1
|
Jones CA, Makovsky CA, Haney AK, Dutra AC, McFeely CAL, Cropp TA, Hartman MCT. Removing redundancy of the NCN codons in vitro for maximal sense codon reassignment. Chem Sci 2025; 16:8932-8939. [PMID: 40271033 PMCID: PMC12012968 DOI: 10.1039/d4sc06740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Expanding the genetic code affords exciting opportunities for synthetic biology, studies of protein function, and creation of diverse peptide libraries by mRNA display. Maximal expansion with the standard 64 codon code requires breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. In E. coli these 61 codons are decoded by 46 different tRNAs. Moreover, many codons are decoded by multiple tRNAs, further complicating efforts to break this redundancy. The overlapping decoding patterns of the 11 tRNAs in E. coli which read the 16 codons that encode serine, proline, threonine, and alanine codons exemplify this difficulty. Here we tackle this challenge by first outlining a general process to evaluate codons for their potential for reassignment. We then use this knowledge to assign these 16 codons to 10 different amino acids, more than doubling their encoding potential. Our work highlights the expanded potential of sense codon reassignment and points the way to a dramatically expanded code containing more than 30 monomers.
Collapse
Affiliation(s)
- Clark A Jones
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University Box 980037, 401 College St Richmond 23298-0037 VA USA
| | - Chelsea A Makovsky
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University Box 980037, 401 College St Richmond 23298-0037 VA USA
| | - Aidan K Haney
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
| | - Alba C Dutra
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University Box 980037, 401 College St Richmond 23298-0037 VA USA
| | - Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University Box 980037, 401 College St Richmond 23298-0037 VA USA
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University Box 842006, 1001 W. Main St Richmond 23284-2006 VA USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University Box 980037, 401 College St Richmond 23298-0037 VA USA
| |
Collapse
|
2
|
Böttger EC, Santhosh Kumar H, Steiner A, Sotirakis E, Thiam K, Isnard Petit P, Seebeck P, Wolfer DP, Shcherbakov D, Akbergenov R. Translational error in mice increases with ageing in an organ-dependent manner. Nat Commun 2025; 16:2069. [PMID: 40021653 PMCID: PMC11871305 DOI: 10.1038/s41467-025-57203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/10/2025] [Indexed: 03/03/2025] Open
Abstract
The accuracy of protein synthesis and its relation to ageing has been of long-standing interest. To study whether spontaneous changes in the rate of ribosomal error occur as a function of age, we first determined that stop-codon readthrough is a more sensitive read-out of mistranslation due to codon-anticodon mispairing than missense amino acid incorporation. Subsequently, we developed knock-in mice for in-vivo detection of stop-codon readthrough using a gain-of-function Kat2-TGA-Fluc readthrough reporter which combines fluorescent and sensitive bioluminescent imaging techniques. We followed expression of reporter proteins in-vivo over time, and assessed Kat2 and Fluc expression in tissue extracts and by whole organ ex-vivo imaging. Collectively, our results provide evidence for an organ-dependent, age-related increase in translational error: stop-codon readthrough increases with age in muscle (+ 75%, p < 0.001) and brain (+ 50%, p < 0.01), but not in liver (p > 0.5). Together with recent data demonstrating premature ageing in mice with an error-prone ram mutation, our findings highlight age-related decline of translation fidelity as a possible contributor to ageing.
Collapse
Affiliation(s)
- Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | | | - Adrian Steiner
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | | | | | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - David P Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland.
- Biozentrum University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Joshi K, Luisi B, Wunderlin G, Saleh S, Lilly A, Okusolubo T, Farabaugh PJ. An evolutionarily conserved phosphoserine-arginine salt bridge in the interface between ribosomal proteins uS4 and uS5 regulates translational accuracy in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:3989-4001. [PMID: 38340338 DOI: 10.1093/nar/gkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.
Collapse
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Brooke Luisi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Grant Wunderlin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Sima Saleh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Anna Lilly
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Temiloluwa Okusolubo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| |
Collapse
|
4
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
5
|
McFeely CAL, Shakya B, Makovsky CA, Haney AK, Ashton Cropp T, Hartman MCT. Extensive breaking of genetic code degeneracy with non-canonical amino acids. Nat Commun 2023; 14:5008. [PMID: 37591858 PMCID: PMC10435567 DOI: 10.1038/s41467-023-40529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.
Collapse
Affiliation(s)
- Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Chelsea A Makovsky
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Aidan K Haney
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA.
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA.
| |
Collapse
|
6
|
Ousalem F, Singh S, Bailey NA, Wong KH, Zhu L, Neky MJ, Sibindi C, Fei J, Gonzalez RL, Boël G, Hunt JF. Comparative genetic, biochemical, and biophysical analyses of the four E. coli ABCF paralogs support distinct functions related to mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.543863. [PMID: 37398404 PMCID: PMC10312648 DOI: 10.1101/2023.06.11.543863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multiple paralogous ABCF ATPases are encoded in most genomes, but the physiological functions remain unknown for most of them. We herein compare the four Escherichia coli K12 ABCFs - EttA, Uup, YbiT, and YheS - using assays previously employed to demonstrate EttA gates the first step of polypeptide elongation on the ribosome dependent on ATP/ADP ratio. A Δ uup knockout, like Δ ettA , exhibits strongly reduced fitness when growth is restarted from long-term stationary phase, but neither Δ ybiT nor Δ yheS exhibits this phenotype. All four proteins nonetheless functionally interact with ribosomes based on in vitro translation and single-molecule fluorescence resonance energy transfer experiments employing variants harboring glutamate-to-glutamine active-site mutations (EQ 2 ) that trap them in the ATP-bound conformation. These variants all strongly stabilize the same global conformational state of a ribosomal elongation complex harboring deacylated tRNA Val in the P site. However, EQ 2 -Uup uniquely exchanges on/off the ribosome on a second timescale, while EQ 2 -YheS-bound ribosomes uniquely sample alternative global conformations. At sub-micromolar concentrations, EQ 2 -EttA and EQ 2 -YbiT fully inhibit in vitro translation of an mRNA encoding luciferase, while EQ 2 -Uup and EQ 2 -YheS only partially inhibit it at ~10-fold higher concentrations. Moreover, tripeptide synthesis reactions are not inhibited by EQ 2 -Uup or EQ 2 -YheS, while EQ 2 -YbiT inhibits synthesis of both peptide bonds and EQ 2 -EttA specifically traps ribosomes after synthesis of the first peptide bond. These results support the four E. coli ABCF paralogs all having different activities on translating ribosomes, and they suggest that there remains a substantial amount of functionally uncharacterized "dark matter" involved in mRNA translation.
Collapse
|
7
|
Le LQ, Zhu K, Su H. Bridging ribosomal synthesis to cell growth through the lens of kinetics. Biophys J 2023; 122:544-553. [PMID: 36564946 PMCID: PMC9941725 DOI: 10.1016/j.bpj.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding prokaryotic cell growth requires a multiscale modeling framework from the kinetics perspective. The detailed kinetics pathway of ribosomes exhibits features beyond the scope of the classical Hopfield kinetics model. The complexity of the molecular responses to various nutrient conditions poses additional challenge to elucidate the cell growth. Herein, a kinetics framework is developed to bridge ribosomal synthesis to cell growth. For the ribosomal synthesis kinetics, the competitive binding between cognate and near-cognate tRNAs for ribosomes can be modulated by Mg2+. This results in distinct patterns of the speed - accuracy relation comprising "trade-off" and "competition" regimes. Furthermore, the cell growth rate is optimized by varying the characteristics of ribosomal synthesis through cellular responses to different nutrient conditions. In this scenario, cellular responses to nutrient conditions manifest by two quadratic scaling relations: one for nutrient flux versus cell mass, the other for ribosomal number versus growth rate. Both are in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Luan Quang Le
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
8
|
Wang Y, Wang A, Mohanty U, Whitford PC. Precise Steric Features Control Aminoacyl-tRNA Accommodation on the Ribosome. J Phys Chem B 2022; 126:8447-8459. [PMID: 36251478 DOI: 10.1021/acs.jpcb.2c05513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein synthesis involves a complex series of large-scale conformational changes in the ribosome. While long-lived intermediate states of these processes can be characterized by experiments, computational methods can be used to identify the interactions that contribute to the rate-limiting free-energy barriers. To this end, we use a simplified energetic model to perform molecular dynamics (MD) simulations of aminoacyl-tRNA (aa-tRNA) accommodation on the ribosome. While numerous studies have probed the energetics of the early stages of accommodation, we focus on the final stage of accommodation, where the 3'-CCA tail of aa-tRNA enters the peptidyl transferase center (PTC). These simulations show how a distinct intermediate is induced by steric confinement of the tail, immediately before it completes accommodation. Multiple pathways for 3'-CCA tail accommodation can be quantitatively distinguished, where the tail enters the PTC by moving past a pocket enclosed by Helix 89, 90, and 92, or through an alternate route formed by Helix 93 and the P-site tRNA. C2573, located within Helix 90, is shown to provide the largest contribution to this late-accommodation steric barrier, such that sub-Å perturbations to this residue can alter the time scale of tail accommodation by nearly an order of magnitude. In terms of biological function, these calculations suggest how this late-stage sterically induced barrier may contribute to tRNA proofreading by the ribosome.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| |
Collapse
|
9
|
Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep 2022; 40:111433. [PMID: 36170830 DOI: 10.1016/j.celrep.2022.111433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.
Collapse
|
10
|
Kim KQ, Burgute BD, Tzeng SC, Jing C, Jungers C, Zhang J, Yan LL, Vierstra RD, Djuranovic S, Evans BS, Zaher HS. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep 2022; 40:111300. [PMID: 35988540 PMCID: PMC9376333 DOI: 10.1016/j.celrep.2022.111300] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Synthetic mRNA technology is a promising avenue for treating and preventing disease. Key to the technology is the incorporation of modified nucleotides such as N1-methylpseudouridine (m1Ψ) to decrease immunogenicity of the RNA. However, relatively few studies have addressed the effects of modified nucleotides on the decoding process. Here, we investigate the effect of m1Ψ and the related modification pseudouridine (Ψ) on translation. In a reconstituted system, we find that m1Ψ does not significantly alter decoding accuracy. More importantly, we do not detect an increase in miscoded peptides when mRNA containing m1Ψ is translated in cell culture, compared with unmodified mRNA. We also find that m1Ψ does not stabilize mismatched RNA-duplex formation and only marginally promotes errors during reverse transcription. Overall, our results suggest that m1Ψ does not significantly impact translational fidelity, a welcome sign for future RNA therapeutics.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bhagyashri D Burgute
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Crystal Jing
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney Jungers
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Junya Zhang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
12
|
Shakya B, Joyner OG, Hartman MCT. Hyperaccurate Ribosomes for Improved Genetic Code Reprogramming. ACS Synth Biol 2022; 11:2193-2201. [PMID: 35549158 PMCID: PMC10100576 DOI: 10.1021/acssynbio.2c00150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reprogramming of the genetic code through the introduction of noncanonical amino acids (ncAAs) has enabled exciting advances in synthetic biology and peptide drug discovery. Ribosomes that function with high efficiency and fidelity are necessary for all of these efforts, but for challenging ncAAs, the competing processes of near-cognate readthrough and peptidyl-tRNA dropoff can be issues. Here we uncover the surprising extent of these competing pathways in the PURE translation system using mRNAs encoding peptides with affinity tags at the N- and C-termini. We also show that hyperaccurate or error restrictive ribosomes with mutations in ribosomal protein S12 lead to significant improvements in yield and fidelity in the context of both canonical AAs and a challenging α,α-disubstituted ncAA. Hyperaccurate ribosomes also improve yields for quadruplet codon readthrough for a tRNA containing an expanded anticodon stem-loop, although they are not able to eliminate triplet codon reading by this tRNA. The impressive improvements in fidelity and the simplicity of introducing this mutation alongside other efforts to engineer the translation apparatus make hyperaccurate ribosomes an important advance for synthetic biology.
Collapse
Affiliation(s)
- Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Olivia G. Joyner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Matthew C. T. Hartman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
13
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
14
|
Yu Q, Kolomeisky AB, Igoshin OA. The energy cost and optimal design of networks for biological discrimination. J R Soc Interface 2022; 19:20210883. [PMID: 35259959 PMCID: PMC8905179 DOI: 10.1098/rsif.2021.0883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many biological processes discriminate between correct and incorrect substrates through the kinetic proofreading mechanism that enables lower error at the cost of higher energy dissipation. Elucidating physico-chemical constraints for global minimization of dissipation and error is important for understanding enzyme evolution. Here, we identify theoretically a fundamental error-cost bound that tightly constrains the performance of proofreading networks under any parameter variations preserving the rate discrimination between substrates. The bound is kinetically controlled, i.e. completely determined by the difference between the transition state energies on the underlying free energy landscape. The importance of the bound is analysed for three biological processes. DNA replication by T7 DNA polymerase is shown to be nearly optimized, i.e. its kinetic parameters place it in the immediate proximity of the error-cost bound. The isoleucyl-tRNA synthetase (IleRS) of E. coli also operates close to the bound, but further optimization is prevented by the need for reaction speed. In contrast, E. coli ribosome operates in a high-dissipation regime, potentially in order to speed up protein production. Together, these findings establish a fundamental error-dissipation relation in biological proofreading networks and provide a theoretical framework for studying error-dissipation trade-off in other systems with biological discrimination.
Collapse
Affiliation(s)
- Qiwei Yu
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
15
|
Boussaid I, Fontenay M. Translation defects in ribosomopathies. Curr Opin Hematol 2022; 29:119-125. [PMID: 35102070 DOI: 10.1097/moh.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Congenital or acquired ribosomopathies related to mutations or deletions in ribosomal proteins gene or ribosome-associated proteins exhibit defective ribosome biogenesis that expose the cell to translation defects. The mechanisms leading to low translation rate, loss-of-translation fidelity and translation selectivity are reviewed. RECENT FINDINGS New quantitative techniques to measure ribosome component stoichiometry reveal that the pool of ribosomes could be heterogeneous and/or decreased with a limited number of translationally competent ribosomes. During development or cell differentiation, the absence of specific ribosome components or their replacement by paralogs generate heterogeneous ribosomes that are specialized in the translation of specific mRNAs. Decreased ribosome content by defective biosynthesis of a subunit results in translation selectivity at the expense of short structured transcripts with high codon adaptation index. Activation of p53, as a witness of nucleolar stress associated with the hematological phenotype of ribosomopathies participates in translational reprogramming of the cell by interfering with cap-dependent translation. SUMMARY Translation selectivity is a common feature of ribosomopathies. p53 is more selectively activated in ribosomopathies with erythroid phenotype. The discovery of its dual role in regulating transcriptional and translational program supports new therapeutic perspectives.
Collapse
Affiliation(s)
- Ismael Boussaid
- Université de Paris, Laboratory of excellence for Red blood cells GR-Ex, and Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
| | | |
Collapse
|
16
|
Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov I. Increased fidelity of protein synthesis extends lifespan. Cell Metab 2021; 33:2288-2300.e12. [PMID: 34525330 PMCID: PMC8570412 DOI: 10.1016/j.cmet.2021.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.
Collapse
Affiliation(s)
| | - Celia Lujan
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Tristan Espie-Caullet
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Saul Moore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Evgeniy R Galimov
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kazunori Tomita
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany.
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK; Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Silencing of the ER and Integrative Stress Responses in the Liver of Mice with Error-Prone Translation. Cells 2021; 10:cells10112856. [PMID: 34831079 PMCID: PMC8616113 DOI: 10.3390/cells10112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.
Collapse
|
18
|
Liu F, Bratulić S, Costello A, Miettinen TP, Badran AH. Directed evolution of rRNA improves translation kinetics and recombinant protein yield. Nat Commun 2021; 12:5638. [PMID: 34561441 PMCID: PMC8463689 DOI: 10.1038/s41467-021-25852-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.
Collapse
MESH Headings
- Base Sequence
- Directed Molecular Evolution/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Mass Spectrometry/methods
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteome/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Fan Liu
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
| | - Siniša Bratulić
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Alan Costello
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Random errors in protein synthesis activate an age-dependent program of muscle atrophy in mice. Commun Biol 2021; 4:703. [PMID: 34103648 PMCID: PMC8187632 DOI: 10.1038/s42003-021-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Random errors in protein synthesis are prevalent and ubiquitous, yet their effect on organismal health has remained enigmatic for over five decades. Here, we studied whether mice carrying the ribosomal ambiguity (ram) mutation Rps2-A226Y, recently shown to increase the inborn error rate of mammalian translation, if at all viable, present any specific, possibly aging-related, phenotype. We introduced Rps2-A226Y using a Cre/loxP strategy. Resulting transgenic mice were mosaic and showed a muscle-related phenotype with reduced grip strength. Analysis of gene expression in skeletal muscle using RNA-Seq revealed transcriptomic changes occurring in an age-dependent manner, involving an interplay of PGC1α, FOXO3, mTOR, and glucocorticoids as key signaling pathways, and finally resulting in activation of a muscle atrophy program. Our results highlight the relevance of translation accuracy, and show how disturbances thereof may contribute to age-related pathologies. By introducing a ribosomal ambiguity mutation into mice, Moore et al. establish an in-vivo model to investigate how age-related diseases are related to decreasing accuracy in protein synthesis. Their findings potentially offer new insights into the pathological changes observed in age-related diseases, such as muscle atrophy
Collapse
|
20
|
Translation error clusters induced by aminoglycoside antibiotics. Nat Commun 2021; 12:1830. [PMID: 33758186 PMCID: PMC7987974 DOI: 10.1038/s41467-021-21942-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
Aminoglycoside antibiotics target the ribosome and induce mistranslation, yet which translation errors induce bacterial cell death is unclear. The analysis of cellular proteins by quantitative mass spectrometry shows that bactericidal aminoglycosides induce not only single translation errors, but also clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row. The downstream errors in a cluster are up to 10,000-fold more frequent than the first error and independent of the intracellular aminoglycoside concentration. The prevalence, length, and composition of error clusters depends not only on the misreading propensity of a given aminoglycoside, but also on its ability to inhibit ribosome translocation along the mRNA. Error clusters constitute a distinct class of misreading events in vivo that may provide the predominant source of proteotoxic stress at low aminoglycoside concentration, which is particularly important for the autocatalytic uptake of the drugs. Aminoglycoside antibiotics target the ribosome and induce misreading, yet which translation errors induce bacterial cell death is unclear. Here authors use quantitative mass spectrometry and show that bactericidal aminoglycosides induce clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row.
Collapse
|
21
|
Bennett RK, Gregory GJ, Gonzalez JE, Har JRG, Antoniewicz MR, Papoutsakis ET. Improving the Methanol Tolerance of an Escherichia coli Methylotroph via Adaptive Laboratory Evolution Enhances Synthetic Methanol Utilization. Front Microbiol 2021; 12:638426. [PMID: 33643274 PMCID: PMC7904680 DOI: 10.3389/fmicb.2021.638426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 02/05/2023] Open
Abstract
There is great interest in developing synthetic methylotrophs that harbor methane and methanol utilization pathways in heterologous hosts such as Escherichia coli for industrial bioconversion of one-carbon compounds. While there are recent reports that describe the successful engineering of synthetic methylotrophs, additional efforts are required to achieve the robust methylotrophic phenotypes required for industrial realization. Here, we address an important issue of synthetic methylotrophy in E. coli: methanol toxicity. Both methanol, and its oxidation product, formaldehyde, are cytotoxic to cells. Methanol alters the fluidity and biological properties of cellular membranes while formaldehyde reacts readily with proteins and nucleic acids. Thus, efforts to enhance the methanol tolerance of synthetic methylotrophs are important. Here, adaptive laboratory evolution was performed to improve the methanol tolerance of several E. coli strains, both methylotrophic and non-methylotrophic. Serial batch passaging in rich medium containing toxic methanol concentrations yielded clones exhibiting improved methanol tolerance. In several cases, these evolved clones exhibited a > 50% improvement in growth rate and biomass yield in the presence of high methanol concentrations compared to the respective parental strains. Importantly, one evolved clone exhibited a two to threefold improvement in the methanol utilization phenotype, as determined via 13C-labeling, at non-toxic, industrially relevant methanol concentrations compared to the respective parental strain. Whole genome sequencing was performed to identify causative mutations contributing to methanol tolerance. Common mutations were identified in 30S ribosomal subunit proteins, which increased translational accuracy and provided insight into a novel methanol tolerance mechanism. This study addresses an important issue of synthetic methylotrophy in E. coli and provides insight as to how methanol toxicity can be alleviated via enhancing methanol tolerance. Coupled improvement of methanol tolerance and synthetic methanol utilization is an important advancement for the field of synthetic methylotrophy.
Collapse
Affiliation(s)
- R Kyle Bennett
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.,Molecular Biotechnology Laboratory, The Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Gwendolyn J Gregory
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.,Molecular Biotechnology Laboratory, The Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jacqueline E Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Jie Ren Gerald Har
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.,Molecular Biotechnology Laboratory, The Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
22
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int J Mol Sci 2020; 21:ijms21249449. [PMID: 33322589 PMCID: PMC7764779 DOI: 10.3390/ijms21249449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.
Collapse
|
24
|
Mallory JD, Igoshin OA, Kolomeisky AB. Do We Understand the Mechanisms Used by Biological Systems to Correct Their Errors? J Phys Chem B 2020; 124:9289-9296. [PMID: 32857935 DOI: 10.1021/acs.jpcb.0c06180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most cellular processes involved in biological information processing display a surprisingly low error rate despite the stochasticity of the underlying biochemical reactions and the presence of competing chemical species. Such high fidelity is the result of nonequilibrium kinetic proofreading mechanisms, i.e., the existence of dissipative pathways for correcting the reactions that went in the wrong direction. While proofreading was often studied from the perspective of error minimization, a number of recent studies have demonstrated that the underlying mechanisms need to consider the interplay of other characteristic properties such as speed, energy dissipation, and noise reduction. Here, we present current views and new insights on the mechanisms of error-correction phenomena and various trade-off scenarios in the optimization of the functionality of biological systems. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Joel D Mallory
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering and of Biosciences, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
25
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
26
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
27
|
Abstract
Many organisms, including bacteria, code for multiple paralogues of some ribosomal protein subunits. The relative contribution of these alternative subunits to ribosome function and protein synthesis is unknown and controversial. Many studies on alternative ribosomes have been confounded by isolation of alternative and canonical ribosomes from different strains or growth conditions, potentially confounding results. Here, we show that one form of alternative ribosome from Mycobacterium smegmatis has a distinct translational profile compared with canonical ribosomes purified from an identical cellular context. We also identify a role for alternative ribosomes in iron homeostasis. Given the prevalence of alternative ribosomal genes in diverse organisms, our study suggests that alternative ribosomes may represent a further layer of regulation of gene translation. Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.
Collapse
|
28
|
Kinetic control of stationary flux ratios for a wide range of biochemical processes. Proc Natl Acad Sci U S A 2020; 117:8884-8889. [PMID: 32265281 DOI: 10.1073/pnas.1920873117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most intriguing features of biological systems is their ability to regulate the steady-state fluxes of the underlying biochemical reactions; however, the regulatory mechanisms and their physicochemical properties are not fully understood. Fundamentally, flux regulation can be explained with a chemical kinetic formalism describing the transitions between discrete states, with the reaction rates defined by an underlying free energy landscape. Which features of the energy landscape affect the flux distribution? Here we prove that the ratios of the steady-state fluxes of quasi-first-order biochemical processes are invariant to energy perturbations of the discrete states and are only affected by the energy barriers. In other words, the nonequilibrium flux distribution is under kinetic and not thermodynamic control. We illustrate the generality of this result for three biological processes. For the network describing protein folding along competing pathways, the probabilities of proceeding via these pathways are shown to be invariant to the stability of the intermediates or to the presence of additional misfolded states. For the network describing protein synthesis, the error rate and the energy expenditure per peptide bond is proven to be independent of the stability of the intermediate states. For molecular motors such as myosin-V, the ratio of forward to backward steps and the number of adenosine 5'-triphosphate (ATP) molecules hydrolyzed per step is demonstrated to be invariant to energy perturbations of the intermediate states. These findings place important constraints on the ability of mutations and drug perturbations to affect the steady-state flux distribution for a wide class of biological processes.
Collapse
|
29
|
Banerjee K, Das B, Gangopadhyay G. The guiding role of dissipation in kinetic proofreading networks: Implications for protein synthesis. J Chem Phys 2020; 152:111102. [DOI: 10.1063/1.5144726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kinshuk Banerjee
- Department of Chemistry, Acharya Jagadish Chandra Bose College, Kolkata 700 020, India
| | - Biswajit Das
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 106, India
| | - Gautam Gangopadhyay
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 106, India
| |
Collapse
|
30
|
Piñeros WD, Tlusty T. Kinetic proofreading and the limits of thermodynamic uncertainty. Phys Rev E 2020; 101:022415. [PMID: 32168722 DOI: 10.1103/physreve.101.022415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
To mitigate errors induced by the cell's heterogeneous noisy environment, its main information channels and production networks utilize the kinetic proofreading (KPR) mechanism. Here, we examine two extensively studied KPR circuits, DNA replication by the T7 DNA polymerase and translation by the E. coli ribosome. Using experimental data, we analyze the performance of these two vital systems in light of the fundamental bounds set by the recently discovered thermodynamic uncertainty relation (TUR), which places an inherent trade-off between the precision of a desirable output and the amount of energy dissipation required. We show that the DNA polymerase operates close to the TUR lower bound, while the ribosome operates ∼5 times farther from this bound. This difference originates from the enhanced binding discrimination of the polymerase which allows it to operate effectively as a reduced reaction cycle prioritizing correct product formation. We show that approaching this limit also decouples the thermodynamic uncertainty factor from speed and error, thereby relaxing the accuracy-speed trade-off of the system. Altogether, our results show that operating near this reduced cycle limit not only minimizes thermodynamic uncertainty, but also results in global performance enhancement of KPR circuits.
Collapse
Affiliation(s)
- William D Piñeros
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
31
|
Shcherbakov D, Teo Y, Boukari H, Cortes-Sanchon A, Mantovani M, Osinnii I, Moore J, Juskeviciene R, Brilkova M, Duscha S, Kumar HS, Laczko E, Rehrauer H, Westhof E, Akbergenov R, Böttger EC. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun Biol 2019; 2:381. [PMID: 31637312 PMCID: PMC6797716 DOI: 10.1038/s42003-019-0626-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Translation fidelity is the limiting factor in the accuracy of gene expression. With an estimated frequency of 10-4, errors in mRNA decoding occur in a mostly stochastic manner. Little is known about the response of higher eukaryotes to chronic loss of ribosomal accuracy as per an increase in the random error rate of mRNA decoding. Here, we present a global and comprehensive picture of the cellular changes in response to translational accuracy in mammalian ribosomes impaired by genetic manipulation. In addition to affecting established protein quality control pathways, such as elevated transcript levels for cytosolic chaperones, activation of the ubiquitin-proteasome system, and translational slowdown, ribosomal mistranslation led to unexpected responses. In particular, we observed increased mitochondrial biogenesis associated with import of misfolded proteins into the mitochondria and silencing of the unfolded protein response in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Adrian Cortes-Sanchon
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Ivan Osinnii
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - James Moore
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | | | - Endre Laczko
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, 8057 Zurich, Switzerland
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| |
Collapse
|
32
|
Thomas EN, Simms CL, Keedy HE, Zaher HS. Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome. Nucleic Acids Res 2019; 47:9857-9870. [PMID: 31400119 PMCID: PMC6765139 DOI: 10.1093/nar/gkz701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Of the four bases, guanine is the most susceptible to oxidation, which results in the formation of 8-oxoguanine (8-oxoG). In protein-free DNA, 8-oxodG adopts the syn conformation more frequently than the anti one. In the syn conformation, 8-oxodG base pairs with dA. The equilibrium between the anti and syn conformations of the adduct are known to be altered by the enzyme recognizing 8-oxodG. We previously showed that 8-oxoG in mRNA severely disrupts tRNA selection, but the underlying mechanism for these effects was not addressed. Here, we use miscoding antibiotics and ribosome mutants to probe how 8-oxoG interacts with the tRNA anticodon in the decoding center. Addition of antibiotics and introduction of error-inducing mutations partially suppressed the effects of 8-oxoG. Under these conditions, rates and/or endpoints of peptide-bond formation for the cognate (8-oxoG•C) and near-cognate (8-oxoG•A) aminoacyl-tRNAs increased. In contrast, the antibiotics had little effect on other mismatches, suggesting that the lesion restricts the nucleotide from forming other interactions. Our findings suggest that 8-oxoG predominantly adopts the syn conformation in the A site. However, its ability to base pair with adenosine in this conformation is not sufficient to promote the necessary structural changes for tRNA selection to proceed.
Collapse
Affiliation(s)
- Erica N Thomas
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Hannah E Keedy
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
33
|
Liu X, Yan Y, Wu H, Zhou C, Wang X. Biological and transcriptomic studies reveal hfq is required for swimming, biofilm formation and stress response in Xanthomonas axonpodis pv. citri. BMC Microbiol 2019; 19:103. [PMID: 31113370 PMCID: PMC6530196 DOI: 10.1186/s12866-019-1476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hfq is a widely conserved bacterial RNA-binding protein which generally mediates the global regulatory activities involv ed in physiological process and virulence. The goal of this study was to characterize the biological function of hfq gene in Xanthomonas axonpodis pv. citri (Xac), the causal agent of citrus canker disease. RESULTS An hfq mutant in Xac was generated by plasmid integration. The loss of hfq resulted in attenuation of bacterial growth, motility and biofilm formation. In addition, the hfq mutation impaired Xac resistance to H2O2 and both high and low pH environments, but did not affect the virulence to citrus. RNA-Seq analyses indicated that Hfq played roles in regulating the expression of 746 genes. In hfq mutant, gene expression related to chemotaxis, secretion system, two-component system, quorum sensing and flagellar assembly were repressed, whereas expression of ribosomal genes were significantly up-regulated. The down-regulated expression of three bacterial chemotaxis related genes and seven flagella genes, which involved in cell growth and biofilm formation, were further validated by RT-qPCR. CONCLUSIONS The study demonstrated that hfq was involved in multiple biological processes in Xac. The results could serve as initiate points for identifying regulatory sRNAs and genes controlled by Hfq-sRNA interactions in Xac.
Collapse
Affiliation(s)
- Xuelu Liu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Yuping Yan
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China.,, Present address: Agriculture commission of Guangan district, Guangan, Sichuan, China
| | - Haodi Wu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Changyong Zhou
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Xuefeng Wang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China.
| |
Collapse
|
34
|
Mallory JD, Kolomeisky AB, Igoshin OA. Trade-Offs between Error, Speed, Noise, and Energy Dissipation in Biological Processes with Proofreading. J Phys Chem B 2019; 123:4718-4725. [DOI: 10.1021/acs.jpcb.9b03757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone. Proc Natl Acad Sci U S A 2018; 115:E6731-E6740. [PMID: 29967153 DOI: 10.1073/pnas.1721431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA. Structural studies revealed that the mRNA kinks at the interface of the P and A sites. A magnesium ion appears to stabilize this structure through electrostatic interactions with the phosphodiester backbone of the mRNA. Here we examined the role of the kink structure on decoding using a well-defined in vitro translation system. Disruption of the kink structure through site-specific phosphorothioate modification resulted in an acute hyperaccurate phenotype. We measured rates of peptidyl transfer for near-cognate tRNAs that were severely diminished and in some instances were almost 100-fold slower than unmodified mRNAs. In contrast to peptidyl transfer, the modifications had little effect on GTP hydrolysis by elongation factor thermal unstable (EF-Tu), suggesting that only the proofreading phase of tRNA selection depends critically on the kink structure. Although the modifications appear to have no effect on typical cognate interactions, peptidyl transfer for a tRNA that uses atypical base pairing is compromised. These observations suggest that the kink structure is important for decoding in the absence of Watson-Crick or G-U wobble base pairing at the third position. Our findings provide evidence for a previously unappreciated role for the mRNA backbone in ensuring uniform decoding of the genetic code.
Collapse
|
36
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
37
|
Udaondo Z, Duque E, Ramos JL. The pangenome of the genus Clostridium. Environ Microbiol 2017; 19:2588-2603. [PMID: 28321969 DOI: 10.1111/1462-2920.13732] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Juan-Luis Ramos
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
38
|
Banerjee K, Kolomeisky AB, Igoshin OA. Elucidating interplay of speed and accuracy in biological error correction. Proc Natl Acad Sci U S A 2017; 114:5183-5188. [PMID: 28465435 PMCID: PMC5441828 DOI: 10.1073/pnas.1614838114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the most fascinating features of biological systems is the ability to sustain high accuracy of all major cellular processes despite the stochastic nature of underlying chemical processes. It is widely believed that such low error values are the result of the error-correcting mechanism known as kinetic proofreading. However, it is usually argued that enhancing the accuracy should result in slowing down the process, leading to the so-called speed-accuracy trade-off. We developed a discrete-state stochastic framework that allowed us to investigate the mechanisms of the proofreading using the method of first-passage processes. With this framework, we simultaneously analyzed the speed and accuracy of the two fundamental biological processes, DNA replication and tRNA selection during the translation. The results indicate that these systems tend to optimize speed rather than accuracy, as long as the error level is tolerable. Interestingly, for these processes, certain kinetic parameters lay in the suboptimal region where their perturbations can improve both speed and accuracy. Additional constraints due to the energetic cost of proofreading also play a role in the error correcting process. Our theoretical findings provide a microscopic picture of how complex biological processes are able to function so fast with high accuracy.
Collapse
Affiliation(s)
- Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Bioengineering, Rice University, Houston, TX 77005
| |
Collapse
|
39
|
Kamath D, Allgeyer BB, Gregory ST, Bielski MC, Roelofsz DM, Sabapathypillai SL, Vaid N, O'Connor M. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation. Biochimie 2017; 138:194-201. [PMID: 28483689 DOI: 10.1016/j.biochi.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 01/28/2023]
Abstract
Ribosomal protein uS4 is an essential ribosomal component involved in multiple functions, including mRNA decoding. Structural analyses indicate that during decoding, the interface between the C-terminus of uS4 and protein uS5 is disrupted and in agreement with this, C-terminal uS4 truncation mutants are readily isolated on the basis of their increased miscoding phenotypes. The same mutants can also display defects in small subunit assembly and 16S rRNA processing and some are temperature sensitive for growth. Starting with one such temperature sensitive Escherichia coli uS4 mutant, we have isolated temperature insensitive derivatives carrying additional, intragenic mutations that restore the C-terminus and ameliorate the ribosomal defects. At least one of these suppressors has no detectable ribosome biogenesis phenotype, yet still miscodes, suggesting that the C-terminal requirements for ribosome assembly are less rigid than for mRNA decoding. In contrast to the uS4 C-terminal mutants that increase miscoding, two Salmonella enterica uS4 mutants with altered C-termini have been reported as being error-restrictive. Here, reconstruction experiments demonstrate that contrary to the previous reports, these mutants have a distinct error-prone, increased misreading phenotype, consistent with the behavior of the equivalent E. coli mutants and their likely structural effects on uS4-uS5 interactions.
Collapse
Affiliation(s)
- Divya Kamath
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Benjamin B Allgeyer
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Margaret C Bielski
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - David M Roelofsz
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sharon L Sabapathypillai
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikhil Vaid
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
40
|
Banerjee K, Kolomeisky AB, Igoshin OA. Accuracy of Substrate Selection by Enzymes Is Controlled by Kinetic Discrimination. J Phys Chem Lett 2017; 8:1552-1556. [PMID: 28322561 DOI: 10.1021/acs.jpclett.7b00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes have the remarkable ability to select the correct substrate from the pool of chemically similar molecules. The accuracy of such a selection is determined by differences in the free-energy profiles for the right and wrong reaction pathways. Here, we investigate which features of the free-energy landscape govern the variation and minimization of selectivity error. It is generally believed that minimal error is affected by both kinetic (activation barrier heights) and thermodynamic (binding stability) factors. In contrast, using first-passage theoretical analysis, we show that the steady-state selectivity error is determined only by the differences in transition-state energies between the pathways and is independent of the energies of the stable complexes. The results are illustrated for two common catalytic mechanisms: (i) the Michaelis-Menten scheme and (ii) an error-correcting kinetic proofreading scheme with tRNA selection and DNA replication as guiding biological examples. Our theoretical analysis therefore suggests that the selectivity mechanisms are always kinetically controlled.
Collapse
Affiliation(s)
- Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University , PO Box 1892, MS-654, Houston, Texas, 77251-1892, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University , PO Box 1892, MS-654, Houston, Texas, 77251-1892, United States
- Department of Chemistry, Rice University , PO Box 1892, MS-60, Houston, Texas, 77251-1892, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University , PO Box 1892, MS-654, Houston, Texas, 77251-1892, United States
- Department of Bioengineering, Rice University , PO Box 1892, MS-142, Houston, Texas, 77251-1892, United States
| |
Collapse
|
41
|
The Loop 2 Region of Ribosomal Protein uS5 Influences Spectinomycin Sensitivity, Translational Fidelity, and Ribosome Biogenesis. Antimicrob Agents Chemother 2017; 61:AAC.01186-16. [PMID: 27855073 DOI: 10.1128/aac.01186-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ribosomal protein uS5 is an essential component of the small ribosomal subunit that is involved in subunit assembly, maintenance of translational fidelity, and the ribosome's response to the antibiotic spectinomycin. While many of the characterized uS5 mutations that affect decoding map to its interface with uS4, more recent work has shown that residues distant from the uS4-uS5 interface can also affect the decoding process. We targeted one such interface-remote area, the loop 2 region (residues 20 to 31), for mutagenesis in Escherichia. coli and generated 21 unique mutants. A majority of the loop 2 alterations confer resistance to spectinomycin and affect the fidelity of translation. However, only a minority show altered rRNA processing or ribosome biogenesis defects.
Collapse
|
42
|
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017; 52:205-219. [PMID: 28075177 DOI: 10.1080/10409238.2016.1274284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.
Collapse
Affiliation(s)
- Michael H Schwartz
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| | - Tao Pan
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| |
Collapse
|
43
|
Two proofreading steps amplify the accuracy of genetic code translation. Proc Natl Acad Sci U S A 2016; 113:13744-13749. [PMID: 27837019 DOI: 10.1073/pnas.1610917113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.
Collapse
|
44
|
Noel JK, Whitford PC. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat Commun 2016; 7:13314. [PMID: 27796304 PMCID: PMC5095583 DOI: 10.1038/ncomms13314] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
It has long been recognized that the thermodynamics of mRNA–tRNA base pairing is insufficient to explain the high fidelity and efficiency of aminoacyl-tRNA (aa-tRNA) selection by the ribosome. To rationalize this apparent inconsistency, Hopfield proposed that the ribosome may improve accuracy by utilizing a multi-step kinetic proofreading mechanism. While biochemical, structural and single-molecule studies have provided a detailed characterization of aa-tRNA selection, there is a limited understanding of how the physical–chemical properties of the ribosome enable proofreading. To this end, we probe the role of EF-Tu during aa-tRNA accommodation (the proofreading step) through the use of energy landscape principles, molecular dynamics simulations and kinetic models. We find that the steric composition of EF-Tu can reduce the free-energy barrier associated with the first step of accommodation: elbow accommodation. We interpret this effect within an extended kinetic model of accommodation and show how EF-Tu can contribute to efficient and accurate proofreading.
The translation of mRNA by the ribosome is governed by a series of large-scale conformational transitions. Here the authors use MD simulations to demonstrate how the rate of dissociation of elongation factor Tu affects the dynamics of tRNA accommodation and proofreading.
Collapse
Affiliation(s)
- Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Max Delbrück Center for Molecular Medicine, Kristallographie, Robert-Rössle-Strasse 10, Berlin 13125, Germany.,Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
46
|
Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40. [PMID: 27448410 PMCID: PMC5041475 DOI: 10.1093/nar/gkw608] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.
Collapse
Affiliation(s)
- Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
47
|
Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages. Antimicrob Agents Chemother 2016; 60:4324-32. [PMID: 27161646 PMCID: PMC4914683 DOI: 10.1128/aac.00624-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/01/2016] [Indexed: 12/19/2022] Open
Abstract
The evolution of multiple-antibiotic-resistant bacteria is an increasing global problem. Even though mutations causing resistance usually incur a fitness cost in the absence of antibiotics, the magnitude of such costs varies across environments and genomic backgrounds. We studied how the combination of mutations that confer resistance to rifampin (Rif(r)) and streptomycin (Str(r)) affects the fitness of Escherichia coli when it interacts with cells from the immune system, i.e., macrophages (Mϕs). We found that 13 Rif(r) Str(r) doubly resistant genotypes, of the 16 tested, show a survival advantage inside Mϕs, indicating that double resistance can be highly beneficial in this environment. Our results suggest that there are multiple paths to acquire multiple-drug resistance in this context, i.e., if a clone carrying Rif(r) allele H526 or S531 acquires a second mutation conferring Str(r), the resulting double mutant has a high probability of showing increased survival inside Mϕs. On the other hand, we found two cases of sign epistasis between mutations, leading to a significant decrease in bacterial survival. Remarkably, infection of Mϕs with one of these combinations, K88R+H526Y, resulted in an altered pattern of gene expression in the infected Mϕs. This indicates that the fitness effects of resistance may depend on the pattern of gene expression of infected host cells. Notwithstanding the benefits of resistance found inside Mϕs, the Rif(r) Str(r) mutants have massive fitness costs when the bacteria divide outside Mϕs, indicating that the maintenance of double resistance may depend on the time spent within and outside phagocytic cells.
Collapse
|
48
|
Musa M, Radman M, Krisko A. Decreasing translation error rate in Escherichia coli increases protein function. BMC Biotechnol 2016; 16:28. [PMID: 26969280 PMCID: PMC4788870 DOI: 10.1186/s12896-016-0259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over-expressed native or recombinant proteins are commonly used for industrial and pharmaceutical purposes, as well as for research. Proteins of interest need to be purified in sufficient quantity, quality and specific activity to justify their commercial price and eventual medical use. Proteome quality was previously positively correlated with ribosomal fidelity, but not on a single protein level. Here, we show that decreasing translational error rate increases the activity of single proteins. In order to decrease the amount of enzyme needed for catalysis, we propose an expression system bearing rpsL141 mutation, which confers high ribosomal fidelity. Using alpha-glucosidase (exo-alpha-1,4-glucosidase) and beta-glucanase (beta-D-glucanase) as examples, we show that proteins purified from Escherichia coli bearing rpsL141 mutation have superior activity compared to those purified from wild type E. coli, as well as some commercially available industrial enzymes. RESULTS Our results indicate that both alpha-glucosidase and beta-glucanase isolated from E. coli bearing rpsL141 mutation have increased activity compared to those isolated from wild type E. coli. Alpha-glucosidase from rpsL141 background has a higher activity than the purchased enzymes, while beta-glucanase from the same background has a higher activity compared to the beta-glucanase purchased from Sigma, but not compared to the one purchased from Megazyme. CONCLUSION Reduction of the error rate in protein biosynthesis via ribosomal rpsL141 mutation results in superior functionality of single proteins. We conclude that this is a viable system for expressing proteins with higher activity and that it can be easily scaled up and combined with other expression systems to meet the industrial needs.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences (MedILS), Mestrovicevo setaliste 45, 21000, Split, Croatia
| | - Miroslav Radman
- Mediterranean Institute for Life Sciences (MedILS), Mestrovicevo setaliste 45, 21000, Split, Croatia
| | - Anita Krisko
- Mediterranean Institute for Life Sciences (MedILS), Mestrovicevo setaliste 45, 21000, Split, Croatia.
| |
Collapse
|
49
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Theoretical Insights on the Mechanism of the GTP Hydrolysis Catalyzed by the Elongation Factor Tu (EF-Tu). J Phys Chem B 2015; 120:89-101. [PMID: 26653849 DOI: 10.1021/acs.jpcb.5b10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work is to have a better understanding of the mechanism of GTP hydrolysis catalyzed by the elongation factor Tu. Two main aspects are being discussed in the literature: the associative or dissociative character of the process and the nature of nucleophile activation. The calculations of the QM subsystem have been done by means of the M06-2X density functional and the split valence triple-ζ 6-311+G(d,p) basis set. The environmental effect has been introduced through the continuum SMD method. We have studied three models of increasing complexity in order to analyze the different factors that intervene in the catalytic action. The results obtained in this paper confirm that the protonated His84 plays a fundamental role in the catalytic mechanism, but we have also found that the crystallographic sodium ion has a notable effect in the catalysis. So, our work has permitted a new insight, complementary to those obtained with QM/MM calculations, into this very complex process.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| |
Collapse
|
50
|
Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover. PLoS Biol 2015; 13:e1002291. [PMID: 26544557 PMCID: PMC4636289 DOI: 10.1371/journal.pbio.1002291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that translational fidelity and the ubiquitin-proteasome system are functionally linked to each other and may, therefore, co-evolve in nature. Tolerance to errors during protein synthesis evolves rapidly through acceleration of protein turnover—a process determined by the combined rates of protein synthesis and degradation. However, this adaptation has deleterious side effects due to its energy costs. Although fidelity of information transfer has a substantial impact on cellular survival, many steps in protein production are strikingly error-prone. Such errors during protein synthesis can have a substantial influence on viability and the onset of genetic diseases. These considerations raise the question as to how organisms can tolerate errors during protein synthesis. In this paper, for the first time, we study organisms’ capacity to evolve robustness against mistranslation and explore the underlying cellular mechanisms. A mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). This thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate for the deleterious effects of protein mistranslation. We found that mistranslation led to rapid evolution of genomic rearrangements, including chromosomal duplications and deletions. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduce large phenotypic leaps that enable adaptation to mistranslation. Robustness against mistranslation during laboratory evolution was achieved through acceleration of protein turnover—a process that was determined by the combined rates of protein synthesis and ubiquitin-proteasome system-mediated degradation. However, as both translation and active degradation of proteins are exceptionally energy-consuming cellular processes, accelerated proteome turnover has substantial energy costs.
Collapse
|