1
|
Hinchie AM, Sanford SL, Loughridge KE, Sutton RM, Parikh AH, Gil Silva AA, Sullivan DI, Chun-On P, Morrell MR, McDyer JF, Opresko PL, Alder JK. A persistent variant telomere sequence in a human pedigree. Nat Commun 2024; 15:4681. [PMID: 38824190 PMCID: PMC11144197 DOI: 10.1038/s41467-024-49072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.
Collapse
Affiliation(s)
- Angela M Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha L Sanford
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly E Loughridge
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel M Sutton
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anishka H Parikh
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Agustin A Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pattra Chun-On
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R Morrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Pharmacology and Chemical Biology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Muyas F, Rodriguez MJG, Cascão R, Afonso A, Sauer CM, Faria CC, Cortés-Ciriano I, Flores I. The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients. Nat Commun 2024; 15:82. [PMID: 38167290 PMCID: PMC10762111 DOI: 10.1038/s41467-023-44287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.
Collapse
Affiliation(s)
- Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Afonso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
3
|
Al-Zain AM, Nester MR, Ahmed I, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism. Nat Commun 2023; 14:7020. [PMID: 37919272 PMCID: PMC10622511 DOI: 10.1038/s41467-023-42640-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease activity. Foldback priming at DNA double-strand breaks (DSBs) is one mechanism proposed for the generation of inverted duplications. However, the other pathway steps have not been fully elucidated. Here, we show that a DSB induced near natural inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity, but not Rad1 nuclease, trims the heterologous flaps formed after foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric inversion chromosome. Finally, we show that stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences or by deletion of one centromere.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mattie R Nester
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Iffat Ahmed
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Al-Zain A, Nester MR, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ and Rad51-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525421. [PMID: 36747747 PMCID: PMC9900772 DOI: 10.1101/2023.01.24.525421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease. Foldback priming at naturally occurring inverted repeats is one mechanism proposed for the generation of inverted duplications. However, the initiating lesion for these events and the mechanism by which they form has not been fully elucidated. Here, we show that a DNA double-strand break (DSB) induced near natural short, inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity acts non-redundantly with Rad1 nuclease to remove heterologous tails formed during foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. Stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences and requires Rad51.
Collapse
|
5
|
Davis JA, Chakrabarti K. Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1710. [PMID: 34973045 DOI: 10.1002/wrna.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Telomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
6
|
Li X, Wang M, Zheng W, Huang W, Wang Z, Jin K, Liu L, Yu Z. Dynamics of TRF1 organizing a single human telomere. Nucleic Acids Res 2021; 49:760-775. [PMID: 33347580 PMCID: PMC7826288 DOI: 10.1093/nar/gkaa1222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Meijie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
7
|
Mangge H, Renner W, Almer G, Gruber HJ, Zelzer S, Moeller R, Horejsi R, Herrmann M. Subcutaneous adipose tissue distribution and telomere length. Clin Chem Lab Med 2020; 57:1358-1363. [PMID: 30913032 DOI: 10.1515/cclm-2018-0801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Background Overweight and obese individuals have a reduced life expectancy due to cardiovascular disease (CVD), type 2 diabetes, stroke and cancer. Systemic inflammation and premature telomere shortening have been discussed as potential mechanisms linking these conditions. We investigated the relation of subcutaneous adipose tissue (SAT) distribution to leukocyte relative telomere length (RTL). Methods We measured RTL in 375 participants of the observational STYJOBS/EDECTA cohort (ClinicalTrials.gov Identifier NCT00482924) using a qPCR based method. SAT distribution was determined by lipometry yielding a percent body fat value and SAT thicknesses at 15 standardized locations across the entire body. A correlation analysis between RTL, age, sex, lipometry data and conventional body measures (body mass index [BMI], waist-, hip circumference, waist-to-hip ratio, waist-to-height ratio) was calculated. The strongest determinants of RTL were determined by a stepwise multiple regression analysis. Results RTL was not associated with age or sex. RTL was significantly negatively correlated with BMI, percent body fat, waist-, hip circumference and waist-to-height ratio. Furthermore, RTL correlated with SAT at the following locations: neck, triceps, biceps, upper back, front chest, lateral chest, upper abdomen, lower abdomen, lower back, hip, front thigh, lateral thigh, rear thigh and calf. Stepwise regression analysis revealed nuchal and hip SAT as the strongest predictors of RTL. No significant association was seen between RTL and waist-to-hip ratio. Conclusions RTL is negatively associated with parameters describing body fat composure. Nuchal and hip SAT thicknesses are the strongest predictors of RTL. Central obesity appears to correlate with premature genomic aging.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Reinhard Moeller
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Renate Horejsi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Anuja K, Kar M, Chowdhury AR, Shankar G, Padhi S, Roy S, Akhter Y, Rath AK, Banerjee B. Role of telomeric RAP1 in radiation sensitivity modulation and its interaction with CSC marker KLF4 in colorectal cancer. Int J Radiat Biol 2020; 96:790-802. [PMID: 31985344 DOI: 10.1080/09553002.2020.1721609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aims: Radiotherapy is predominantly used as one of the treatment modalities to treat local tumor in colorectal cancer (CRC). Hindrance in disease treatment can be attributed to radio-tolerance of cancer stem cells (CSCs) subsistence in the tumor. Understanding the radio-resistant property of CSCs might help in the accomplishment of targeted radiotherapy treatment and increased disease-free survival. Telomeric RAP1 contributes in modulation of various transcription factors leading to aberrant cell proliferation and tumor cell migration. Therefore, we investigated the role of RAP1 in maintaining resistance phenotype and acquired stemness in radio-resistant cells.Main methods: Characterization of HCT116 derived radio-resistant cell (HCT116RR) was performed by cell survival and DNA damage profiling. RAP1 silenced cells were investigated for DNA damage and expression of CSC markers through western blotting and Real-time PCR post-irradiation. Molecular docking and co-immunoprecipitation study were performed to investigate RAP1 and KLF4 interaction followed by RAP1 protein status profiling in CRC patient.Key findings: We established radio-resistant cells, which showed tolerance to radiotherapy and elevated expression of CSC markers along with RAP1. RAP1 silencing showed enhanced DNA damage and reduced expression of CSC markers post-irradiation. We observed strong physical interaction between RAP1 and KLF4 protein. Furthermore, higher RAP1 expression was observed in the tumor of CRC patients. Dataset analysis also revealed that high expression of RAP1 expression is associated with poor prognosis.Significance: We conclude that higher expression of RAP1 implicates its possible role in promoting radio-resistance in CRC cells by modulating DNA damage and CSC phenotype.
Collapse
Affiliation(s)
- Kumari Anuja
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Amit Roy Chowdhury
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
9
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
10
|
Anuja K, Chowdhury AR, Saha A, Roy S, Rath AK, Kar M, Banerjee B. Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int J Radiat Biol 2019; 95:667-679. [PMID: 30753097 DOI: 10.1080/09553002.2019.1580401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Radiation therapy is an integral part of current treatment modality for colorectal cancer. Recent studies have revealed the presence of cancer stem-like cells (CSCs) population, in different tumors are responsible for therapeutic resistance and disease relapse, including colorectal cancer with poorer survival rate. Hence, characterization of the effect of Ionizing Radiation (IR) in colorectal cancer may serve to explain possible mechanisms. Material and methods: Parental HCT116 and HCT-15 cells and derived colonospheres were irradiated and dose was optimized based on cell survival assay and cell cycle analysis. DNA damage response (DDR) was elucidated by γH2AX foci formation, COMET assay, and ATM, p-ATM, ERCC1 expression post-treatment. The expression level of developmental marker (β-catenin), CSC markers (CD44, KLF4) and telomeric components (TRF2, RAP1, hTERT) were evaluated. Results: We observed cell survival was more in colonospheres post-irradiation and also exhibited decreased γH2AX foci, olive tail moment, increased ERCC1, and p-ATM expression than its parental counterpart which corresponds to efficient DDR. Differential expression of developmental marker, CSC markers, and telomeric components were observed after irradiation. Conclusion: This study highlighted the presence of CSC phenotype in colonospheres having increased DNA repair capacity. Differential expression of developmental marker, CSC markers and telomeric components between parental and colonospheres may contribute in radio-resistance property of CSCs.
Collapse
Affiliation(s)
- Kumari Anuja
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Amit Roy Chowdhury
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Arka Saha
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Souvick Roy
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | | | - Madhabananda Kar
- c Department of Surgical Oncology , All India Institute of Medical Sciences (AIIMS) , Bhubaneswar , India
| | - Birendranath Banerjee
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| |
Collapse
|
11
|
Deshpande AP, Collins K. Mechanisms of template handling and pseudoknot folding in human telomerase and their manipulation to expand the sequence repertoire of processive repeat synthesis. Nucleic Acids Res 2018; 46:7886-7901. [PMID: 29986069 PMCID: PMC6125678 DOI: 10.1093/nar/gky601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
Telomerase adds telomeric repeats to chromosome ends by processive copying of a template within the telomerase RNA bound to telomerase reverse transcriptase. Telomerase RNAs have single-stranded regions that separate the template from a 5' stem and 3' pseudoknot, and mammals gained additional stem P2a.1 separating the template from the pseudoknot. Using human telomerase, we show that the length of template 3'-flanking single-stranded RNA is a determinant of repeat addition processivity whereas template 5'-flanking single-stranded RNA and P2a.1 are critical for activity but not processivity. In comparison, requirements for the template sequence itself are confounding: different substitutions of the same position have strikingly different consequences, from improved processivity and activity to complete inactivation. We discovered that some altered-template sequences stabilize an alternative RNA conformation that precludes the pseudoknot by base-pairing of one pseudoknot strand to the template 3' end. Using mutations to reduce over-stability of the alternative conformation, we restore high activity and processivity to otherwise inactive altered-template telomerase ribonucleoproteins. In cells, over-stabilization or destabilization of the alternative state severely inhibited biogenesis of active telomerase. Our findings delineate roles for human telomerase RNA template-flanking regions, establish a biologically relevant pseudoknot-alternative RNA conformation, and expand the repertoire of human telomerase repeat synthesis.
Collapse
Affiliation(s)
- Aishwarya P Deshpande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Chow TT, Shi X, Wei JH, Guan J, Stadler G, Huang B, Blackburn EH. Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection. Nat Commun 2018; 9:3583. [PMID: 30181605 PMCID: PMC6123478 DOI: 10.1038/s41467-018-05840-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Enhanced telomere maintenance is evident in malignant cancers. While telomeres are thought to be inherently heterochromatic, detailed mechanisms of how epigenetic modifications impact telomere protection and structures are largely unknown in human cancers. Here we develop a molecular tethering approach to experimentally enrich heterochromatin protein HP1α specifically at telomeres. This results in increased deposition of H3K9me3 at cancer cell telomeres. Telomere extension by telomerase is attenuated, and damage-induced foci at telomeres are reduced, indicating augmentation of telomere stability. Super-resolution STORM imaging shows an unexpected increase in irregularity of telomeric structure. Telomere-tethered chromo shadow domain (CSD) mutant I165A of HP1α abrogates both the inhibition of telomere extension and the irregularity of telomeric structure, suggesting the involvement of at least one HP1α-ligand in mediating these effects. This work presents an approach to specifically manipulate the epigenetic status locally at telomeres to uncover insights into molecular mechanisms underlying telomere structural dynamics.
Collapse
Affiliation(s)
- Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
14
|
Hata T, Dal Molin M, McGregor-Das A, Song TJ, Wolfgang C, Eshleman JR, Hruban RH, Goggins M. Simple Detection of Telomere Fusions in Pancreatic Cancer, Intraductal Papillary Mucinous Neoplasm, and Pancreatic Cyst Fluid. J Mol Diagn 2018; 20:46-55. [PMID: 29229290 PMCID: PMC5745545 DOI: 10.1016/j.jmoldx.2017.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Telomere end-to-end fusions are an important source of chromosomal instability that arise in cells with critically shortened telomeres. We developed a nested real-time quantitative PCR method for telomere fusion detection in pancreatic ductal adenocarcinomas, intraductal papillary mucinous neoplasms (IPMNs), and IPMN cyst fluids. Ninety-one pancreatic cancer cell lines and xenograft samples, 93 IPMNs, and 93 surgically aspirated IPMN cyst fluid samples were analyzed. The association between telomere shortening, telomerase activity, and telomere fusion detection was evaluated. Telomere fusions were detected in 56 of 91 pancreatic cancers (61.5%). Telomere fusion-positive cell lines had significantly shorter telomere lengths than fusion-negative lines (P = 0.003). Telomere fusions were undetectable in normal pancreas or IPMNs with low-grade dysplasia (0.0%) and were detected in IPMN with high-grade dysplasia (HGD; 48.0%) (P < 0.001). In IPMN cyst fluids, telomere fusions were more frequent in IPMNs with HGD (26.9%) or associated invasive cancer (42.9%) than IPMN with intermediate-grade dysplasia (15.4%) or low-grade dysplasia (0%) (P = 0.025). Telomerase activity levels were higher in cyst fluids with fusions than in those without (P = 0.0414). Cyst fluid telomere fusion status was an independent predictor of HGD/invasive cancer by multivariate analysis (odds ratio, 6.23; 95% CI, 1.61-28.0). Telomere fusions are detected in later stages of IPMN progression and can serve as a marker for predicting the presence of HGD and/or invasive cancer.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marco Dal Molin
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne McGregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tae Jun Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
Abstract
Length of the telomere (TL), a structure at the tip of chromosome that protects and ensures stability, is determined by multi-protein complexes such as telosome/shelterin and telomerase. Earlier studies from our laboratory show that longer TL has potential to be positive predictive biomarker of clinical outcome to anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy in patients with KRAS WT metastatic colorectal cancer. Although there is extensive literature suggesting the role of shelterin and telomerase, not much literature exists that describes the role of EGFR and KRAS pathway in regulating TL. This detailed review focuses on an insight into various components, including proteins, enzymes and transcription factors, interlinking between EGFR pathways and telomerase that regulate TL.
Collapse
|
16
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
17
|
Liddiard K, Ruis B, Takasugi T, Harvey A, Ashelford KE, Hendrickson EA, Baird DM. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. Genome Res 2016; 26:588-600. [PMID: 26941250 PMCID: PMC4864465 DOI: 10.1101/gr.200840.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/02/2016] [Indexed: 01/26/2023]
Abstract
Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution.
Collapse
Affiliation(s)
- Kate Liddiard
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Adam Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin E Ashelford
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Duncan M Baird
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
18
|
Mar FA, Debnath J, Stohr BA. Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction. Autophagy 2015; 11:527-37. [PMID: 25751002 PMCID: PMC4502814 DOI: 10.1080/15548627.2015.1017189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.
Collapse
Key Words
- ACD/Tpp1, adrenocortical dysplasia homolog (mouse)
- ATG5, autophagy-related 5, ATG7, autophagy-related 7
- B2M, β-2-microglobulin
- HBSS, Hank's buffered salt solution
- HMECs, human mammary epithelial cells
- MEFs, mouse embryonic fibroblasts
- MT-HsTER, mutant template-Homo sapiens template-containing RNA
- MT-MmTER, mutant template-Mus musculus template-containing RNA
- OIS, oncogene-induced senescence
- RBBP8/CtIP, retinoblastoma binding protein 8
- SA-β-Gal, senescence-associated β-galactosidase
- SASP
- SASP, senescence associated secretory phenotype
- TDIS, telomere dysfunction-induced senescence
- TERT, telomerase reverse transcriptase
- TIFs, telomere dysfunction-induced foci
- autophagy
- chromosome fusions
- genome instability
- senescence
- telomerase
- telomeres
Collapse
Affiliation(s)
- Florie A Mar
- Biomedical Sciences Graduate Program; University of California San Francisco; San Francisco, CA USA
- Department of Pathology; University of California San Francisco; San Francisco, CA USA
| | - Jayanta Debnath
- Department of Pathology; University of California San Francisco; San Francisco, CA USA
- Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| | - Bradley A Stohr
- Department of Pathology; University of California San Francisco; San Francisco, CA USA
- Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| |
Collapse
|
19
|
Abstract
Telomerase is a specialized reverse transcriptase (RT) containing an intrinsic telomerase RNA (TR) component. It synthesizes telomeric DNA repeats, (GGTTAG)n in humans, by reiteratively copying a precisely defined, short template sequence from the integral TR. The specific mechanism of how the telomerase active site uses this short template region accurately and efficiently during processive DNA repeat synthesis has remained elusive. Here we report that the human TR template, in addition to specifying the DNA sequence, is embedded with a single-nucleotide signal to pause DNA synthesis. After the addition of a dT residue to the DNA primer, which is specified by the 49 rA residue in the template, telomerase extends the DNA primer with three additional nucleotides and then pauses DNA synthesis. This sequence-defined pause site coincides precisely with the helix paired region 1 (P1)-defined physical template boundary and precludes the incorporation of nontelomeric nucleotides from residues outside the template region. Furthermore, this sequence-defined pausing mechanism is a key determinant, in addition to the P1-defined template boundary, for generating the characteristic 6-nt ladder banding pattern of telomeric DNA products in vitro. In the absence of the pausing signal, telomerase stalls nucleotide addition at multiple sites along the template, generating DNA products with heterogeneous terminal repeat registers. Our findings demonstrate that this unique self-regulating mechanism of the human TR template is essential for high-fidelity synthesis of DNA repeats.
Collapse
|
20
|
Lee M, Hills M, Conomos D, Stutz MD, Dagg RA, Lau LMS, Reddel RR, Pickett HA. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res 2013; 42:1733-46. [PMID: 24225324 PMCID: PMC3919612 DOI: 10.1093/nar/gkt1117] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres.
Collapse
Affiliation(s)
- Michael Lee
- Telomere Length Regulation Group, Children's Medical Research Institute, Westmead NSW 2145, Australia, Cancer Research Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia, Terry Fox Laboratory, BC Cancer Agency, Vancouver V5Z 1L3, Canada, Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia and Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Diolaiti ME, Cimini BA, Kageyama R, Charles FA, Stohr BA. In situ visualization of telomere elongation patterns in human cells. Nucleic Acids Res 2013; 41:e176. [PMID: 23963699 PMCID: PMC3794614 DOI: 10.1093/nar/gkt689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells.
Collapse
Affiliation(s)
- Morgan E Diolaiti
- Department of Pathology, University of California, San Francisco, CA 94143, USA and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
22
|
Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin 2013; 6:7. [PMID: 23570311 PMCID: PMC3635903 DOI: 10.1186/1756-8935-6-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b. Results H3f3b knockout (KO) mice exhibit a semilethal phenotype traceable at least in part to defective cell division and chromosome segregation. H3f3b KO cells have widespread ectopic CENP-A protein localization suggesting one possible mechanism for defective chromosome segregation. KO cells have abnormal karyotypes and cell cycle profiles as well. The transcriptome and euchromatin-related epigenome were moderately affected by loss of H3f3b in mouse embryonic fibroblasts (MEFs) with ontology most notably pointing to changes in chromatin regulatory and histone coding genes. Reduced numbers of H3f3b KO mice survive to maturity and almost all survivors from both sexes are infertile. Conclusions Taken together, our studies suggest that endogenous mammalian histone H3.3 has important roles in regulating chromatin and chromosome functions that in turn are important for cell division, genome integrity, and development.
Collapse
|
23
|
Bolzán AD. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 2011; 27:1-15. [PMID: 21857006 DOI: 10.1093/mutage/ger052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomeres are specialised nucleoproteic complexes localised at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. In vertebrate chromosomes, the DNA component of telomeres is constituted by (TTAGGG)n repeats, which can be localised at the terminal regions of chromosomes (true telomeres) or at intrachromosomal sites (interstitial telomeric sequences or ITSs, located at the centromeric region or between the centromere and the telomere). In the past two decades, the use of molecular cytogenetic techniques has led to a new spectrum of spontaneous and clastogen-induced chromosomal aberrations being identified, involving telomeres and ITSs. Some aberrations involve the chromosome ends and, indirectly, the telomeric repeats located at the terminal regions of chromosomes (true telomeres). A second type of aberrations directly involves the telomeric sequences located at the chromosome ends. Finally, there is a third class of aberrations that specifically involves the ITSs. The aims of this review are to provide a detailed description of these aberrations and to summarise the available data regarding their induction by physical and chemical mutagens.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- La Carrera del Investigador Científico y Tecnológico del CONICET, Argentina, Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Argentina.
| |
Collapse
|
24
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2011; 730:28-36. [PMID: 21575645 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
25
|
In Brief. Nat Rev Genet 2010. [DOI: 10.1038/nrg2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|