jochen Weile
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Atina G Coté
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Carney SV, Banerjee K, Mujeeb A, Zhu B, Haase S, Varela ML, Kadiyala P, Tronrud CE, Zhu Z, Mukherji D, Gorla P, Sun Y, Tagett R, Núñez FJ, Luo M, Luo W, Ljungman M, Liu Y, Xia Z, Schwendeman A, Qin T, Sartor MA, Costello JF, Cahill DP, Lowenstein PR, Castro MG. Zinc Finger MYND-Type Containing 8 (ZMYND8) Is Epigenetically Regulated in Mutant Isocitrate Dehydrogenase 1 (IDH1) Glioma to Promote Radioresistance. Clin Cancer Res 2023; 29:1763-1782. [PMID: 36692427 PMCID: PMC10159884 DOI: 10.1158/1078-0432.ccr-22-1896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). EXPERIMENTAL DESIGN We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as a potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells and then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacologic inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. RESULTS Inhibition of mIDH1 leads to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response, was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 KO exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. CONCLUSIONS These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma. See related commentary by Sachdev et al., p. 1648.
Collapse
Affiliation(s)
- Stephen V Carney
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brandon Zhu
- Graduate Program in Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria L Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Claire E Tronrud
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Devarshi Mukherji
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Preethi Gorla
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University Hospitals/Case Western Reserve University, Cleveland, Ohio
| | - Rebecca Tagett
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maowu Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Pedro R Lowenstein
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
14
|
Ahmadzada T, Vijayan A, Vafaee F, Azimi A, Reid G, Clarke S, Kao S, Grau GE, Hosseini-Beheshti E. Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers (Basel) 2023; 15:cancers15082364. [PMID: 37190292 DOI: 10.3390/cancers15082364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Pleural mesothelioma, previously known as malignant pleural mesothelioma, is an aggressive and fatal cancer of the pleura, with one of the poorest survival rates. Pleural mesothelioma is in urgent clinical need for biomarkers to aid early diagnosis, improve prognostication, and stratify patients for treatment. Extracellular vesicles (EVs) have great potential as biomarkers; however, there are limited studies to date on their role in pleural mesothelioma. We conducted a comprehensive proteomic analysis on different EV populations derived from five pleural mesothelioma cell lines and an immortalized control cell line. We characterized three subtypes of EVs (10 K, 18 K, and 100 K), and identified a total of 4054 unique proteins. Major differences were found in the cargo between the three EV subtypes. We show that 10 K EVs were enriched in mitochondrial components and metabolic processes, while 18 K and 100 K EVs were enriched in endoplasmic reticulum stress. We found 46 new cancer-associated proteins for pleural mesothelioma, and the presence of mesothelin and PD-L1/PD-L2 enriched in 100 K and 10 K EV, respectively. We demonstrate that different EV populations derived from pleural mesothelioma cells have unique cancer-specific proteomes and carry oncogenic cargo, which could offer a novel means to extract biomarkers of interest for pleural mesothelioma from liquid biopsies.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Clarke
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Steven Kao
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Georges E Grau
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
15
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
16
|
Jiang K, Ding Y, Dong C, Shan F, Guo K, Zhang J, Zhang F. BCLAF1, a functional partner of BACH1, participates in DNA damage response. DNA Repair (Amst) 2022; 118:103371. [DOI: 10.1016/j.dnarep.2022.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
|
17
|
A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Mol Cell 2022; 82:2571-2587.e9. [PMID: 35597237 DOI: 10.1016/j.molcel.2022.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Collapse
|
18
|
Ruis K, Huynh O, Montales K, Barr NA, Michael WM. Delineation of a minimal topoisomerase II binding protein 1 (TOPBP1) for regulated activation of ATR at DNA double-strand breaks. J Biol Chem 2022; 298:101992. [PMID: 35490781 PMCID: PMC9257406 DOI: 10.1016/j.jbc.2022.101992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Topoisomerase II Binding Protein 1 (TOPBP1) is an important activator of the DNA damage response kinase Ataxia Telangiectasia and Rad3-related (ATR), although the mechanism by which this activation occurs is not yet known. TOPBP1 contains nine copies of the BRCA1 C-terminal repeat (BRCT) motif, which allows protein–protein and protein–DNA interactions. TOPBP1 also contains an ATR activation domain (AAD), which physically interacts with ATR and its partner ATR-interacting protein (ATRIP) in a manner that stimulates ATR kinase activity. It is unclear which of TOPBP1’s nine BRCT domains participate in the reaction, as well as the individual roles played by these relevant BRCT domains. To address this knowledge gap, here, we delineated a minimal TOPBP1 that can activate ATR at DNA double-strand breaks in a regulated manner. We named this minimal TOPBP1 “Junior” and we show that Junior is composed of just three regions: BRCT0-2, the AAD, and BRCT7&8. We further defined the individual functions of these three regions by showing that BRCT0-2 is required for recruitment to DNA double-strand breaks and is dispensable thereafter, and that BRCT7&8 is dispensable for recruitment but essential to allow the AAD to multimerize and activate ATR. The delineation of TOPBP1 Junior creates a leaner, simplified, and better understood TOPBP1 and provides insight into the mechanism of ATR activation.
Collapse
Affiliation(s)
- Kenna Ruis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Oanh Huynh
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Katrina Montales
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Nina A Barr
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - W Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089.
| |
Collapse
|
19
|
Ma S, Zhang J, Guo Q, Cao C, Bao K, Liu L, Chen CD, Liu Z, Yang J, Yang N, Yao Z, Shi L. Disrupting PHF8-TOPBP1 connection elicits a breast tumor-specific vulnerability to chemotherapeutics. Cancer Lett 2022; 530:29-44. [PMID: 35051531 DOI: 10.1016/j.canlet.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The DNA damage response (DDR) pathway generally protects against genome instability, and defects in DDR have been exploited therapeutically in cancer treatment. We have reported that histone demethylase PHF8 demethylates TOPBP1 K118 mono-methylation (K118me1) to drive the activation of ATR kinase, one of the master regulators of replication stress. However, whether dysregulation of this physiological signalling is involved in tumorigenesis remains unknown. Here, we showed PHF8-promoted TOPBP1 demethylation is clinically associated with breast tumorigenesis and patient survival. Mammary gland tumors from Phf8 knockout mice grow slowly and exhibit higher level of K118me1, lower ATR activity, and increased chromosomal instability. Importantly, we found that disruption of PHF8-TOPBP1 axis suppresses breast tumorigenesis and creates a breast tumor-specific vulnerability to PARP inhibitor (PARPi) and platinum drug. CRISPR/Cas9 mutation modelling of the deleted or truncated mutation of PHF8 in clinical tumor samples demonstrated breast tumor cells expressing the mimetic variants are more vulnerable to PARPi. Together, our study supports the pursuit of PHF8-TOPBP1 signalling pathway as promising avenues for targeted therapies of PHF8-TOPBP1 proficient tumors, and provides proof-of-concept evidence for loss-of-function of PHF8 as a therapeutic indicator of PARPis.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Qiushi Guo
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Cheng Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Kaiwen Bao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhe Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353, Tianjin, China.
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China.
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
20
|
Bao K, Zhang Q, Liu S, Song N, Guo Q, Liu L, Tian S, Hao J, Zhu Y, Zhang K, Ai D, Yang J, Yao Z, Foisner R, Shi L. LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin. Genome Biol 2022; 23:64. [PMID: 35227284 PMCID: PMC8883701 DOI: 10.1186/s13059-022-02638-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive. RESULTS Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation. CONCLUSIONS Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.
Collapse
Affiliation(s)
- Kaiwen Bao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuai Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Song
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qiushi Guo
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shanshan Tian
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Kai Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Roland Foisner
- Max Perutz Laboratories, Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
21
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
22
|
Brosh RM, Wu Y. An emerging picture of FANCJ's role in G4 resolution to facilitate DNA replication. NAR Cancer 2021; 3:zcab034. [PMID: 34873585 DOI: 10.1093/narcan/zcab034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
A well-accepted hallmark of cancer is genomic instability, which drives tumorigenesis. Therefore, understanding the molecular and cellular defects that destabilize chromosomal integrity is paramount to cancer diagnosis, treatment and cure. DNA repair and the replication stress response are overarching paradigms for maintenance of genomic stability, but the devil is in the details. ATP-dependent helicases serve to unwind DNA so it is replicated, transcribed, recombined and repaired efficiently through coordination with other nucleic acid binding and metabolizing proteins. Alternatively folded DNA structures deviating from the conventional anti-parallel double helix pose serious challenges to normal genomic transactions. Accumulating evidence suggests that G-quadruplex (G4) DNA is problematic for replication. Although there are multiple human DNA helicases that can resolve G4 in vitro, it is debated which helicases are truly important to resolve such structures in vivo. Recent advances have begun to elucidate the principal helicase actors, particularly in cellular DNA replication. FANCJ, a DNA helicase implicated in cancer and the chromosomal instability disorder Fanconi Anemia, takes center stage in G4 resolution to allow smooth DNA replication. We will discuss FANCJ's role with its protein partner RPA to remove G4 obstacles during DNA synthesis, highlighting very recent advances and implications for cancer therapy.
Collapse
Affiliation(s)
- Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
23
|
Day M, Oliver AW, Pearl LH. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair (Amst) 2021; 108:103232. [PMID: 34678589 PMCID: PMC8651625 DOI: 10.1016/j.dnarep.2021.103232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
24
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
25
|
Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat Commun 2021; 12:2525. [PMID: 33953191 PMCID: PMC8099879 DOI: 10.1038/s41467-021-22830-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.
Collapse
|
26
|
Ma S, Cao C, Che S, Wang Y, Su D, Liu S, Gong W, Liu L, Sun J, Zhao J, Wang Q, Song N, Ge T, Guo Q, Tian S, Chen CD, Zhang T, Wang J, Ding X, Yang F, Ying G, Yang J, Zhang K, Zhu Y, Yao Z, Yang N, Shi L. PHF8-promoted TOPBP1 demethylation drives ATR activation and preserves genome stability. SCIENCE ADVANCES 2021; 7:7/19/eabf7684. [PMID: 33952527 PMCID: PMC8099190 DOI: 10.1126/sciadv.abf7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
The checkpoint kinase ATR [ATM (ataxia-telangiectasia mutated) and rad3-related] is a master regulator of DNA damage response. Yet, how ATR activity is regulated remains to be investigated. We report here that histone demethylase PHF8 (plant homeodomain finger protein 8) plays a key role in ATR activation and replication stress response. Mechanistically, PHF8 interacts with and demethylates TOPBP1 (DNA topoisomerase 2-binding protein 1), an essential allosteric activator of ATR, under unperturbed conditions, but replication stress results in PHF8 phosphorylation and dissociation from TOPBP1. Consequently, hypomethylated TOPBP1 facilitates RAD9 (RADiation sensitive 9) binding and chromatin loading of the TOPBP1-RAD9 complex to fully activate ATR and thus safeguard the genome and protect cells against replication stress. Our study uncovers a demethylation and phosphorylation code that controls the assembly of TOPBP1-scaffolded protein complex, and provides molecular insight into non-histone methylation switch in ATR activation.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Liu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wenchen Gong
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China
| | - Jiao Zhao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Qian Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Nan Song
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Tong Ge
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Qiushi Guo
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Zhang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ju Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xiang Ding
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoguang Ying
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China.
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China.
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Calvo JA, Fritchman B, Hernandez D, Persky NS, Johannessen CM, Piccioni F, Kelch BA, Cantor SB. Comprehensive Mutational Analysis of the BRCA1-Associated DNA Helicase and Tumor-Suppressor FANCJ/BACH1/BRIP1. Mol Cancer Res 2021; 19:1015-1025. [PMID: 33619228 DOI: 10.1158/1541-7786.mcr-20-0828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Jennifer A Calvo
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Briana Fritchman
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sharon B Cantor
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
28
|
Structure-function analysis of TOPBP1's role in ATR signaling using the DSB-mediated ATR activation in Xenopus egg extracts (DMAX) system. Sci Rep 2021; 11:467. [PMID: 33432091 PMCID: PMC7801695 DOI: 10.1038/s41598-020-80626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
The protein kinase ATR is activated at sites of DNA double-strand breaks where it plays important roles in promoting DNA end resection and regulating cell cycle progression. TOPBP1 is a multi BRCT repeat containing protein that activates ATR at DSBs. Here we have developed an experimental tool, the DMAX system, to study the biochemical mechanism for TOPBP1-mediated ATR signalling. DMAX combines simple, linear dsDNA molecules with Xenopus egg extracts and results in a physiologically relevant, DSB-induced activation of ATR. We find that DNAs of 5000 nucleotides, at femtomolar concentration, potently activate ATR in this system. By combining immunodepletion and add-back of TOPBP1 point mutants we use DMAX to determine which of TOPBP1’s nine BRCT domains are required for recruitment of TOPBP1 to DSBs and which domains are needed for ATR-mediated phosphorylation of CHK1. We find that BRCT1 and BRCT7 are important for recruitment and that BRCT5 functions downstream of recruitment to promote ATR-mediated phosphorylation of CHK1. We also show that BRCT7 plays a second role, independent of recruitment, in promoting ATR signalling. These findings supply a new research tool for, and new insights into, ATR biology.
Collapse
|
29
|
Feng H, Lu J, Song X, Thongkum A, Zhang F, Lou L, Reizes O, Almasan A, Gong Z. CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication. Nucleic Acids Res 2020; 48:10940-10952. [PMID: 33010150 PMCID: PMC7641741 DOI: 10.1093/nar/gkaa756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/12/2022] Open
Abstract
ATR functions as a master regulator of the DNA-damage response. ATR activation requires the ATR activator, topoisomerase IIβ-binding protein 1 (TopBP1). However, the underlying mechanism of TopBP1 regulation and how its regulation affects DNA replication remain unknown. Here, we report a specific interaction between TopBP1 and the histone demethylase PHF8. The TopBP1/PHF8 interaction is mediated by the BRCT 7+8 domain of TopBP1 and phosphorylation of PHF8 at Ser854. This interaction is cell-cycle regulated and phosphorylation-dependent. PHF8 is phosphorylated by CK2, which regulates binding of PHF8 to TopBP1. Importantly, PHF8 regulates TopBP1 protein level by preventing its ubiquitination and degradation mediated by the E3 ligase UBR5. Interestingly, PHF8pS854 is likely to contribute to regulation of TopBP1 stability and DNA replication checkpoint. Further, both TopBP1 and PHF8 are required for efficient replication fork restart. Together, these data identify PHF8 as a TopBP1-binding protein and provide mechanistic insight into how PHF8 regulates TopBP1 stability to maintain DNA replication.
Collapse
Affiliation(s)
- Haihua Feng
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Jingchen Lu
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaotian Song
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Angkana Thongkum
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lihong Lou
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Sadeghi F, Asgari M, Matloubi M, Ranjbar M, Karkhaneh Yousefi N, Azari T, Zaki-Dizaji M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays. Biol Proced Online 2020; 22:23. [PMID: 33013205 PMCID: PMC7528506 DOI: 10.1186/s12575-020-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis. BODY BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer. CONCLUSION In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Digestive Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Asgari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mojdeh Matloubi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ranjbar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karkhaneh Yousefi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Azari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Bagge J, Oestergaard VH, Lisby M. Functions of TopBP1 in preserving genome integrity during mitosis. Semin Cell Dev Biol 2020; 113:57-64. [PMID: 32912640 DOI: 10.1016/j.semcdb.2020.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.
Collapse
Affiliation(s)
- Jonas Bagge
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
33
|
Odermatt DC, Lee WTC, Wild S, Jozwiakowski SK, Rothenberg E, Gari K. Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism. PLoS Genet 2020; 16:e1008740. [PMID: 32542039 PMCID: PMC7316351 DOI: 10.1371/journal.pgen.1008740] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/25/2020] [Accepted: 03/25/2020] [Indexed: 11/19/2022] Open
Abstract
FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.
Collapse
Affiliation(s)
- Diana C. Odermatt
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Wei Ting C. Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
35
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
36
|
Wu T, Zhang Z, Wang X. Preparation of endogenous TopBP1/Dpb11 and effect on central checkpoint kinase Mec1- Ddc2 (human ATR-ATRIP homolog). Biochem Biophys Res Commun 2019; 517:291-296. [PMID: 31349966 DOI: 10.1016/j.bbrc.2019.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/17/2019] [Indexed: 11/18/2022]
Abstract
The Saccharomyces cerevisiae Mec1 kinase, the mammalian ATR ortholog, is essential for sensing a variety of DNA lesions and initiating DNA damage response. The Dpb11, a homolog of human TopBP1, functions in activating the Mec1 upon DNA replication stress and DNA damages. Here, we report an affinity purification and ion exchange chromatography method to efficiently purify endogenous Dpb11 under normal expression level directly from yeast whole cell extraction. The final concentration of 5 μM of high purity and homogeneity biochemical preparation enables functional and structural characterization of the physical interaction between Dpb11 and Mec1-Ddc2 complex. The Dpb11 obtained by endogenous purification strongly stimulates the Mec1 kinase activity and promotes the changes in conformational distribution. This observation suggests the Dpb11 activates Mec1 kinase probably through modulation in the kinase conformations.
Collapse
Affiliation(s)
- Tengwei Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China
| | - Zhihui Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China
| | - Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China.
| |
Collapse
|
37
|
Bharti SK, Sommers JA, Awate S, Bellani MA, Khan I, Bradley L, King GA, Seol Y, Vidhyasagar V, Wu Y, Abe T, Kobayashi K, Shin-Ya K, Kitao H, Wold MS, Branzei D, Neuman KC, Brosh RM. A minimal threshold of FANCJ helicase activity is required for its response to replication stress or double-strand break repair. Nucleic Acids Res 2019; 46:6238-6256. [PMID: 29788478 PMCID: PMC6159516 DOI: 10.1093/nar/gky403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj−/− cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj−/− cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Lynda Bradley
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Graeme A King
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Venkatasubramanian Vidhyasagar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Takuye Abe
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Koji Kobayashi
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Dana Branzei
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
38
|
Leimbacher PA, Jones SE, Shorrocks AMK, de Marco Zompit M, Day M, Blaauwendraad J, Bundschuh D, Bonham S, Fischer R, Fink D, Kessler BM, Oliver AW, Pearl LH, Blackford AN, Stucki M. MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Mol Cell 2019; 74:571-583.e8. [PMID: 30898438 PMCID: PMC6509287 DOI: 10.1016/j.molcel.2019.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/30/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.
Collapse
Affiliation(s)
- Pia-Amata Leimbacher
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Samuel E Jones
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Mara de Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Jordy Blaauwendraad
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Fink
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland.
| |
Collapse
|
39
|
Day M, Rappas M, Ptasinska K, Boos D, Oliver AW, Pearl LH. BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands. eLife 2018; 7:e39979. [PMID: 30295604 PMCID: PMC6175577 DOI: 10.7554/elife.39979] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022] Open
Abstract
TOPBP1 and its fission yeast homologueRad4, are critical players in a range of DNA replication, repair and damage signalling processes. They are composed of multiple BRCT domains, some of which bind phosphorylated motifs in other proteins. They thus act as multi-point adaptors bringing proteins together into functional combinations, dependent on post-translational modifications downstream of cell cycle and DNA damage signals. We have now structurally and/or biochemically characterised a sufficient number of high-affinity complexes for the conserved N-terminal region of TOPBP1 and Rad4 with diverse phospho-ligands, including human RAD9 and Treslin, and Schizosaccharomyces pombe Crb2 and Sld3, to define the determinants of BRCT domain specificity. We use this to identify and characterise previously unknown phosphorylation-dependent TOPBP1/Rad4-binding motifs in human RHNO1 and the fission yeast homologue of MDC1, Mdb1. These results provide important insights into how multiple BRCT domains within TOPBP1/Rad4 achieve selective and combinatorial binding of their multiple partner proteins.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Mathieu Rappas
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Katie Ptasinska
- Genome Damage and Stability CentreSchool of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Dominik Boos
- Fakultät für BiologieUniversität Duisburg-EssenGermanyUnited Kingdom
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| |
Collapse
|
40
|
Abstract
Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.
Collapse
Affiliation(s)
- Srijita Dhar
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| |
Collapse
|
41
|
Peng M, Cong K, Panzarino NJ, Nayak S, Calvo J, Deng B, Zhu LJ, Morocz M, Hegedus L, Haracska L, Cantor SB. Opposing Roles of FANCJ and HLTF Protect Forks and Restrain Replication during Stress. Cell Rep 2018; 24:3251-3261. [PMID: 30232006 PMCID: PMC6218949 DOI: 10.1016/j.celrep.2018.08.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/23/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.
Collapse
Affiliation(s)
- Min Peng
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer Calvo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bin Deng
- Department of Biology/VGN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Monika Morocz
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lili Hegedus
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lajos Haracska
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
43
|
Kitao H, Iimori M, Kataoka Y, Wakasa T, Tokunaga E, Saeki H, Oki E, Maehara Y. DNA replication stress and cancer chemotherapy. Cancer Sci 2018; 109:264-271. [PMID: 29168596 PMCID: PMC5797825 DOI: 10.1111/cas.13455] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
DNA replication is one of the fundamental biological processes in which dysregulation can cause genome instability. This instability is one of the hallmarks of cancer and confers genetic diversity during tumorigenesis. Numerous experimental and clinical studies have indicated that most tumors have experienced and overcome the stresses caused by the perturbation of DNA replication, which is also referred to as DNA replication stress (DRS). When we consider therapeutic approaches for tumors, it is important to exploit the differences in DRS between tumor and normal cells. In this review, we introduce the current understanding of DRS in tumors and discuss the underlying mechanism of cancer therapy from the aspect of DRS.
Collapse
Affiliation(s)
- Hiroyuki Kitao
- Department of Molecular Cancer BiologyGraduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Iimori
- Department of Molecular Cancer BiologyGraduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Yuki Kataoka
- Department of Molecular Cancer BiologyGraduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Taiho Pharmaceutical Co. Ltd.TokushimaIbarakiJapan
| | - Takeshi Wakasa
- Taiho Pharmaceutical Co. Ltd.TokushimaIbarakiJapan
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eriko Tokunaga
- Department of Breast OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Hiroshi Saeki
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eiji Oki
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiko Maehara
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
44
|
Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci U S A 2018; 115:E876-E885. [PMID: 29339483 PMCID: PMC5798369 DOI: 10.1073/pnas.1717509115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.
Collapse
Affiliation(s)
- Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065;
| |
Collapse
|
45
|
Sharma B, Preet Kaur R, Raut S, Munshi A. BRCA1 mutation spectrum, functions, and therapeutic strategies: The story so far. Curr Probl Cancer 2018; 42:189-207. [PMID: 29452958 DOI: 10.1016/j.currproblcancer.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
BRCA1 gene mutations account for about 25-28% of hereditary Breast Cancer as BRCA1 is included in the category of high penetrance genes. Except for few commonmutations, there is a heterogenous spectrum of BRCA1 mutations in various ethnic groups. 185AGdel and 5382ins Care the most common BRCA1 alterations (founder mutations) which have been identified in most of the population. This review has been compiled with an aim to consolidate the information on genetic variants reported in BRCA1 found in various ethnic groups, their functional implications if known; involvement of BRCA1 in various cellular pathways/processes and potential BRCA1 targeted therapies. The pathological variations of BRCA1 vary among different ethical groups. A systematic search in PubMed and Google scholar for the literature on BRCA1 gene was carried out to figure out structure and function of BRCA1 gene. BRCA1 is a large protein having 1863 amino acids with multiple functional domains and interacts with multiple proteins to carry out various crucial cellular processes. BRCA1 plays a major role in maintaining genome integrity, transcription regulation, chromatin remodeling, cell cycle checkpoint control, DNA damage repair, chromosomal segregation, and apoptosis. Studies investigating the phenotypic response of mutant BRCA1 protein and comparing it to wildtype BRCA1 protein are clinically important as they are involved in homologous recombination and other repair mechanisms. These studies may help in developing more targetted therapies, detecting novel interacting partners, identification of new signaling pathways that BRCA1 is a part of or downstream target genes that BRCA1 affects.
Collapse
Affiliation(s)
- Babita Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Raman Preet Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Sonali Raut
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
46
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
47
|
Sun L, Huang Y, Edwards RA, Yang S, Blackford AN, Niedzwiedz W, Glover JNM. Structural Insight into BLM Recognition by TopBP1. Structure 2017; 25:1582-1588.e3. [PMID: 28919440 PMCID: PMC6044410 DOI: 10.1016/j.str.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Topoisomerase IIβ binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.
Collapse
Affiliation(s)
- Luxin Sun
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yuhao Huang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sukmin Yang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Andrew N Blackford
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
48
|
Sato K, Koyasu M, Nomura S, Sato Y, Kita M, Ashihara Y, Adachi Y, Ohno S, Iwase T, Kitagawa D, Nakashima E, Yoshida R, Miki Y, Arai M. Mutation status of RAD51C, PALB2 and BRIP1 in 100 Japanese familial breast cancer cases without BRCA1 and BRCA2 mutations. Cancer Sci 2017; 108:2287-2294. [PMID: 28796317 PMCID: PMC5666035 DOI: 10.1111/cas.13350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to BRCA1 and BRCA2, RAD51C,PALB2 and BRIP1 are known as breast cancer susceptibility genes. However, the mutation status of these genes in Japanese familial breast cancer cases has not yet been evaluated. To this end, we analyzed the exon sequence and genomic rearrangement of RAD51C,PALB2 and BRIP1 in 100 Japanese patients diagnosed with familial breast and ovarian cancer and without BRCA1 and BRCA2 mutations. We detected a large deletion from exons 6 to 9 in RAD51C, 4 novel BRIP1 missense variants containing 3 novel non‐synonymous variants, c.89A>C, c.736A>G and c.2131A>G, and a splice donor site variant c.918+2T>C. No deleterious variant of PALB2 was detected. The results of pedigree analysis showed that the proband with a large deletion on RAD51C had a family history of both breast and ovarian cancer, and the families of probands with novel BRIP1 missense variants included a male patient with breast cancer or many patients with breast cancer within the second‐degree relatives. We showed that the mutation frequency of RAD51C in Japanese familial breast cancer cases was similar to that in Western countries and that the prevalence of deleterious mutation of PALB2 was possibly lower. Furthermore, our results suggested that BRIP1 mutation frequency in Japan might differ from that in Western countries.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Mio Koyasu
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Sachio Nomura
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan.,Translational Research Support, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuri Sato
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Mizuho Kita
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Yuumi Ashihara
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Yasue Adachi
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuji Iwase
- Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Dai Kitagawa
- Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eri Nakashima
- Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reiko Yoshida
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Yoshio Miki
- Division of Medical Genomics, Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masami Arai
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation of Cancer Research, Tokyo, Japan
| |
Collapse
|
49
|
Takaoka M, Miki Y. BRCA1 gene: function and deficiency. Int J Clin Oncol 2017; 23:36-44. [PMID: 28884397 DOI: 10.1007/s10147-017-1182-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
Abstract
The BRCA1 protein, a hereditary breast and ovarian cancer-causing gene product, is known as a multifunctional protein that performs various functions in cells. It is well known, along with BRCA 2, to cause hereditary breast and ovarian cancer, but here we will specifically focus on BRCA1. We introduce the mechanism and the latest report on homologous recombination repair, replication, involvement in checkpoint regulation, transcription, chromatin remodeling, and cytoplasmic function (centrosome regulation, apoptosis, selective autophagy), and consider the possibility of carcinogenesis from inhibition of the intracellular functions in each. We also consider the possibility of drug development based on each function. Finally, we will explain, from data obtained through basic research, that an appropriate regimen is important for raising the response rate for poly (ADP)-ribose polymerase inhibitors, in the case of low susceptibility, iatrogenic toxicity, tolerance, etc.
Collapse
Affiliation(s)
- Miho Takaoka
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
50
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 592] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|