1
|
Gan T, Liu Y, Qiao Y, Dong Y, Feng J, Chen X, Zhu L. Translation regulation in Bacillus subtilis and its applications in heterologous protein expression: A review. Int J Biol Macromol 2025; 311:143653. [PMID: 40311986 DOI: 10.1016/j.ijbiomac.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis is widely used for industrial enzyme production due to its food safety and good capability of protein synthesis and secretion. However, the production of heterologous proteins is often inefficient, partly due to poor compatibility and versatility of genetic elements in B. subtilis. Recent study shows that transcription and translation is uncoupled in B. subtilis, which is quite different from general knowledge about the transcription-translation coupling mechanism in bacteria. The uncoupling mechanism in B. subtilis shows that the transcription rate is much faster than translation rate. Therefore, the translation regulation will play an important role in highly-effective synthesis of heterologous protein. To better understanding the different regulation strategies at the translation level in B. subtilis, this review will summarize the translation process in B. subtilis cell and its regulatory mechanisms as well as the differences in comparison to other bacteria. Besides, the genetic engineering strategies for engineering the translation regulatory elements are also summarized.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yidi Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Qiao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangyang Dong
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
You Y, Zhao X, Jie J, Xie Y, Hao Z, He Q, Zhou Y. Construction and evaluation of a Salmonella Paratyphi A vaccine candidate based on a poxA gene mutation. Gene 2025; 933:148952. [PMID: 39299530 DOI: 10.1016/j.gene.2024.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Salmonella Paratyphi A, the pathogen of paratyphoid A accounts for an obviously growing proportion of cases in many areas. Therefore, development of specific paratyphoid A vaccines is needed. In the present study, the poxA gene of Salmonella Paratyphi A, encoding the aminoacyl-tRNA synthetase, was deleted successfully by the method of lambda Red recombination system, the resulting strain, ΔpoxA was characterized in respect of growth, adhesion and invasion, virulence, immunogenicity and protective efficacy. It was found that the growth of the ΔpoxA strain was significantly delayed compared with the wild type strain, the mutant ΔpoxA was less invasive to Caco-2 BBE epithelioid cells and THP-1 macrophages than the wild type strain, strain ΔpoxA was attenuated at least 1000-fold in mice, significant immune response and efficient protection were provided by the mutant ΔpoxA after oral immunization. It is concluded that the Salmonella Paratyphi A poxA deletion mutant ΔpoxA can be used as a live oral vaccine candidate against paratyphoid A.
Collapse
Affiliation(s)
- Yonghe You
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xiaohui Zhao
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Jiayue Jie
- Department of Basic Medical Sciences, Zhengzhou Medical and Health Vocational College, Zhengzhou, China
| | - Yongsheng Xie
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zhenhua Hao
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Qunli He
- Department of Basic Medical Sciences, Zhengzhou Medical and Health Vocational College, Zhengzhou, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yanlin Zhou
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
3
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
4
|
Guo K, Zhou J. Insights into eukaryotic translation initiation factor 5A: Its role and mechanisms in protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119849. [PMID: 39303786 DOI: 10.1016/j.bbamcr.2024.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The protein synthesis within eukaryotic cells is a complex process involving various translation factors. Among these factors, eukaryotic translation initiation factor 5 A (eIF5A) emerges as a crucial translation factor with high evolutionary conservation. eIF5A is unique as it is the only protein in eukaryotic cells containing the hypusine modification. Initially presumed to be a translation initiation factor, eIF5A was subsequently discovered to act mainly during the translation elongation phase. Notably, eIF5A facilitates the translation of peptide sequences containing polyproline stretches and exerts a universal regulatory effect on the elongation and termination phases of protein synthesis. Additionally, eIF5A indirectly affects various physiological processes within the cell by modulating the translation of specific proteins. This review provides a comprehensive overview of the structure, physiological functions, various post-translational modifications of eIF5A, and its association with various human diseases. The comparison between eIF5A and its bacterial homolog, EF-P, extends the discussion to the evolutionary conservation of eIF5A. This highlights its significance across different domains of life.
Collapse
Affiliation(s)
- Keying Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Radecki AA, Fantasia-Davis A, Maldonado JS, Mann JW, Sepulveda-Camacho S, Morosky P, Douglas J, Vargas-Rodriguez O. Coexisting bacterial aminoacyl-tRNA synthetase paralogs exhibit distinct phylogenetic backgrounds and functional compatibility with Escherichia coli. IUBMB Life 2024; 76:1139-1153. [PMID: 39417753 DOI: 10.1002/iub.2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are universally essential enzymes that synthesize aminoacyl-tRNA substrates for protein synthesis. Although most organisms require a single aaRS gene for each proteinogenic amino acid to translate their genetic information, numerous species encode multiple gene copies of an aaRS. Growing evidence indicates that organisms acquire extra aaRS genes to sustain or adapt to their unique lifestyle. However, predicting and defining the function of repeated aaRS genes remains challenging due to their potentially unique physiological role in the host organism and the inconsistent annotation of repeated aaRS genes in the literature. Here, we carried out comparative, phylogenetic, and functional studies to determine the activity of coexisting paralogs of tryptophanyl-, tyrosyl-, seryl-, and prolyl-tRNA synthetases encoded in several human pathogenic bacteria. Our analyses revealed that, with a few exceptions, repeated aaRSs involve paralogous genes with distinct phylogenetic backgrounds. Using a collection of Escherichia coli strains that enabled the facile characterization of aaRS activity in vivo, we found that, in almost all cases, one aaRS displayed transfer RNA (tRNA) aminoacylation activity, whereas the other was not compatible with E. coli. Together, this work illustrates the challenges of identifying, classifying, and predicting the function of aaRS paralogs and highlights the complexity of aaRS evolution. Moreover, these results provide new insights into the potential role of aaRS paralogs in the biology of several human pathogens and foundational knowledge for the investigation of the physiological role of repeated aaRS paralogs across bacteria.
Collapse
Affiliation(s)
- Alexander A Radecki
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ariana Fantasia-Davis
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Juan S Maldonado
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Joshua W Mann
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | | | - Pearl Morosky
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jordan Douglas
- Department of Physics, University of Auckland, Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Tomasiunaite U, Brewer T, Burdack K, Brameyer S, Jung K. Versatile Dual Reporter to Identify Ribosome Pausing Motifs Alleviated by Translation Elongation Factor P. ACS Synth Biol 2024; 13:3698-3710. [PMID: 39425678 DOI: 10.1021/acssynbio.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Protein synthesis is influenced by the chemical and structural properties of the amino acids incorporated into the polypeptide chain. Motifs containing consecutive prolines can slow the translation speed and cause ribosome stalling. Translation elongation factor P (EF-P) facilitates peptide bond formation in these motifs, thereby alleviating stalled ribosomes and restoring the regular translational speed. Ribosome pausing at various polyproline motifs has been intensively studied using a range of sophisticated techniques, including ribosome profiling, proteomics, and in vivo screening, with reporters incorporated into the chromosome. However, the full spectrum of motifs that cause translational pausing in Escherichia coli has not yet been identified. Here, we describe a plasmid-based dual reporter for rapid assessment of pausing motifs. This reporter contains two coupled genes encoding mScarlet-I and chloramphenicol acetyltransferase to screen motif libraries based on both bacterial fluorescence and survival. In combination with a diprolyl motif library, we used this reporter to reveal motifs of different pausing strengths in an E. coli strain lacking efp. Subsequently, we used the reporter for a high-throughput screen of four motif libraries, with and without prolines at different positions, sorted by fluorescence-associated cell sorting (FACS) and identify new motifs that influence the translational efficiency of the fluorophore. Our study provides an in vivo platform for rapid screening of amino acid motifs that affect translational efficiencies.
Collapse
Affiliation(s)
- Urte Tomasiunaite
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Korinna Burdack
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Mudryi V, Frister J, Peng BZ, Wohlgemuth I, Peske F, Rodnina M. Kinetic mechanism and determinants of EF-P recruitment to translating ribosomes. Nucleic Acids Res 2024; 52:11870-11883. [PMID: 39315709 PMCID: PMC11514478 DOI: 10.1093/nar/gkae815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
EF-P is a translation factor that facilitates the formation of peptide bonds between consecutive prolines. Using FRET between EF-P and ribosomal protein bL33, we studied dynamics and specificity of EF-P binding to the ribosome. Our findings reveal that EF-P rapidly scans for a free E site and can bind to any ribosome containing a P-site tRNA, regardless of the ribosome's functional state. The interaction with uL1 is essential for EF-P binding, while the β-Lys modification of EF-P doubles the association rate. Specific interactions with the D-loop of tRNAPro or tRNAfMet and via the β-Lys group with the tRNA in the peptidyl transferase center reduce the rate of EF-P dissociation from the ribosome, providing the specificity for complexes that need help in catalyzing peptide bond formation. The nature of the E-site codon has little effect on EF-P binding kinetics. Although EF-P dissociation is reduced upon recognizing its correct tRNA substrate, it remains sufficiently rapid compared to tRNA translocation and does not affect the translocation rate. These results highlight the importance of EF-P's scanning-engagement mechanism for dynamic substrate recognition during rapid translation.
Collapse
MESH Headings
- Ribosomes/metabolism
- Kinetics
- Protein Biosynthesis
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Peptide Elongation Factors/metabolism
- Peptide Elongation Factors/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Protein Binding
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- Fluorescence Resonance Energy Transfer
- RNA, Transfer, Pro/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/chemistry
- Codon/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Binding Sites
Collapse
Affiliation(s)
- Vitalii Mudryi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Jan Ole Frister
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| |
Collapse
|
8
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
9
|
Brewer TE, Wagner A. Horizontal Gene Transfer of a key Translation Factor and its Role in Polyproline Proteome Evolution. Mol Biol Evol 2024; 41:msae180. [PMID: 39189989 PMCID: PMC11388002 DOI: 10.1093/molbev/msae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.
Collapse
Affiliation(s)
- Tess E Brewer
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
10
|
Tomasiunaite U, Kielkowski P, Krafczyk R, Forné I, Imhof A, Jung K. Decrypting the functional design of unmodified translation elongation factor P. Cell Rep 2024; 43:114063. [PMID: 38635400 DOI: 10.1016/j.celrep.2024.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Bacteria overcome ribosome stalling by employing translation elongation factor P (EF-P), which requires post-translational modification (PTM) for its full activity. However, EF-Ps of the PGKGP subfamily are unmodified. The mechanism behind the ability to avoid PTM while retaining active EF-P requires further examination. Here, we investigate the design principles governing the functionality of unmodified EF-Ps in Escherichia coli. We screen for naturally unmodified EF-Ps with activity in E. coli and discover that the EF-P from Rhodomicrobium vannielii rescues growth defects of a mutant lacking the modification enzyme EF-P-(R)-β-lysine ligase. We identify amino acids in unmodified EF-P that modulate its activity. Ultimately, we find that substitution of these amino acids in other marginally active EF-Ps of the PGKGP subfamily leads to fully functional variants in E. coli. These results provide strategies to improve heterologous expression of proteins with polyproline motifs in E. coli and give insights into cellular adaptations to optimize protein synthesis.
Collapse
Affiliation(s)
- Urte Tomasiunaite
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, 81375 Munich, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Ignasi Forné
- Zentrallabor für Proteinanalytik, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
11
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Sanders JG, Sprockett DD, Li Y, Mjungu D, Lonsdorf EV, Ndjango JBN, Georgiev AV, Hart JA, Sanz CM, Morgan DB, Peeters M, Hahn BH, Moeller AH. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat Microbiol 2023; 8:1039-1050. [PMID: 37169918 PMCID: PMC10860671 DOI: 10.1038/s41564-023-01388-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Humans and other primates harbour complex gut bacterial communities that influence health and disease, but the evolutionary histories of these symbioses remain unclear. This is partly due to limited information about the microbiota of ancestral primates. Here, using phylogenetic analyses of metagenome-assembled genomes (MAGs), we show that hundreds of gut bacterial clades diversified in parallel (that is, co-diversified) with primate species over millions of years, but that humans have experienced widespread losses of these ancestral symbionts. Analyses of 9,460 human and non-human primate MAGs, including newly generated MAGs from chimpanzees and bonobos, revealed significant co-diversification within ten gut bacterial phyla, including Firmicutes, Actinobacteriota and Bacteroidota. Strikingly, ~44% of the co-diversifying clades detected in African apes were absent from available metagenomic data from humans and ~54% were absent from industrialized human populations. In contrast, only ~3% of non-co-diversifying clades detected in African apes were absent from humans. Co-diversifying clades present in both humans and chimpanzees displayed consistent genomic signatures of natural selection between the two host species but differed in functional content from co-diversifying clades lost from humans, consistent with selection against certain functions. This study discovers host-species-specific bacterial symbionts that predate hominid diversification, many of which have undergone accelerated extinctions from human populations.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- School of Natural Sciences, Bangor University, Bangor, UK
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St Louis, Saint Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Mudryi V, Peske F, Rodnina M. Translation Factor Accelerating Peptide Bond Formation on the Ribosome: EF-P and eIF5A as Entropic Catalysts and a Potential Drug Targets. BBA ADVANCES 2023; 3:100074. [PMID: 37082265 PMCID: PMC10074943 DOI: 10.1016/j.bbadva.2023.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Elongation factor P (EF-P) and its eukaryotic homolog eIF5A are auxiliary translation factors that facilitate peptide bond formation when several sequential proline (Pro) residues are incorporated into the nascent chain. EF-P and eIF5A bind to the exit (E) site of the ribosome and contribute to favorable entropy of the reaction by stabilizing tRNA binding in the peptidyl transferase center of the ribosome. In most organisms, EF-P and eIF5A carry a posttranslational modification that is crucial for catalysis. The chemical nature of the modification varies between different groups of bacteria and between pro- and eukaryotes, making the EF-P-modification enzymes promising targets for antibiotic development. In this review, we summarize our knowledge of the structure and function of EF-P and eIF5A, describe their modification enzymes, and present an approach for potential drug screening aimed at EarP, an enzyme that is essential for EF-P modification in several pathogenic bacteria.
Collapse
|
14
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Brigo N, Pfeifhofer-Obermair C, Demetz E, Tymoszuk P, Weiss G. Flow Cytometric Characterization of Macrophages Infected in vitro with Salmonella enterica Serovar Typhimurium Expressing Red Fluorescent Protein. Bio Protoc 2022; 12:e4440. [PMID: 35799903 PMCID: PMC9243511 DOI: 10.21769/bioprotoc.4440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
Macrophages are important for host defense against intracellular pathogens like Salmonella and can be differentiated into two major subtypes. M1 macrophages, which are pro-inflammatory and induce antimicrobial immune effector mechanisms, including the expression of inducible nitric oxide synthase (iNOS), and M2 macrophages, which exert anti-inflammatory functions and express arginase 1 (ARG1). Through the process of phagocytosis, macrophages contain, engulf, and eliminate bacteria. Therefore, they are one of the first lines of defense against Salmonella. Infection with Salmonella leads to gastrointestinal disorders and systemic infection, termed typhoid fever. For further characterization of infection pathways, we established an in vitro model where macrophages are infected with the mouse Salmonella typhi correlate Salmonella enterica serovar Typhimurium ( S. tm), which additionally expresses red fluorescent protein (RFP). This allows us to clearly characterize macrophages that phagocytosed the bacteria, using multi-color flow cytometry. In this protocol, we focus on the in vitro characterization of pro- and anti-inflammatory macrophages displaying red fluorescent protein-expressing Salmonella enterica serovar Typhimurium, by multi-color flow cytometry.
Collapse
Affiliation(s)
- Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Pfeifhofer-Obermair C, Brigo N, Tymoszuk P, Weiss AG. A Mouse Infection Model with a Wildtype Salmonella enterica Serovar Typhimurium Strain for the Analysis of Inflammatory Innate Immune Cells. Bio Protoc 2022; 12:e4378. [PMID: 35530516 PMCID: PMC9018427 DOI: 10.21769/bioprotoc.4378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/24/2021] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative, facultative intracellular bacterium, which causes gastrointestinal disorders in humans, and systemic, typhoid fever-like infections in mice. Our current knowledge regarding the involvement of cellular and humoral immunity in the defense from S. Typhimurium infections is largely based on animal models with attenuated strains. Cells of the innate immune system act as one of the first barriers in the defense from bacteria. We established a robust experimental model for the characterization of these cell types and their response during host-pathogen interactions. Therefore, this protocol focuses on the characterization of macrophages, monocytes, and neutrophils in the spleens of infected animals by employing multi-color flow cytometry.
Collapse
Affiliation(s)
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - And Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria. THE ISME JOURNAL 2022; 16:1065-1073. [PMID: 34824398 DOI: 10.1038/s41396-021-01154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.
Collapse
|
18
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
19
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
20
|
McDonnell CM, Ghanim M, Mike Southern J, Kelly VP, Connon SJ. De-novo designed β-lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of Elongation Factor P. Bioorg Med Chem Lett 2022; 59:128545. [PMID: 35032607 DOI: 10.1016/j.bmcl.2022.128545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
An investigation into the effect of modified β -lysines on the growth rates of eubacterial cells is reported. It is shown that the effects observed are due to the post translational modification of Elongation Factor P (EFP) with these compounds catalysed by PoxA. PoxA was found to be remarkably promiscuous, which allowed the activity of a wide range of exogenous β -lysines to be examined. Two chain-elongated β -lysine derivatives which differ in aminoalkyl chain length by only 2 carbon units exhibited opposing biological activities - one promoting growth and the other retarding it. Both compounds were shown to operate through modification of EFP.
Collapse
Affiliation(s)
- Ciara M McDonnell
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - J Mike Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
21
|
Torres M, Jiquel A, Jeanne E, Naquin D, Dessaux Y, Faure D. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots. THE NEW PHYTOLOGIST 2022; 233:905-918. [PMID: 34655498 DOI: 10.1111/nph.17810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens colonizes the galls (plant tumors) it causes, and the roots of host and nonhost plants. Transposon-sequencing (Tn-Seq) was used to discover A.tumefaciens genes involved in reproductive success (fitness genes) on Solanum lycopersicum and Populus trichocarpa tumors and S.lycopersicum and Zea mays roots. The identified fitness genes represent 3-8% of A. tumefaciens genes and contribute to carbon and nitrogen metabolism, synthesis and repair of DNA, RNA and proteins and envelope-associated functions. Competition assays between 12 knockout mutants and wild-type confirmed the involvement of 10 genes (trpB, hisH, metH, cobN, ntrB, trxA, nrdJ, kamA, exoQ, wbbL) in A.tumefaciens fitness under both tumor and root conditions. The remaining two genes (fecA, noxA) were important in tumors only. None of these mutants was nonpathogenic, but four (hisH, trpB, exoQ, ntrB) exhibited impaired virulence. Finally, we used this knowledge to search for chemical and biocontrol treatments that target some of the identified fitness pathways and report reduced tumorigenesis and impaired establishment of A.tumefaciens on tomato roots using tannic acid or Pseudomonas protegens, which affect iron assimilation. This work revealed A.tumefaciens pathways that contribute to its competitive survival in plants and highlights a strategy to identify plant protection approaches against this pathogen.
Collapse
Affiliation(s)
- Marta Torres
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Audren Jiquel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Etienne Jeanne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Yves Dessaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| |
Collapse
|
22
|
Brigo N, Pfeifhofer-Obermair C, Tymoszuk P, Demetz E, Engl S, Barros-Pinkelnig M, Dichtl S, Fischer C, Valente De Souza L, Petzer V, von Raffay L, Hilbe R, Berger S, Seifert M, Schleicher U, Bogdan C, Weiss G. Cytokine-Mediated Regulation of ARG1 in Macrophages and Its Impact on the Control of Salmonella enterica Serovar Typhimurium Infection. Cells 2021; 10:1823. [PMID: 34359992 PMCID: PMC8307077 DOI: 10.3390/cells10071823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Arginase 1 (ARG1) is a cytosolic enzyme that cleaves L-arginine, the substrate of inducible nitric oxide synthase (iNOS), and thereby impairs the control of various intracellular pathogens. Herein, we investigated the role of ARG1 during infection with Salmonella enterica serovar Typhimurium (S.tm). To study the impact of ARG1 on Salmonella infections in vitro, bone marrow-derived macrophages (BMDM) from C57BL/6N wild-type, ARG1-deficient Tie2Cre+/-ARG1fl/fl and NRAMPG169 C57BL/6N mice were infected with S.tm. In wild-type BMDM, ARG1 was induced by S.tm and further upregulated by the addition of interleukin (IL)-4, whereas interferon-γ had an inhibitory effect. Deletion of ARG1 did not result in a reduction in bacterial numbers. In vivo, Arg1 mRNA was upregulated in the spleen, but not in the liver of C57BL/6N mice following intraperitoneal S.tm infection. The genetic deletion of ARG1 (Tie2Cre+/-ARG1fl/fl) or its pharmacological inhibition with CB-1158 neither affected the numbers of S.tm in spleen, liver and blood nor the expression of host response genes such as iNOS, IL-6 or tumour necrosis factor (TNF). Furthermore, ARG1 was dispensable for pathogen control irrespective of the presence or absence of the phagolysosomal natural resistance-associated macrophage protein 1 (NRAMP1). Thus, unlike the detrimental function of ARG1 seen during infections with other intraphagosomal microorganisms, ARG1 did not support bacterial survival in systemic salmonellosis, indicating differential roles of arginine metabolism for host immune response and microbe persistence depending on the type of pathogen.
Collapse
Affiliation(s)
- Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Sabine Engl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Marina Barros-Pinkelnig
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Stefanie Dichtl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Lara Valente De Souza
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Laura von Raffay
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Sylvia Berger
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ulrike Schleicher
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany; (U.S.); (C.B.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany; (U.S.); (C.B.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
23
|
Koller F, Lassak J. Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-D-glucose epimerization in Pseudomonas putida KT2440. Sci Rep 2021; 11:11991. [PMID: 34099824 PMCID: PMC8184846 DOI: 10.1038/s41598-021-91421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
l-Rhamnose is an important monosaccharide both as nutrient source and as building block in prokaryotic glycoproteins and glycolipids. Generation of those composite molecules requires activated precursors being provided e. g. in form of nucleotide sugars such as dTDP-β-l-rhamnose (dTDP-l-Rha). dTDP-l-Rha is synthesized in a conserved 4-step reaction which is canonically catalyzed by the enzymes RmlABCD. An intact pathway is especially important for the fitness of pseudomonads, as dTDP-l-Rha is essential for the activation of the polyproline specific translation elongation factor EF-P in these bacteria. Within the scope of this study, we investigated the dTDP-l-Rha-biosynthesis route of Pseudomonas putida KT2440 with a focus on the last two steps. Bioinformatic analysis in combination with a screening approach revealed that epimerization of dTDP-4-keto-6-deoxy-d-glucose to dTDP-4-keto-6-deoxy-l-mannose is catalyzed by the two paralogous proteins PP_1782 (RmlC1) and PP_0265 (RmlC2), whereas the reduction to the final product is solely mediated by PP_1784 (RmlD). Thus, we also exclude the distinct RmlD homolog PP_0500 and the genetically linked nucleoside diphosphate-sugar epimerase PP_0501 to be involved in dTDP-l-Rha formation, other than suggested by certain databases. Together our analysis contributes to the molecular understanding how this important nucleotide-sugar is synthesized in pseudomonads.
Collapse
Affiliation(s)
- Franziska Koller
- Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg/Martinsried, Germany
| | - Jürgen Lassak
- Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg/Martinsried, Germany.
| |
Collapse
|
24
|
Abstract
Bacteria have evolved to sense and respond to their environment by altering gene expression and metabolism to promote growth and survival. In this work we demonstrate that Salmonella displays an extensive (>30 hour) lag in growth when subcultured into media where dicarboxylates such as succinate are the sole carbon source. This growth lag is regulated in part by RpoS, the RssB anti-adaptor IraP, translation elongation factor P, and to a lesser degree the stringent response. We also show that small amounts of proline or citrate can trigger early growth in succinate media and that, at least for proline, this effect requires the multifunctional enzyme/regulator PutA. We demonstrate that activation of RpoS results in the repression of dctA, encoding the primary dicarboxylate importer, and that constitutive expression of dctA induced growth. This dicarboxylate growth lag phenotype is far more severe across multiple Salmonella isolates than in its close relative E. coli Replacing 200 nt of the Salmonella dctA promoter region with that of E. coli was sufficient to eliminate the observed lag in growth. We hypothesized that this cis-regulatory divergence might be an adaptation to Salmonella's virulent lifestyle where levels of phagocyte-produced succinate increase in response to bacterial LPS, however we found that impairing dctA repression had no effect on Salmonella's survival in acidified succinate or in macrophages.Importance Bacteria have evolved to sense and respond to their environment to maximize their chance of survival. By studying differences in the responses of pathogenic bacteria and closely related non-pathogens, we can gain insight into what environments they encounter inside of an infected host. Here we demonstrate that Salmonella diverges from its close relative E. coli in its response to dicarboxylates such as the metabolite succinate. We show that this is regulated by stress response proteins and ultimately can be attributed to Salmonella repressing its import of dicarboxylates. Understanding this phenomenon may reveal a novel aspect of the Salmonella virulence cycle, and our characterization of its regulation yields a number of mutant strains that can be used to further study it.
Collapse
|
25
|
Zarechenskaia AS, Sergiev PV, Osterman IA. Quality Control Mechanisms in Bacterial Translation. Acta Naturae 2021; 13:32-44. [PMID: 34377554 PMCID: PMC8327144 DOI: 10.32607/actanaturae.11401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome stalling during translation significantly reduces cell viability, because cells have to spend resources on the synthesis of new ribosomes. Therefore, all bacteria have developed various mechanisms of ribosome rescue. Usually, the release of ribosomes is preceded by hydrolysis of the tRNA-peptide bond, but, in some cases, the ribosome can continue translation thanks to the activity of certain factors. This review describes the mechanisms of ribosome rescue thanks to trans-translation and the activity of the ArfA, ArfB, BrfA, ArfT, HflX, and RqcP/H factors, as well as continuation of translation via the action of EF-P, EF-4, and EttA. Despite the ability of some systems to duplicate each other, most of them have their unique functional role, related to the quality control of bacterial translation in certain abnormalities caused by mutations, stress cultivation conditions, or antibiotics.
Collapse
Affiliation(s)
- A. S. Zarechenskaia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Moscow, 119992 Russia
| | - P. V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119992 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
| | - I. A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| |
Collapse
|
26
|
Pinheiro B, Scheidler CM, Kielkowski P, Schmid M, Forné I, Ye S, Reiling N, Takano E, Imhof A, Sieber SA, Schneider S, Jung K. Structure and Function of an Elongation Factor P Subfamily in Actinobacteria. Cell Rep 2021; 30:4332-4342.e5. [PMID: 32234471 DOI: 10.1016/j.celrep.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Translation of consecutive proline motifs causes ribosome stalling and requires rescue via the action of a specific translation elongation factor, EF-P in bacteria and archaeal/eukaryotic a/eIF5A. In Eukarya, Archaea, and all bacteria investigated so far, the functionality of this translation elongation factor depends on specific and rather unusual post-translational modifications. The phylum Actinobacteria, which includes the genera Corynebacterium, Mycobacterium, and Streptomyces, is of both medical and economic significance. Here, we report that EF-P is required in these bacteria in particular for the translation of proteins involved in amino acid and secondary metabolite production. Notably, EF-P of Actinobacteria species does not need any post-translational modification for activation. While the function and overall 3D structure of this EF-P type is conserved, the loop containing the conserved lysine is flanked by two essential prolines that rigidify it. Actinobacteria's EF-P represents a unique subfamily that works without any modification.
Collapse
Affiliation(s)
- Bruno Pinheiro
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Pavel Kielkowski
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Marina Schmid
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Suhui Ye
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Axel Imhof
- Biomedical Center Munich, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| |
Collapse
|
27
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
28
|
Park S, Jung B, Kim E, Hong ST, Yoon H, Hahn TW. Salmonella Typhimurium Lacking YjeK as a Candidate Live Attenuated Vaccine Against Invasive Salmonella Infection. Front Immunol 2020; 11:1277. [PMID: 32655567 PMCID: PMC7324483 DOI: 10.3389/fimmu.2020.01277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) causes gastrointestinal infection, which is commonly self-limiting in healthy humans but may lead to invasive infection at extraintestinal sites, leading to bacteremia and focal systemic infections in the immunocompromised. However, a prophylactic vaccine against invasive NTS has not yet been developed. In this work, we explored the potential of a ΔyjeK mutant strain as a live attenuated vaccine against invasive NTS infection. YjeK in combination with YjeA is required for the post-translational modification of elongation factor P (EF-P), which is critical for bacterial protein synthesis. Therefore, malfunction of YjeK and YjeA-mediated EF-P activation might extensively influence protein expression during Salmonella infection. Salmonella lacking YjeK showed substantial alterations in bacterial motility, antibiotics resistance, and virulence. Interestingly, deletion of the yjeK gene increased the expression levels of Salmonella pathogenicity island (SPI)-1 genes but decreased the transcription levels of SPI-2 genes, thereby influencing bacterial invasion and survival abilities in contact with host cells. In a mouse model, the ΔyjeK mutant strain alleviated the levels of splenomegaly and bacterial burdens in the spleen and liver in comparison with the wild-type strain. However, mice immunized with the ΔyjeK mutant displayed increased Th1- and Th2-mediated immune responses at 28 days post-infection, promoting cytokines and antibodies production. Notably, the Th2-associated antibody response was highly induced by administration of the ΔyjeK mutant strain. Consequently, vaccination with the ΔyjeK mutant strain protected 100% of the mice against challenge with lethal invasive Salmonella and significantly relieved bacterial burdens in the organs. Collectively, these results suggest that the ΔyjeK mutant strain can be exploited as a promising live attenuated NTS vaccine.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
29
|
Golubev A, Negroni L, Krasnovid F, Validov S, Yusupova G, Yusupov M, Usachev K. Posttranslational modification of Elongation Factor P from Staphylococcus aureus. FEBS Open Bio 2020; 10:1342-1347. [PMID: 32436337 PMCID: PMC7327921 DOI: 10.1002/2211-5463.12901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 11/07/2022] Open
Abstract
Antibiotic‐resistant Staphylococcus aureus is becoming a major burden on health care systems in many countries, necessitating the identification of new targets for antibiotic development. Elongation Factor P (EF‐P) is a highly conserved elongation protein factor that plays an important role in protein synthesis and bacteria virulence. EF‐P undergoes unique posttranslational modifications in a stepwise manner to function correctly, but experimental information on EF‐P posttranslational modifications is currently lacking for S. aureus. Here, we expressed EF‐P in S. aureus to analyze its posttranslational modifications by mass spectrometry and report experimental proof of 5‐aminopentanol modification of S. aureus EF‐P.
Collapse
Affiliation(s)
- Alexander Golubev
- Laboratory of Structural BiologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
- Département de Biologie et de Génomique StructuralesInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRS UMR7104INSERM U964Université de StrasbourgIllkirchFrance
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS UMR7104INSERM U964Université de StrasbourgIllkirchFrance
| | - Filipp Krasnovid
- Laboratory of Structural BiologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
| | - Shamil Validov
- Laboratory of Structural BiologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
| | - Gulnara Yusupova
- Département de Biologie et de Génomique StructuralesInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRS UMR7104INSERM U964Université de StrasbourgIllkirchFrance
| | - Marat Yusupov
- Laboratory of Structural BiologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
- Département de Biologie et de Génomique StructuralesInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRS UMR7104INSERM U964Université de StrasbourgIllkirchFrance
| | - Konstantin Usachev
- Laboratory of Structural BiologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
| |
Collapse
|
30
|
Abe T, Nagai R, Shimazaki S, Kondo S, Nishimura S, Sakaguchi Y, Suzuki T, Imataka H, Tomita K, Takeuchi-Tomita N. In vitro yeast reconstituted translation system reveals function of eIF5A for synthesis of long polypeptide. J Biochem 2020; 167:451-462. [PMID: 32053170 DOI: 10.1093/jb/mvaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes. We demonstrate that unmodified eIF5A essentially resolves such ribosome stalling; however, the hypusine modification drastically stimulates ability of eIF5A to rescue polyproline-mediated ribosome stalling and is particularly important for the efficient translation of the N-terminal or long internal polyproline motifs.
Collapse
Affiliation(s)
- Taisho Abe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Riku Nagai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shunta Shimazaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shunta Kondo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Satoshi Nishimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Imataka
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
31
|
Pfab M, Kielkowski P, Krafczyk R, Volkwein W, Sieber SA, Lassak J, Jung K. Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J 2020; 288:663-677. [PMID: 32337775 DOI: 10.1111/febs.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-β-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-β-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.
Collapse
Affiliation(s)
- Miriam Pfab
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Pavel Kielkowski
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Ralph Krafczyk
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Volkwein
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Stephan A Sieber
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
32
|
Golubev A, Fatkhullin B, Gabdulkhakov A, Bikmullin A, Nurullina L, Garaeva N, Islamov D, Klochkova E, Klochkov V, Aganov A, Khusainov I, Validov S, Yusupova G, Yusupov M, Usachev K. NMR and crystallographic structural studies of the Elongation factor P from Staphylococcus aureus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:223-230. [PMID: 32152681 DOI: 10.1007/s00249-020-01428-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/24/2023]
Abstract
Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.
Collapse
Affiliation(s)
- Alexander Golubev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation.,Département de Biologie Et de Génomique Structurales, Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Bulat Fatkhullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation.,Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290, Puschino, Moscow Region, Russian Federation
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290, Puschino, Moscow Region, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Liliya Nurullina
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Natalia Garaeva
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Daut Islamov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Evelina Klochkova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Iskander Khusainov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation.,Département de Biologie Et de Génomique Structurales, Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France.,Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Shamil Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation
| | - Gulnara Yusupova
- Département de Biologie Et de Génomique Structurales, Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Marat Yusupov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation.,Département de Biologie Et de Génomique Structurales, Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Konstantin Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation. .,NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlyovskaya, Kazan, 420008, Russian Federation.
| |
Collapse
|
33
|
Golubev AA, Validov SZ, Usachev KS, Yusupov MM. Elongation Factor P: New Mechanisms of Function and an Evolutionary Diversity of Translation Regulation. Mol Biol 2019. [DOI: 10.1134/s0026893319040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
35
|
Complex Structure of Pseudomonas aeruginosa Arginine Rhamnosyltransferase EarP with Its Acceptor Elongation Factor P. J Bacteriol 2019; 201:JB.00128-19. [PMID: 31010899 DOI: 10.1128/jb.00128-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
A bacterial inverting glycosyltransferase EarP transfers rhamnose from dTDP-β-l-rhamnose (TDP-Rha) to Arg32 of translation elongation factor P (EF-P) to activate its function. We report here the structural and biochemical characterization of Pseudomonas aeruginosa EarP. In contrast to recently reported Neisseria meningitidis EarP, P. aeruginosa EarP exhibits differential conformational changes upon TDP-Rha and EF-P binding. Sugar donor binding enhances acceptor binding to EarP, as revealed by structural comparison between the apo-, TDP-Rha-, and TDP/EF-P-bound forms and isothermal titration calorimetry experiments. In vitro EF-P rhamnosylation combined with active-site geometry indicates that Asp16 corresponding to Asp20 of N. meningitidis EarP is the catalytic base, whereas Glu272 is another putative catalytic residue. Our study should provide the basis for EarP-targeted inhibitor design against infections from P. aeruginosa and other clinically relevant species.IMPORTANCE Posttranslational rhamnosylation of EF-P plays a key role in Pseudomonas aeruginosa, establishing virulence and antibiotic resistance, as well as survival. The detailed structural and biochemical characterization of the EF-P-specific rhamnosyltransferase EarP from P. aeruginosa not only demonstrates that sugar donor TDP-Rha binding enhances acceptor EF-P binding to EarP but also should provide valuable information for the structure-guided development of its inhibitors against infections from P. aeruginosa and other EarP-containing pathogens.
Collapse
|
36
|
Klee SM, Sinn JP, Holmes AC, Lehman BL, Krawczyk T, Peter KA, McNellis TW. Extragenic Suppression of Elongation Factor P Gene Mutant Phenotypes in Erwinia amylovora. J Bacteriol 2019; 201:e00722-18. [PMID: 30885930 PMCID: PMC6509650 DOI: 10.1128/jb.00722-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor P (EF-P) facilitates the translation of certain peptide motifs, including those with multiple proline residues. EF-P must be posttranslationally modified for full functionality; in enterobacteria, this is accomplished by two enzymes, namely, EpmA and EpmB, which catalyze the β-lysylation of EF-P at a conserved lysine position. Mutations to efp or its modifying enzymes produce pleiotropic phenotypes, including decreases in virulence, swimming motility, and extracellular polysaccharide production, as well as proteomic perturbations. Here, we generated targeted deletion mutants of the efp, epmA, and epmB genes in the Gram-negative bacterium Erwinia amylovora, which causes fire blight, an economically important disease of apples and pears. As expected, the Δefp, ΔepmA, and ΔepmB mutants were all defective in virulence on apples, and all three mutants were complemented in trans with plasmids bearing wild-type copies of the corresponding genes. By analyzing spontaneous suppressor mutants, we found that mutations in the hrpA3 gene partially or completely suppressed the colony size, extracellular polysaccharide production, and virulence phenotypes in apple fruits and apple tree shoots but not the swimming motility phenotypes of the Δefp, ΔepmA, and ΔepmB mutants. The deletion of hrpA3 alone did not produce any alterations in any characteristics measured, indicating that the HrpA3 protein is not essential for any of the processes examined. The hrpA3 gene encodes a putative DEAH-box ATP-dependent RNA helicase. These results suggest that the loss of the HrpA3 protein at least partially compensates for the lack of the EF-P protein or β-lysylated EF-P.IMPORTANCE Fire blight disease has relatively few management options, with antibiotic application at bloom time being chief among them. As modification to elongation factor P (EF-P) is vital to virulence in several species, both EF-P and its modifying enzymes make attractive targets for novel antibiotics. However, it will be useful to understand how bacteria might overcome the hindrance of EF-P function so that we may be better prepared to anticipate bacterial adaptation to such antibiotics. The present study indicates that the mutation of hrpA3 could provide a partial offset for the loss of EF-P activity. In addition, little is known about EF-P functional interactions or the HrpA3 predicted RNA helicase, and our genetic approach allowed us to discern a novel gene associated with EF-P function.
Collapse
Affiliation(s)
- Sara M Klee
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Judith P Sinn
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aleah C Holmes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian L Lehman
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Teresa Krawczyk
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Kari A Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Timothy W McNellis
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
37
|
Levin TC, Goldspiel BP, Malik HS. Density-dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. eLife 2019; 8:46086. [PMID: 31134893 PMCID: PMC6598767 DOI: 10.7554/elife.46086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
To persist in microbial communities, the bacterial pathogen Legionella pneumophila must withstand competition from neighboring bacteria. Here, we find that L. pneumophila can antagonize the growth of other Legionella species using a secreted inhibitor: HGA (homogentisic acid). Unexpectedly, L. pneumophila can itself be inhibited by HGA secreted from neighboring, isogenic strains. Our genetic approaches further identify lpg1681 as a gene that modulates L. pneumophila susceptibility to HGA. We find that L. pneumophila sensitivity to HGA is density-dependent and cell intrinsic. Resistance is not mediated by the stringent response nor the previously described Legionella quorum-sensing pathway. Instead, L. pneumophila cells secrete HGA only when they are conditionally HGA-resistant, which allows these bacteria to produce a potentially self-toxic molecule while restricting the opportunity for self-harm. We propose that established Legionella communities may deploy molecules such as HGA as an unusual public good that can protect against invasion by low-density competitors. In the environment, bacteria frequently compete with each other for resources and space. These battles often involve the bacteria releasing toxins, antibiotics or other molecules that make it more difficult for their neighbors to grow. The bacteria also carry specific resistance genes that protect them from the effects of the molecules that they produce. Legionella pneumophila is a species of bacteria that infects people and causes a severe form of pneumonia known as Legionnaires’ disease. The bacteria spread in droplets of water from contaminated water systems such as sink faucets, cooling towers, water tanks, and other plumbing systems. In these water systems, L. pneumophila cells live within communities known as biofilms, which contain many different species of bacteria. These communities often include other species of Legionella that compete with L. pneumophila for similar nutrients. However, L. pneumophila was not known to produce any toxins or antibiotics, so it was not clear how it is able to survive in biofilms. Levin et al. used genetic approaches to investigate how L. pneumophila competes with other species of Legionella. The experiments found that this bacterium released a molecule called homogentisic acid (HGA) that reduced the growth of neighboring Legionella bacteria. Unexpectedly, L. pneumophila was not always resistant to HGA, despite secreting large quantities of this molecule. Instead, L. pneumophila cells were only resistant to HGA when the bacteria were living in crowded conditions. Previous studies have shown that HGA is widely produced by bacteria and other organisms – including humans – but this is the first time it has been shown that this molecule limits the ability of bacteria to grow. The work of Levin et al. suggests that HGA may help L. pneumophila bacteria to persist in biofilms, but more work needs to be done to test this idea. A possible next step is to test whether drugs that inhibit the production of HGA can eliminate Legionella bacteria from water systems. If so, similar treatments could potentially be used to stop and prevent outbreaks of Legionnaires’ disease in the future.
Collapse
Affiliation(s)
- Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Brian P Goldspiel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
38
|
Volkwein W, Krafczyk R, Jagtap PKA, Parr M, Mankina E, Macošek J, Guo Z, Fürst MJLJ, Pfab M, Frishman D, Hennig J, Jung K, Lassak J. Switching the Post-translational Modification of Translation Elongation Factor EF-P. Front Microbiol 2019; 10:1148. [PMID: 31178848 PMCID: PMC6544042 DOI: 10.3389/fmicb.2019.01148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.
Collapse
Affiliation(s)
- Wolfram Volkwein
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Elena Mankina
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jakub Macošek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Zhenghuan Guo
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Josef Ludwig Johannes Fürst
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
| | - Miriam Pfab
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jürgen Lassak
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
39
|
Poidevin L, Unal D, Belda-Palazón B, Ferrando A. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. PLANTS 2019; 8:plants8040109. [PMID: 31022874 PMCID: PMC6524035 DOI: 10.3390/plants8040109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey.
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
40
|
Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS, Zhang L, Goulian M, Foster LJ, Huang KC, Hou YM. tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Cell Syst 2019; 8:302-314.e8. [PMID: 30981730 PMCID: PMC6483872 DOI: 10.1016/j.cels.2019.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/19/2018] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Gram-negative bacteria are intrinsically resistant to drugs because of their double-membrane envelope structure that acts as a permeability barrier and as an anchor for efflux pumps. Antibiotics are blocked and expelled from cells and cannot reach high-enough intracellular concentrations to exert a therapeutic effect. Efforts to target one membrane protein at a time have been ineffective. Here, we show that m1G37-tRNA methylation determines the synthesis of a multitude of membrane proteins via its control of translation at proline codons near the start of open reading frames. Decreases in m1G37 levels in Escherichia coli and Salmonella impair membrane structure and sensitize these bacteria to multiple classes of antibiotics, rendering them incapable of developing resistance or persistence. Codon engineering of membrane-associated genes reduces their translational dependence on m1G37 and confers resistance. These findings highlight the potential of tRNA methylation in codon-specific translation to control the development of multi-drug resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Srujana S Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Lisheng Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
41
|
Nguyen HA, Hoffer ED, Dunham CM. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding. J Biol Chem 2019; 294:5281-5291. [PMID: 30782843 PMCID: PMC6462517 DOI: 10.1074/jbc.ra119.007410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Indexed: 01/15/2023] Open
Abstract
Modification of anticodon nucleotides allows tRNAs to decode multiple codons, expanding the genetic code. Additionally, modifications located in the anticodon loop, outside the anticodon itself, stabilize tRNA–codon interactions, increasing decoding fidelity. Anticodon loop nucleotide 37 is 3′ to the anticodon and, in tRNA CGG Pro , is methylated at the N1 position in its nucleobase (m1G37). The m1G37 modification in tRNA CGG Pro stabilizes its interaction with the codon and maintains the mRNA frame. However, it is unclear how m1G37 affects binding at the decoding center to both cognate and +1 slippery codons. Here, we show that the tRNA CGG Pro m1G37 modification is important for the association step during binding to a cognate CCG codon. In contrast, m1G37 prevented association with a slippery CCC-U or +1 codon. Similar analyses of frameshift suppressor tRNASufA6, a tRNA CGG Pro derivative containing an extra nucleotide in its anticodon loop that undergoes +1 frameshifting, reveal that m1G37 destabilizes interactions with both the cognate CCG and slippery codons. One reason for this destabilization is the disruption of a conserved U32·A38 nucleotide pairing in the anticodon stem through insertion of G37.5. Restoring the tRNASufA6 U32·A37.5 pairing results in a high-affinity association on the slippery CCC-U codon. Further, an X-ray crystal structure of the 70S ribosome bound to tRNASufA6 U32·A37.5 at 3.6 Å resolution shows a reordering of the anticodon loop consistent with the findings from the high-affinity measurements. Our results reveal how the tRNA modification at nucleotide 37 stabilizes interactions with the mRNA codon to preserve the mRNA frame.
Collapse
Affiliation(s)
- Ha An Nguyen
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
- the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Eric D Hoffer
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Christine M Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
- the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
42
|
Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth In Vitro and for Fitness during Competitive Infection of Fischer 344 Rats. J Bacteriol 2019; 201:JB.00630-18. [PMID: 30642993 PMCID: PMC6416918 DOI: 10.1128/jb.00630-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023] Open
Abstract
The highly virulent intracellular pathogen Francisella tularensis is a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis of Francisella virulence in the Fischer 344 rat, we have constructed an F. tularensis Schu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growth in vitro Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. This in vivo selection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-type F. tularensis Schu S4 strain.IMPORTANCE The intracellular bacterial pathogen Francisella tularensis causes a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches. F. tularensis is one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important for F. tularensis under in vitro and in vivo conditions, providing candidates that can be evaluated for vaccine or antibacterial development.
Collapse
|
43
|
Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc Natl Acad Sci U S A 2018; 115:11072-11077. [PMID: 30297417 DOI: 10.1073/pnas.1812025115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.
Collapse
|
44
|
Usachev KS, Golubev AA, Validov SZ, Klochkov VV, Aganov AV, Khusainov IS, Yusupov MM. Backbone and side chain NMR assignments for the ribosome Elongation Factor P (EF-P) from Staphylococcus aureus. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:351-355. [PMID: 30099718 DOI: 10.1007/s12104-018-9838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Elongation Factor P (EF-P) is a 20.5 kDa protein that provides specialized translation of special stalling amino acid motifs. Proteins with stalling motifs are often involved in various processes, including stress resistance and virulence. Thus it has been shown that the virulent properties of microorganisms can be significantly reduced if the work of EF-P is disrupted. In order to elucidate the structure, dynamics and function of EF-P from Staphylococcus aureus (S. aureus), here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of EF-P. Analysis of the backbone chemical shifts by TALOS+ suggests that EF-P contains 1 α-helix and 13 β-strands (β1-β2-β3-β4-β5-β6-β7-α1-β8-β9-β10-β11-β12-β13). The solution of the structure of this protein by NMR and X-ray diffraction analysis, as well as the structure of the ribosome complex by cryo-electron microscopy, will allow further screening of highly selective inhibitors of the translation of the pathogenic bacterium S. aureus. Here we report the almost complete 1H, 13C, 15N backbone and side chain NMR assignment of a 20.5 kDa EF-P.
Collapse
Affiliation(s)
- Konstantin S Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia.
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia.
| | - Alexander A Golubev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Shamil Z Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Albert V Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Iskander Sh Khusainov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Marat M Yusupov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| |
Collapse
|
45
|
Park MH, Wolff EC. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J Biol Chem 2018; 293:18710-18718. [PMID: 30257869 DOI: 10.1074/jbc.tm118.003341] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The natural amino acid hypusine (N ϵ-4-amino-2-hydroxybutyl(lysine)) is derived from the polyamine spermidine, and occurs only in a single family of cellular proteins, eukaryotic translation factor 5A (eIF5A) isoforms. Hypusine is formed by conjugation of the aminobutyl moiety of spermidine to a specific lysine residue of this protein. The posttranslational synthesis of hypusine involves two enzymatic steps, catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusine is essential for eIF5A activity. Inactivation of either the eIF5A or the DHPS gene is lethal in yeast and mouse, underscoring the vital role of eIF5A hypusination in eukaryotic cell growth and animal development. The long and basic side chain of the hypusine residue promotes eIF5A-mediated translation elongation by facilitating peptide bond formation at polyproline stretches and at many other ribosome-pausing sites. It also enhances translation termination by stimulating peptide release. By promoting translation, the hypusine modification of eIF5A provides a key link between polyamines and cell growth regulation. eIF5A has been implicated in several human pathological conditions. Recent genetic data suggest that eIF5A haploinsufficiency or impaired deoxyhypusine synthase activity is associated with neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Myung Hee Park
- From the NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Edith C Wolff
- From the NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Klee SM, Mostafa I, Chen S, Dufresne C, Lehman BL, Sinn JP, Peter KA, McNellis TW. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations. MOLECULAR PLANT PATHOLOGY 2018; 19:1667-1678. [PMID: 29232043 PMCID: PMC6638024 DOI: 10.1111/mpp.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 05/02/2023]
Abstract
The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria.
Collapse
Affiliation(s)
- Sara M. Klee
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- Graduate Program in Plant PathologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Islam Mostafa
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Department of Pharmacognosy, Faculty of PharmacyZagazig UniversityZagazig 44519Egypt
| | - Sixue Chen
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFL 32611USA
- Interdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleFL 32611USA
| | | | - brian L. Lehman
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Judith P. Sinn
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Kari A. Peter
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Timothy W. McNellis
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| |
Collapse
|
47
|
Arunima A, Yelamanchi SD, Padhi C, Jaiswal S, Ryan D, Gupta B, Sathe G, Advani J, Gowda H, Prasad TSK, Suar M. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:571-583. [PMID: 29049011 DOI: 10.1089/omi.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Collapse
Affiliation(s)
| | - Soujanya D Yelamanchi
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | - Daniel Ryan
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Bhawna Gupta
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gajanan Sathe
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Mrutyunjay Suar
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| |
Collapse
|
48
|
Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ, Krautwurst S, Schroeder M, Labudde D. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases. PLoS Comput Biol 2018; 14:e1006101. [PMID: 29659563 PMCID: PMC5919687 DOI: 10.1371/journal.pcbi.1006101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/26/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. Aminoacyl tRNA synthetases (aaRS) are primordial enzymes essential for interpretation and transfer of genetic information. Understanding the origin of the peculiarities observed with aaRS can explain what constituted the earliest life forms and how the genetic code was established. The increasing amount of experimentally determined three-dimensional structures of aaRS opens up new avenues for high-throughput analyses of molecular mechanisms. In this study, we present an exhaustive structural analysis of ATP binding motifs. We unveil an oppositional implementation of enzyme substrate binding in each aaRS Class. While Class I binds via interactions mediated by backbone hydrogen bonds, Class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. We show how nature realized the binding of the same ligand species with completely different mechanisms. In addition, we demonstrate that sequence or even structure analysis for conserved residues may miss important functional aspects which can only be revealed by ligand interaction studies. Additionally, the placement of those key residues in the structure supports a popular hypothesis, which states that prototypic aaRS were once coded on complementary strands of the same gene.
Collapse
Affiliation(s)
- Florian Kaiser
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
- * E-mail:
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | - Christoph Leberecht
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
49
|
Witzky A, Hummels KR, Tollerson R, Rajkovic A, Jones LA, Kearns DB, Ibba M. EF-P Posttranslational Modification Has Variable Impact on Polyproline Translation in Bacillus subtilis. mBio 2018; 9:e00306-18. [PMID: 29615499 PMCID: PMC5885033 DOI: 10.1128/mbio.00306-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Elongation factor P (EF-P) is a ubiquitous translation factor that facilitates translation of polyproline motifs. In order to perform this function, EF-P generally requires posttranslational modification (PTM) on a conserved residue. Although the position of the modification is highly conserved, the structure can vary widely between organisms. In Bacillus subtilis, EF-P is modified at Lys32 with a 5-aminopentanol moiety. Here, we use a forward genetic screen to identify genes involved in 5-aminopentanolylation. Tandem mass spectrometry analysis of the PTM mutant strains indicated that ynbB, gsaB, and ymfI are required for modification and that yaaO, yfkA, and ywlG influence the level of modification. Structural analyses also showed that EF-P can retain unique intermediate modifications, suggesting that 5-aminopentanol is likely directly assembled on EF-P through a novel modification pathway. Phenotypic characterization of these PTM mutants showed that each mutant does not strictly phenocopy the efp mutant, as has previously been observed in other organisms. Rather, each mutant displays phenotypic characteristics consistent with those of either the efp mutant or wild-type B. subtilis depending on the growth condition. In vivo polyproline reporter data indicate that the observed phenotypic differences result from variation in both the severity of polyproline translation defects and altered EF-P context dependence in each mutant. Together, these findings establish a new EF-P PTM pathway and also highlight a unique relationship between EF-P modification and polyproline context dependence.IMPORTANCE Despite the high level of conservation of EF-P, the posttranslational modification pathway that activates EF-P is highly divergent between species. Here, we have identified and characterized in B. subtilis a novel posttranslational modification pathway. This pathway not only broadens the scope of potential EF-P modification strategies, but it also indicates that EF-P modifications can be assembled directly on EF-P. Furthermore, characterization of these PTM mutants has established that an altered modification state can impact both the severity of polyproline translational defects and context dependence.
Collapse
Affiliation(s)
- Anne Witzky
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | | | - Rodney Tollerson
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Andrei Rajkovic
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Lisa A Jones
- Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michael Ibba
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
50
|
Sengoku T, Suzuki T, Dohmae N, Watanabe C, Honma T, Hikida Y, Yamaguchi Y, Takahashi H, Yokoyama S, Yanagisawa T. Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP. Nat Chem Biol 2018; 14:368-374. [PMID: 29440735 DOI: 10.1038/s41589-018-0002-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Protein glycosylation regulates many cellular processes. Numerous glycosyltransferases with broad substrate specificities have been structurally characterized. A novel inverting glycosyltransferase, EarP, specifically transfers rhamnose from dTDP-β-L-rhamnose to Arg32 of bacterial translation elongation factor P (EF-P) to activate its function. Here we report a crystallographic study of Neisseria meningitidis EarP. The EarP structure contains two tandem Rossmann-fold domains, which classifies EarP in glycosyltransferase superfamily B. In contrast to other structurally characterized protein glycosyltransferases, EarP binds the entire β-sheet structure of EF-P domain I through numerous interactions that specifically recognize its conserved residues. Thus Arg32 is properly located at the active site, and causes structural change in a conserved dTDP-β-L-rhamnose-binding loop of EarP. Rhamnosylation by EarP should occur via an SN2 reaction, with Asp20 as the general base. The Arg32 binding and accompanying structural change of EarP may induce a change in the rhamnose-ring conformation suitable for the reaction.
Collapse
Affiliation(s)
- Toru Sengoku
- RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Chiduru Watanabe
- Structure-Based Molecular Design Team, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Teruki Honma
- Structure-Based Molecular Design Team, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | | | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology, National Institute of Infectious Disease, Tokyo, Japan
| | | | | |
Collapse
|