1
|
Senatore E, Avolio R, Rinaldi L, Chiuso F, Oliva MA, D'Ambrosio C, Bianco AG, Dalla E, Pagnotta SM, Flammia R, Ambrosino C, Memoli D, Turacchio G, Mimoune SI, Toiron Y, Audebert S, Camoin L, Lignitto L, Scaloni A, Arcella A, Feliciello A. Praja2 controls P-body assembly and translation in glioblastoma by non-proteolytic ubiquitylation of DDX6. EMBO Rep 2025; 26:2347-2377. [PMID: 40148504 PMCID: PMC12069581 DOI: 10.1038/s44319-025-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal form of malignant brain tumor in adults. Dysregulation of protein synthesis contributes to cancer cell plasticity, driving GBM cell heterogeneity, metastatic behavior, and drug resistance. Understanding the complex network and signaling pathways governing protein translation, is therefore an important goal for GBM treatment. Here we identify a novel signaling network centered on the E3 ubiquitin ligase praja2 that controls protein translation in GBM. Praja2 forms a multimeric complex with the RNA helicase DDX6, which inhibits translation of target RNAs within processing bodies (P-bodies). Stimulation of cAMP signaling through activation of G-protein-coupled receptors induces P-body assembly through praja2-mediated non-proteolytic polyubiquitylation of DDX6. Genetic inactivation of praja2 reshapes DDX6/mRNA complexes and translating polysomes and promotes cellular senescence and GBM growth arrest. Expression of an ubiquitylation-defective DDX6 mutant suppresses the assembly of P-bodies and sustains GBM growth. Taken together, our findings identify a cAMP-driven network that controls translation in P-bodies and GBM growth.
Collapse
Affiliation(s)
- Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | - Antonio Giuseppe Bianco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Emiliano Dalla
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Raffaella Flammia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Sonia Ines Mimoune
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Yves Toiron
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Stephane Audebert
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luca Lignitto
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
2
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
3
|
Hossain S, Liu Z, Robbins N, Cowen LE. Exploring the differential localization of protein kinase A isoforms in Candida albicans. mSphere 2025; 10:e0103724. [PMID: 39998251 PMCID: PMC11934313 DOI: 10.1128/msphere.01037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
The cAMP-dependent protein kinase A (PKA) plays important roles in a wide range of biological processes in eukaryotic organisms. In the fungal pathogen Candida albicans, PKA is a critical regulator of morphological transitions, which are a key virulence trait. PKA is composed of two catalytic isoforms, Tpk1 and Tpk2, which are often thought to act together in a complex with the regulatory subunit Bcy1. Although Tpk1 and Tpk2 have some redundant functions, they also have distinct cellular functions for which the mechanistic underpinnings remain largely elusive. Here, we constructed functional GFP-tagged fusion proteins for Tpk1, Tpk2, and Bcy1 to explore the localization of PKA isoforms. We observed that the PKA holoenzyme is mainly found in the cytoplasm, as Bcy1 is always excluded from the nucleus. Under glucose-replete conditions, both Tpk1 and Tpk2 translocate into the nucleus from the cytosol. In the presence of glycerol, Tpk1 resides in the cytosol, whereas Tpk2 and Bcy1 become enriched on the vacuolar membrane. As the C-terminal domains of Tpk are highly homologous, we investigated the localization and function of hybrid Tpk proteins with exchanged N-terminal domains. We found the catalytic C-terminus of Tpk1 is required for morphogenesis in solid medium, whereas the C-terminus of Tpk2 is critical for filamentation in liquid. Interestingly, the N-terminus of Tpk2 drives its localization to the vacuolar membrane. Our work highlights environmentally contingent localization patterns for the PKA subunits and suggests that the nuclear localization of Tpk is not sufficient to induce the filamentation program in a leading fungal pathogen of humans.IMPORTANCEFungal pathogens have a devastating impact on human health worldwide. They infect billions of people and kill more than 2.5 million per year. Candida albicans is a leading human fungal pathogen responsible for causing life-threatening systemic disease in immunocompromised individuals. A key virulence trait in C. albicans is the ability to switch between yeast and filamentous forms. The conserved protein kinase A (PKA) regulates diverse functions in the cell, including growth and filamentation. Although PKA has been studied in C. albicans for decades, the subcellular localization of PKA has not been thoroughly investigated. Here, we constructed functional GFP-tagged PKA subunits to explore their localization. We identified differential localization patterns for the PKA subunits that are carbon-source dependent and report that these proteins localize into foci in response to diverse environmental stresses. These findings further our understanding of a critical regulator of growth and virulence in C. albicans.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Schnepper AP, Kubo AMS, Pinto CM, Gomes RHM, Fioretto MN, Justulin LA, Braz AMM, Golim MDA, Grotto RMT, Valente GT. Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity. Genes (Basel) 2025; 16:170. [PMID: 40004499 PMCID: PMC11854924 DOI: 10.3390/genes16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, we investigate whether the ethanol responsiveness of transcr_9136 and transcr_10027 and their role in ethanol stress are associated with protein biogenesis and membraneless organelle assembly. Methods: SEY6210 transcr_9136∆ and BY4742 transcr_10027∆ and their wild-type counterparts were subjected to their maximum ethanol-tolerant stress. The expression of the transcr_9136, transcr_10027, ILT1, RRP1, 27S, 25S, TIR3, and FAA3 genes was accessed by qPCR. The level of DCP1a, PABP, and eIF4E proteins was evaluated by Western blotting. Bioinformatics analyses allowed us to check whether transcr_9136 may regulate the expression of RRP1 and predict the interaction between transcr_10027 and Tel1p. The cell death rate of SEY6210 strains under control and ethanol stress conditions was assessed by flow cytometry. Finally, we evaluated the total protein yield of all strains analyzed. Results: The results demonstrated that transcr_9136 of SEY6210 seems to control the expression of RRP1 and 27S rRNA and reduce the general translation. Furthermore, transcr_9136 seems to act on cell membrane integrity. Transcr_10027 of BY4742 appears to inhibit processing body formation and induce a general translation level. Conclusions: This is the first report on the effect of lncRNAs on yeast protein synthesis and new mechanisms of stress-responsive lncRNAs in yeast, with potential industrial applications such as ethanol production.
Collapse
Affiliation(s)
- Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Agatha M. S. Kubo
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Camila Moreira Pinto
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ramon Hernany Martins Gomes
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Luís Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Aline M. M. Braz
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marjorie de Assis Golim
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rejane M. T. Grotto
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Guilherme Targino Valente
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
5
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
6
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
7
|
Zhu M, Li H, Zheng Y, Yang J. Targeting TOP2B as a vulnerability in aging and aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167044. [PMID: 38296114 DOI: 10.1016/j.bbadis.2024.167044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The ongoing trend of rapid aging of the global population has unavoidably resulted in an increase in aging-related diseases. There is an immense amount of interest in the scientific community for the identification of molecular targets that may effectively mitigate the process of aging and aging-related diseases. The enzyme Topoisomerase IIβ (TOP2B) plays a crucial role in resolving the topological challenges that occur during DNA-related processes. It is believed that the disruption of TOP2B function contributes to the aging of cells and tissues, as well as the development of age-related diseases. Consequently, targeting TOP2B appears to be a promising approach for interventions aimed at mitigating the effects of aging. This review focuses on recent advancements in the understanding of the role of TOP2B in the processing of aging and aging-related disorders, thus providing a novel avenue for the development of anti-aging strategies.
Collapse
Affiliation(s)
- Man Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA.
| | - Yi Zheng
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jing Yang
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Ottoz DSM, Tang LC, Dyatel AE, Jovanovic M, Berchowitz LE. Assembly and function of the amyloid-like translational repressor Rim4 is coupled with nutrient conditions. EMBO J 2023; 42:e113332. [PMID: 37921330 PMCID: PMC10690475 DOI: 10.15252/embj.2022113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Amyloid-like protein assemblies have been associated with toxic phenotypes because of their repetitive and stable structure. However, evidence that cells exploit these structures to control function and activity of some proteins in response to stimuli has questioned this paradigm. How amyloid-like assembly can confer emergent functions and how cells couple assembly with environmental conditions remains unclear. Here, we study Rim4, an RNA-binding protein that forms translation-repressing assemblies during yeast meiosis. We demonstrate that in its assembled and repressive state, Rim4 binds RNA more efficiently than in its monomeric and idle state, revealing a causal connection between assembly and function. The Rim4-binding site location within the transcript dictates whether the assemblies can repress translation, underscoring the importance of the architecture of this RNA-protein structure for function. Rim4 assembly depends exclusively on its intrinsically disordered region and is prevented by the Ras/protein kinase A signaling pathway, which promotes growth and suppresses meiotic entry in yeast. Our results suggest a mechanism whereby cells couple a functional protein assembly with a stimulus to enforce a cell fate decision.
Collapse
Affiliation(s)
- Diana SM Ottoz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Lauren C Tang
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Annie E Dyatel
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's and the Aging BrainNew YorkNYUSA
| |
Collapse
|
9
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
10
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
11
|
Minden S, Aniolek M, Noorman H, Takors R. Mimicked Mixing-Induced Heterogeneities of Industrial Bioreactors Stimulate Long-Lasting Adaption Programs in Ethanol-Producing Yeasts. Genes (Basel) 2023; 14:genes14050997. [PMID: 37239357 DOI: 10.3390/genes14050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Wolf IR, Marques LF, de Almeida LF, Lázari LC, de Moraes LN, Cardoso LH, Alves CCDO, Nakajima RT, Schnepper AP, Golim MDA, Cataldi TR, Nijland JG, Pinto CM, Fioretto MN, Almeida RO, Driessen AJM, Simōes RP, Labate MV, Grotto RMT, Labate CA, Fernandes Junior A, Justulin LA, Coan RLB, Ramos É, Furtado FB, Martins C, Valente GT. Integrative Analysis of the Ethanol Tolerance of Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24065646. [PMID: 36982719 PMCID: PMC10051466 DOI: 10.3390/ijms24065646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.
Collapse
Affiliation(s)
- Ivan Rodrigo Wolf
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Lucas Farinazzo Marques
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Lauana Fogaça de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
- Laboratory of Applied Biotechnology, Clinical Hospital of the Medical School, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Lucas Cardoso Lázari
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil
| | - Leonardo Nazário de Moraes
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Luiz Henrique Cardoso
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Camila Cristina de Oliveira Alves
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Rafael Takahiro Nakajima
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Marjorie de Assis Golim
- Laboratory of Applied Biotechnology, Clinical Hospital of the Medical School, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Thais Regiani Cataldi
- Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), Piracicaba 13418-900, Brazil
| | - Jeroen G. Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Camila Moreira Pinto
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Rodrigo Oliveira Almeida
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais–Campus Muriaé, Muriaé 36884-036, Brazil
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rafael Plana Simōes
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
| | - Mônica Veneziano Labate
- Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), Piracicaba 13418-900, Brazil
| | - Rejane Maria Tommasini Grotto
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (I.R.W.)
- Laboratory of Applied Biotechnology, Clinical Hospital of the Medical School, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), Piracicaba 13418-900, Brazil
| | - Ary Fernandes Junior
- Laboratory of Bacteriology, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Rafael Luiz Buogo Coan
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Érica Ramos
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Fabiana Barcelos Furtado
- Laboratory of Applied Biotechnology, Clinical Hospital of the Medical School, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | | |
Collapse
|
13
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
14
|
Hurst Z, Liu W, Shi Q, Herman PK. A distinct P-body-like granule is induced in response to the disruption of microtubule integrity in Saccharomyces cerevisiae. Genetics 2022; 222:6649695. [PMID: 35876801 PMCID: PMC9434292 DOI: 10.1093/genetics/iyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Processing-body (P-body) is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although P-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of P-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein (RNP) granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition and the manner in which their induction is regulated. Of particular note, several key P-body constituents are absent from these Benomyl-Induced Granules (BIGs), including the Pat1 protein that is normally required for efficient P-body assembly. However, these novel RNP structures still contain many known P-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of P-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these BIGs and to determine, in turn, whether these P-body-like granules have any role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Zachary Hurst
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Wenfang Liu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Qian Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Paul K Herman
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
15
|
Pushpalatha KV, Solyga M, Nakamura A, Besse F. RNP components condense into repressive RNP granules in the aging brain. Nat Commun 2022; 13:2782. [PMID: 35589695 PMCID: PMC9120078 DOI: 10.1038/s41467-022-30066-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic RNP condensates enriched in mRNAs and proteins are found in various cell types and associated with both buffering and regulatory functions. While a clear link has been established between accumulation of aberrant RNP aggregates and progression of aging-related neurodegenerative diseases, the impact of physiological aging on neuronal RNP condensates has never been explored. Through high-resolution imaging, we uncover that RNP components progressively cluster into large yet dynamic granules in the aging Drosophila brain. We further show that age-dependent clustering is caused by an increase in the stoichiometry of the conserved helicase Me31B/DDX6, and requires PKA kinase activity. Finally, our functional analysis reveals that mRNA species recruited to RNP condensates upon aging exhibit age-dependent translational repression, indicating that co-clustering of selected mRNAs and translation regulators into repressive condensates may contribute to the specific post-transcriptional changes in gene expression observed in the course of aging. Aberrant RNA condensates are a hallmark of age-related neurodegenerative diseases. Here, the authors show that RNA condensation increases in aging Drosophila brains, triggering translation repression.
Collapse
Affiliation(s)
| | - Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
16
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
17
|
Kocik RA, Gasch AP. Breadth and Specificity in Pleiotropic Protein Kinase A Activity and Environmental Responses. Front Cell Dev Biol 2022; 10:803392. [PMID: 35252178 PMCID: PMC8888911 DOI: 10.3389/fcell.2022.803392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Protein Kinase A (PKA) is an essential kinase that is conserved across eukaryotes and plays fundamental roles in a wide range of organismal processes, including growth control, learning and memory, cardiovascular health, and development. PKA mediates these responses through the direct phosphorylation of hundreds of proteins-however, which proteins are phosphorylated can vary widely across cell types and environmental cues, even within the same organism. A major question is how cells enact specificity and precision in PKA activity to mount the proper response, especially during environmental changes in which only a subset of PKA-controlled processes must respond. Research over the years has uncovered multiple strategies that cells use to modulate PKA activity and specificity. This review highlights recent advances in our understanding of PKA signaling control including subcellular targeting, phase separation, feedback control, and standing waves of allosteric regulation. We discuss how the complex inputs and outputs to the PKA network simultaneously pose challenges and solutions in signaling integration and insulation. PKA serves as a model for how the same regulatory factors can serve broad pleiotropic functions but maintain specificity in localized control.
Collapse
Affiliation(s)
- Rachel A Kocik
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.,Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Buddika K, Huang YT, Ariyapala IS, Butrum-Griffith A, Norrell SA, O'Connor AM, Patel VK, Rector SA, Slovan M, Sokolowski M, Kato Y, Nakamura A, Sokol NS. Coordinated repression of pro-differentiation genes via P-bodies and transcription maintains Drosophila intestinal stem cell identity. Curr Biol 2022; 32:386-397.e6. [PMID: 34875230 PMCID: PMC8792327 DOI: 10.1016/j.cub.2021.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
Abstract
The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly. Loss of Patr-1-dependent P-bodies leads to a loss of stem cells that is associated with inappropriate expression of EC-fate gene nubbin. Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a P-body-dependent repression activity that coordinates with known transcriptional repression programs to maintain a population of in vivo stem cells in a state primed for differentiation.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Sam A Norrell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alex M O'Connor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Viraj K Patel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Samuel A Rector
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Mark Slovan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
19
|
Down-Regulation of Yeast Helicase Ded1 by Glucose Starvation or Heat-Shock Differentially Impairs Translation of Ded1-Dependent mRNAs. Microorganisms 2021; 9:microorganisms9122413. [PMID: 34946015 PMCID: PMC8706886 DOI: 10.3390/microorganisms9122413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Ded1 is an essential DEAD-box helicase in yeast that broadly stimulates translation initiation and is critical for mRNAs with structured 5′UTRs. Recent evidence suggests that the condensation of Ded1 in mRNA granules down-regulates Ded1 function during heat-shock and glucose starvation. We examined this hypothesis by determining the overlap between mRNAs whose relative translational efficiencies (TEs), as determined by ribosomal profiling, were diminished in either stressed WT cells or in ded1 mutants examined in non-stress conditions. Only subsets of the Ded1-hyperdependent mRNAs identified in ded1 mutant cells exhibited strong TE reductions in glucose-starved or heat-shocked WT cells, and those down-regulated by glucose starvation also exhibited hyper-dependence on initiation factor eIF4B, and to a lesser extent eIF4A, for efficient translation in non-stressed cells. These findings are consistent with recent proposals that the dissociation of Ded1 from mRNA 5′UTRs and the condensation of Ded1 contribute to reduced Ded1 function during stress, and they further suggest that the down-regulation of eIF4B and eIF4A functions also contributes to the translational impairment of a select group of Ded1 mRNA targets with heightened dependence on all three factors during glucose starvation.
Collapse
|
20
|
Tishinov K, Spang A. The mRNA decapping complex is buffered by nuclear localization. J Cell Sci 2021; 134:272313. [PMID: 34435633 DOI: 10.1242/jcs.259156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
mRNA decay is a key step in regulating the cellular proteome. Processing bodies (P-bodies) are thought to be sites of mRNA decay and/or storage. P-body units assemble into P-body granules under stress conditions. How this assembly is regulated, however, remains poorly understood. Here, we show, in the yeast Saccharomyces cerevisiae, that the translational repressor Scd6 and the decapping stimulator Edc3 act partially redundantly in P-body assembly by sequestering the Dcp1-Dcp2 (denoted Dcp1/2) decapping complex in the cytoplasm and preventing it from becoming imported into the nucleus by the karyopherin β protein Kap95. One of two nuclear localization signals in Dcp2 overlaps with the RNA-binding site, suggesting an additional mechanism to regulate Dcp1/2 localization. Nuclear Dcp1/2 does not drive mRNA decay and might be stored there as a readily releasable pool, indicating a dynamic equilibrium between cytoplasmic and nuclear Dcp1/2. Cytoplasmic Dcp1/2 is linked to Dhh1 via Edc3. Functional P-bodies are present at the endoplasmic reticulum where Dcp2 potentially acts to increase the local concentration of Dhh1 through interaction with Edc3 to drive phase separation and hence P-body formation.
Collapse
Affiliation(s)
- Kiril Tishinov
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
22
|
Membraneless organelles: phasing out of equilibrium. Emerg Top Life Sci 2021; 4:331-342. [PMID: 32744309 DOI: 10.1042/etls20190190] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Over the past years, liquid-liquid phase separation (LLPS) has emerged as a ubiquitous principle of cellular organization implicated in many biological processes ranging from gene expression to cell division. The formation of biological condensates, like the nucleolus or stress granules, by LLPS is at its core a thermodynamic equilibrium process. However, life does not operate at equilibrium, and cells have evolved multiple strategies to keep condensates in a non-equilibrium state. In this review, we discuss how these non-equilibrium drivers counteract solidification and potentially detrimental aggregation, and at the same time enable biological condensates to perform work and control the flux of substrates and information in a spatial and temporal manner.
Collapse
|
23
|
Escalante LE, Gasch AP. The role of stress-activated RNA-protein granules in surviving adversity. RNA (NEW YORK, N.Y.) 2021; 27:rna.078738.121. [PMID: 33931500 PMCID: PMC8208049 DOI: 10.1261/rna.078738.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/17/2023]
Abstract
Severe environmental stress can trigger a plethora of physiological changes and, in the process, significant cytoplasmic reorganization. Stress-activated RNA-protein granules have been implicated in this cellular overhaul by sequestering pre-existing mRNAs and influencing their fates during and after stress acclimation. While the composition and dynamics of stress-activated granule formation has been well studied, their function and impact on RNA-cargo has remained murky. Several recent studies challenge the view that these granules degrade and silence mRNAs present at the onset of stress and instead suggest new roles for these structures in mRNA storage, transit, and inheritance. Here we discuss recent evidence for revised models of stress-activated granule functions and the role of these granules in stress survival and recovery.
Collapse
|
24
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
25
|
Barraza CE, Solari CA, Rinaldi J, Ojeda L, Rossi S, Ashe MP, Portela P. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118884. [PMID: 33039554 DOI: 10.1016/j.bbamcr.2020.118884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Low complexity regions are involved in the assembly and disassembly of P-bodies (PBs). Saccharomyces cerevisiae contains three genes encoding the protein kinase A (PKA) catalytic subunit: TPK1, TPK2 and TPK3. Tpk2 and Tpk3 isoforms localize to PBs upon glucose starvation showing different mechanisms and kinetics of accumulation. In contrast to the other two isoforms, Tpk2 harbors a glutamine-rich prion-like domain (PrLD) at the N-terminus. Here we show that the appearance of Tpk2 foci in response to glucose starvation, heat stress or stationary phase was dependent on its PrLD. Moreover, the PrLD of Tpk2 was necessary for efficient PB and stress granule aggregation during stress conditions and in quiescent cells. Deletion of PrLD does not affect the in vitro and in vivo kinase activity of Tpk2 or its interaction with the regulatory subunit Bcy1. We present evidence that the PrLD of Tpk2 serves as a scaffold domain for PB assembly in a manner that is independent of Pat1 phosphorylation by PKA. In addition, a mutant strain where Tpk2 lacks PrLD showed a decrease of turnover of mRNA during glucose starvation. This work therefore provides new insight into the mechanism of stress-induced cytoplasmic mRNP assembly, and the role of isoform specific domains in the regulation of PKA catalytic subunit specificity and dynamic localization to cytoplasmic RNPs granules.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Clara A Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| | - Lucas Ojeda
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| |
Collapse
|
26
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
27
|
Sears JC, Broadie K. FMRP-PKA Activity Negative Feedback Regulates RNA Binding-Dependent Fibrillation in Brain Learning and Memory Circuitry. Cell Rep 2020; 33:108266. [PMID: 33053340 PMCID: PMC7590955 DOI: 10.1016/j.celrep.2020.108266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) promotes cyclic AMP (cAMP) signaling. Using an in vivo protein kinase A activity sensor (PKA-SPARK), we find that Drosophila FMRP (dFMRP) and human FMRP (hFMRP) enhance PKA activity in a central brain learning and memory center. Increasing neuronal PKA activity suppresses FMRP in Kenyon cells, demonstrating an FMRP-PKA negative feedback loop. A patient-derived R140Q FMRP point mutation mislocalizes PKA-SPARK activity, whereas deletion of the RNA-binding argi-nine-glycine-glycine (RGG) box (hFMRP-ΔRGG) produces fibrillar PKA-SPARK assemblies colocalizing with ribonucleoprotein (RNP) and aggregation (thioflavin T) markers, demonstrating fibrillar partitioning of cytosolic protein aggregates. hFMRP-ΔRGG reduces dFMRP levels, indicating RGG-independent regulation. Short-term hFMRP-ΔRGG induction produces activated PKA-SPARK puncta, whereas long induction drives fibrillar assembly. Elevated temperature disassociates hFMRP-ΔRGG aggregates and blocks activated PKA-SPARK localization. These results suggest that FMRP regulates compartmentalized signaling via complex assembly, directing PKA activity localization, with FMRP RGG box RNA binding restricting separation via low-complexity interactions. FMRP is required for brain cAMP induction and cAMP-dependent PKA activation, but the FMRP mechanism is uncharacterized. Sears and Broadie test FXS patient-derived and FMRP domain-deficient mutants to reveal conserved FMRP functions regulating PKA activation, subcellular localization, and reversible partitioning into elongated fibrillar assemblies in brain learning/ memory circuit neurons.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
28
|
Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Int J Mol Sci 2020; 21:ijms21134717. [PMID: 32630624 PMCID: PMC7369985 DOI: 10.3390/ijms21134717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022] Open
Abstract
After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex aging-associated program underlies cellular quiescence in budding yeast. This quiescence program includes a cascade of consecutive cellular events orchestrated by an intricate signaling network. We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the main objectives of this review is to stimulate an exploration of the mechanisms that link cellular quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length of time during which a yeast cell remains viable after its growth and division are arrested, and it becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits that caloric restriction delays yeast chronological aging by targeting four different processes within quiescent cells.
Collapse
|
29
|
Devare MN, Kim YH, Jung J, Kang WK, Kwon K, Kim J. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 2020; 19:e13151. [PMID: 32449834 PMCID: PMC7294778 DOI: 10.1111/acel.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.
Collapse
Affiliation(s)
- Mayur Nimbadas Devare
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Joohye Jung
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Woo Kyu Kang
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Ki‐Sun Kwon
- Aging Intervention Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
| | - Jeong‐Yoon Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| |
Collapse
|
30
|
Jiang Y, AkhavanAghdam Z, Li Y, Zid BM, Hao N. A protein kinase A-regulated network encodes short- and long-lived cellular memories. Sci Signal 2020; 13:eaay3585. [PMID: 32430291 PMCID: PMC7302112 DOI: 10.1126/scisignal.aay3585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells can store memories of prior experiences to modulate their responses to subsequent stresses, as seen for the protein kinase A (PKA)-mediated general stress response in yeast, which is required for resistance against future stressful conditions. Using microfluidics and time-lapse microscopy, we quantitatively analyzed how the cellular memory of stress adaptation is encoded in single yeast cells. We found that cellular memory was biphasic. Short-lived memory was mediated by trehalose synthase and trehalose metabolism. Long-lived memory was mediated by PKA-regulated stress-responsive transcription factors and cytoplasmic messenger ribonucleoprotein granules. Short- and long-lived memory could be selectively induced by different priming input dynamics. Computational modeling revealed how the PKA-mediated regulatory network could encode previous stimuli into memories with distinct dynamics. This biphasic memory-encoding scheme might represent a general strategy to prepare for future challenges in rapidly changing environments.
Collapse
Affiliation(s)
- Yanfei Jiang
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zohreh AkhavanAghdam
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yutian Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Kozlova NV, Pichon C, Rahmouni AR. mRNA with Mammalian Codon Bias Accumulates in Yeast Mutants with Constitutive Stress Granules. Int J Mol Sci 2020; 21:ijms21041234. [PMID: 32059599 PMCID: PMC7072924 DOI: 10.3390/ijms21041234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Stress granules and P bodies are cytoplasmic structures assembled in response to various stress factors and represent sites of temporary storage or decay of mRNAs. Depending on the source of stress, the formation of these structures may be driven by distinct mechanisms, but several stresses have been shown to stabilize mRNAs via inhibition of deadenylation. A recent study identified yeast gene deletion mutants with constitutive stress granules and elevated P bodies; however, the mechanisms which trigger its formation remain poorly understood. Here, we investigate the possibility of accumulating mRNA with mammalian codon bias, which we termed the model RNA, in these mutants. We found that the model RNA accumulates in dcp2 and xrn1 mutants and in four mutants with constitutive stress granules overlapping with P bodies. However, in eight other mutants with constitutive stress granules, the model RNA is downregulated, or its steady state levels vary. We further suggest that the accumulation of the model RNA is linked to its protection from the main mRNA surveillance path. However, there is no obvious targeting of the model RNA to stress granules or P bodies. Thus, accumulation of the model RNA and formation of constitutive stress granules occur independently and only some paths inducing formation of constitutive stress granules will stabilize mRNA as well.
Collapse
Affiliation(s)
- Natalia V. Kozlova
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Colléguim Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| |
Collapse
|
32
|
Söding J, Zwicker D, Sohrabi-Jahromi S, Boehning M, Kirschbaum J. Mechanisms for Active Regulation of Biomolecular Condensates. Trends Cell Biol 2019; 30:4-14. [PMID: 31753533 DOI: 10.1016/j.tcb.2019.10.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
Abstract
Liquid-liquid phase separation is a key organizational principle in eukaryotic cells, on par with intracellular membranes. It allows cells to concentrate specific proteins into condensates, increasing reaction rates and achieving switch-like regulation. We propose two active mechanisms that can explain how cells regulate condensate formation and size. In both, the cell regulates the activity of an enzyme, often a kinase, that adds post-translational modifications to condensate proteins. In enrichment inhibition, the enzyme enriches in the condensate and weakens interactions, as seen in stress granules (SGs), Cajal bodies, and P granules. In localization-induction, condensates form around immobilized enzymes that strengthen interactions, as observed in DNA repair, transmembrane signaling, and microtubule assembly. These models can guide studies into the many emerging roles of biomolecular condensates.
Collapse
Affiliation(s)
- Johannes Söding
- Quantitative Biology and Bioinformatics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Quantitative Biology and Bioinformatics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marc Boehning
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jan Kirschbaum
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Mutlu N, Sheidy DT, Hsu A, Jeong HS, Wozniak KJ, Kumar A. A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in Saccharomyces cerevisiae. Genetics 2019; 213:705-720. [PMID: 31455721 PMCID: PMC6781900 DOI: 10.1534/genetics.119.302538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae undergoes a stress-responsive transition to a pseudohyphal growth form in which cells elongate and remain connected in multicellular filaments. Pseudohyphal growth is regulated through conserved signaling networks that control cell growth and the response to glucose or nitrogen limitation in metazoans. These networks are incompletely understood, and our studies identify the TORC1- and PKA-regulated kinase Ksp1p as a key stress-responsive signaling effector in the yeast pseudohyphal growth response. The kinase-defective ksp1-K47D allele results in decreased pseudohyphal morphology at the cellular and colony level, indicating that Ksp1p kinase signaling is required for pseudohyphal filamentation. To determine the functional consequences of Ksp1p signaling, we implemented transcriptional profiling and quantitative phosphoproteomic analysis of ksp1-K47D on a global scale. Ksp1p kinase signaling maintains wild-type transcript levels of many pathways for amino acid synthesis and metabolism, relevant for the regulation of translation under conditions of nutrient stress. Proteins in stress-responsive ribonucleoprotein granules are regulated post-translationally by Ksp1p, and the Ksp1p-dependent phosphorylation sites S176 in eIF4G/Tif4631p and S436 in Pbp1p are required for wild-type levels of pseudohyphal growth and Protein Kinase A pathway activity. Pbp1p and Tif4631p localize in stress granules, and the ksp1 null mutant shows elevated abundance of Pbp1p puncta relative to wild-type. Collectively, the Ksp1p kinase signaling network integrates polarized pseudohyphal morphogenesis and translational regulation through the stress-responsive transcriptional control of pathways for amino acid metabolism and post-translational modification of translation factors affecting stress granule abundance.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel T Sheidy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Han Seol Jeong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Program in Molecular and Cellular Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
34
|
Leipheimer J, Bloom ALM, Panepinto JC. Protein Kinases at the Intersection of Translation and Virulence. Front Cell Infect Microbiol 2019; 9:318. [PMID: 31572689 PMCID: PMC6749009 DOI: 10.3389/fcimb.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
As free living organisms, fungi are challenged with a variety of environmental insults that threaten their cellular processes. In some cases, these challenges mimic conditions present within mammals, resulting in the accidental selection of virulence factors over evolutionary time. Be it within a host or the soil, fungi must contend with environmental challenges through the production of stress effector proteins while maintaining factors required for viability in any condition. Initiation and upkeep of this balancing act is mainly under the control of kinases that affect the propensity and selectivity of protein translation. This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype through translational control.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John C Panepinto
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
35
|
Nostramo R, Xing S, Zhang B, Herman PK. Insights into the Role of P-Bodies and Stress Granules in Protein Quality Control. Genetics 2019; 213:251-265. [PMID: 31285256 PMCID: PMC6727810 DOI: 10.1534/genetics.119.302376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic cell is highly compartmentalized, and contains a variety of both membrane-bound and membraneless organelles. The latter include the cytoplasmic ribonucleoprotein (RNP) granules, known as the processing body (P-body) and the stress granule. These RNP structures are thought to be involved in the storage of particular mRNAs during periods of stress. Here, we find that a mutant lacking both P-bodies and stress granules exhibits phenotypes suggesting that these structures also have a role in the maintenance of protein homeostasis. In particular, there was an increased occurrence of specific protein quality control (PQC) compartments in this mutant, an observation that is consistent with there being an elevated level of protein misfolding. These compartments normally house soluble misfolded proteins and allow the cell to sequester these polypeptides away from the remaining cellular milieu. Moreover, specific proteins that are normally targeted to both P-bodies and stress granules were found to instead associate with these PQC compartments in this granuleless mutant. This observation is interesting as our data indicate that this association occurs specifically in cells that have been subjected to an elevated level of proteotoxic stress. Altogether, the results here are consistent with P-bodies and stress granules having a role in normal protein homeostasis in eukaryotic cells.
Collapse
Affiliation(s)
- Regina Nostramo
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Siyuan Xing
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Bo Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Paul K Herman
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
36
|
Hondele M, Sachdev R, Heinrich S, Wang J, Vallotton P, Fontoura BMA, Weis K. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 2019; 573:144-148. [PMID: 31435012 PMCID: PMC7617057 DOI: 10.1038/s41586-019-1502-y] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
The ability of proteins and nucleic acids to undergo liquid-liquid phase separation has recently emerged as an important molecular principle of how cells rapidly and reversibly compartmentalize their components into membrane-less organelles such as the nucleolus, processing bodies or stress granules1,2. How the assembly and turnover of these organelles are controlled, and how these biological condensates selectively recruit or release components are poorly understood. Here we show that members of the large and highly abundant family of RNA-dependent DEAD-box ATPases (DDXs)3 are regulators of RNA-containing phase-separated organelles in prokaryotes and eukaryotes. Using in vitro reconstitution and in vivo experiments, we demonstrate that DDXs promote phase separation in their ATP-bound form, whereas ATP hydrolysis induces compartment turnover and release of RNA. This mechanism of membrane-less organelle regulation reveals a principle of cellular organization that is conserved from bacteria to humans. Furthermore, we show that DDXs control RNA flux into and out of phase-separated organelles, and thus propose that a cellular network of dynamic, DDX-controlled compartments establishes biochemical reaction centres that provide cells with spatial and temporal control of various RNA-processing steps, which could regulate the composition and fate of ribonucleoprotein particles.
Collapse
Affiliation(s)
- Maria Hondele
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | | - Juan Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 2019; 20:623-638. [PMID: 31152627 PMCID: PMC6771618 DOI: 10.1111/tra.12669] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
Abstract
In cells at steady state, two forms of cell compartmentalization coexist: membrane-bound organelles and phase-separated membraneless organelles that are present in both the nucleus and the cytoplasm. Strikingly, cellular stress is a strong inducer of the reversible membraneless compartments referred to as stress assemblies. Stress assemblies play key roles in survival during cell stress and in thriving of cells upon stress relief. The two best studied stress assemblies are the RNA-based processing-bodies (P-bodies) and stress granules that form in response to oxidative, endoplasmic reticulum (ER), osmotic and nutrient stress as well as many others. Interestingly, P-bodies and stress granules are heterogeneous with respect to both the pathways that lead to their formation and their protein and RNA content. Furthermore, in yeast and Drosophila, nutrient stress also leads to the formation of many other types of prosurvival cytoplasmic stress assemblies, such as metabolic enzymes foci, proteasome storage granules, EIF2B bodies, U-bodies and Sec bodies, some of which are not RNA-based. Nutrient stress leads to a drop in cytoplasmic pH, which combined with posttranslational modifications of granule contents, induces phase separation.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
- Department of Biomedical Science of Cells and SystemsUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
38
|
Gatica D, Klionsky DJ. Towards understanding mRNA-binding protein specificity: lessons from post-transcriptional regulation of ATG mRNA during nitrogen starvation-induced autophagy. Curr Genet 2019; 65:847-849. [PMID: 30783742 PMCID: PMC6625835 DOI: 10.1007/s00294-019-00943-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
In this report, we discuss recent discoveries concerning the effects and specificity of different RNA-binding proteins (RBPs) as they pertain to macroautophagy/autophagy. Autophagy is a fundamental cellular degradation and recycling pathway, which has attracted substantial attention because defects in this process are associated with a wide range of human disorders including cancer, neurodegeneration, and metabolic diseases. Autophagy must be tightly controlled-either too much or too little can be deleterious. Therefore, understanding the complex regulation of autophagy is critical to achieve the goal of modulating the process for therapeutic purposes. Autophagy occurs constitutively, but is upregulated in response to stress. Here, we highlight a role for various RBPs in regulating particular autophagy-related (ATG) mRNAs. We briefly summarize recent publications, which focus on the RBPs Dhh1, Pat1, Lsm1-Lsm7 and Dcp2 in the post-transcriptional regulation of certain mRNAs that encode key components of the autophagy machinery. Finally, we consider how the established role of these and other RBPs in enhancing decapping and downregulating mRNAs is not their only function when it comes to regulating stress-related transcripts. Most ATG genes are downregulated during growth, in contrast to the vast majority of the genome; we discuss how certain regulatory factors play a key role in maintaining autophagy at a basal level during growth, while allowing for a rapid increase when cells encounter various stress conditions.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
39
|
Chang Y, Huh WK. Ksp1-dependent phosphorylation of eIF4G modulates post-transcriptional regulation of specific mRNAs under glucose deprivation conditions. Nucleic Acids Res 2019; 46:3047-3060. [PMID: 29438499 PMCID: PMC5888036 DOI: 10.1093/nar/gky097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Post-transcriptional regulation is an important mechanism for modulating gene expression and is performed by numerous mRNA-binding proteins. To understand the mechanisms underlying post-transcriptional regulation, we investigated the phosphorylation status of 32 mRNA-binding proteins under glucose deprivation conditions in Saccharomyces cerevisiae. We identified 17 glucose-sensitive phosphoproteins and signal pathways implicated in their phosphorylation. Notably, phosphorylation of the eukaryotic translation initiation factor 4G (eIF4G) was regulated by both the Snf1/AMPK pathway and the target of rapamycin complex 1 (TORC1) pathway. The serine/threonine protein kinase Ksp1 has previously been suggested to be a downstream effector of TORC1, but its detailed function has rarely been discussed. We identified that Snf1/AMPK and TORC1 signalings converge on Ksp1, which phosphorylates eIF4G under glucose deprivation conditions. Ksp1-dependent phosphorylation of eIF4G regulates the degradation of specific mRNAs (e.g. glycolytic mRNAs and ribosomal protein mRNAs) under glucose deprivation conditions likely through the recruitment of Dhh1. Taken together, our results suggest that Ksp1 functions as a novel modulator of post-transcriptional regulation in yeast.
Collapse
Affiliation(s)
- Yeonji Chang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 2019; 9:3186. [PMID: 30816278 PMCID: PMC6395727 DOI: 10.1038/s41598-019-40112-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional control of mRNA is a key event in the regulation of gene expression. From yeast to human cells, P-bodies are cytoplasmic RNA-protein aggregates that play an essential role in this process, particularly under stress conditions. In this work, we show that in the model yeast Saccharomyces cerevisiae cell wall stress induces the formation of these structures. This effect is dependent on multiple elements in the Cell Wall Integrity (CWI) MAPK signalling pathway, a signal transduction cascade responsible for the maintenance of cell integrity under adverse environmental conditions. Remarkably, P-body assembly requires the catalytic activity of the MAPK of the pathway, Slt2/Mpk1. In accordance with the control exerted by this signalling pathway, the timing of P-body formation is similar to that of the activation of the CWI pathway. Noticeably, mRNAs whose expression is regulated by this pathway localize in P-bodies after the cell is exposed to stress following a temporal pattern coincident with CWI pathway activation. Moreover, when these mRNAs are overexpressed in a mutant background unable to form visible P-bodies, the cells show hypersensitivity to agents that interfere with cell wall integrity, supporting that they play a role in the mRNA lifecycle under stress conditions.
Collapse
|
42
|
Sachdev R, Hondele M, Linsenmeier M, Vallotton P, Mugler CF, Arosio P, Weis K. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife 2019; 8:41415. [PMID: 30648970 PMCID: PMC6366900 DOI: 10.7554/elife.41415] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/24/2022] Open
Abstract
Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.
Collapse
Affiliation(s)
| | | | | | | | - Christopher F Mugler
- ETH Zurich, Zurich, Switzerland.,University of California, Berkeley, Berkeley, United States
| | | | | |
Collapse
|
43
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
44
|
Gatica D, Hu G, Liu X, Zhang N, Williamson PR, Klionsky DJ. The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy. Mol Cell 2018; 73:314-324.e4. [PMID: 30527663 DOI: 10.1016/j.molcel.2018.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Macroautophagy/autophagy is a key catabolic recycling pathway that requires fine-tuned regulation to prevent pathologies and preserve homeostasis. Here, we report a new post-transcriptional pathway regulating autophagy involving the Pat1-Lsm (Lsm1 to Lsm7) mRNA-binding complex. Under nitrogen-starvation conditions, Pat1-Lsm binds a specific subset of autophagy-related (ATG) transcripts and prevents their 3' to 5' degradation by the exosome complex, leading to ATG mRNA stabilization and accumulation. This process is regulated through Pat1 dephosphorylation, is necessary for the efficient expression of specific Atg proteins, and is required for robust autophagy induction during nitrogen starvation. To the best of our knowledge, this work presents the first example of ATG transcript regulation via 3' binding factors and exosomal degradation.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Berchtold D, Battich N, Pelkmans L. A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells. Mol Cell 2018; 72:1035-1049.e5. [DOI: 10.1016/j.molcel.2018.10.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023]
|
46
|
Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. eLife 2018; 7:32536. [PMID: 30192227 PMCID: PMC6152797 DOI: 10.7554/elife.32536] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic abundance of mRNAs is strictly controlled through a balance of production and degradation. Whereas the control of mRNA synthesis through transcription has been well characterized, less is known about the regulation of mRNA turnover, and a consensus model explaining the wide variations in mRNA decay rates remains elusive. Here, we combine non-invasive transcriptome-wide mRNA production and stability measurements with selective and acute perturbations to demonstrate that mRNA degradation is tightly coupled to the regulation of translation, and that a competition between translation initiation and mRNA decay -but not codon optimality or elongation- is the major determinant of mRNA stability in yeast. Our refined measurements also reveal a remarkably dynamic transcriptome with an average mRNA half-life of only 4.8 min - much shorter than previously thought. Furthermore, global mRNA destabilization by inhibition of translation initiation induces a dose-dependent formation of processing bodies in which mRNAs can decay over time.
Collapse
Affiliation(s)
- Leon Y Chan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Christopher F Mugler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | | | - Karsten Weis
- Department of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Al-Husini N, Tomares DT, Bitar O, Childers WS, Schrader JM. α-Proteobacterial RNA Degradosomes Assemble Liquid-Liquid Phase-Separated RNP Bodies. Mol Cell 2018; 71:1027-1039.e14. [PMID: 30197298 DOI: 10.1016/j.molcel.2018.08.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/11/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
Ribonucleoprotein (RNP) granules play an important role in organizing eukaryotic mRNA metabolism via liquid-liquid phase separation (LLPS) of mRNA decay factors into membrane-less organelles in the cytoplasm. Here we show that the bacterium Caulobacter crescentus Ribonuclease (RNase) E assembles RNP LLPS condensates that we term bacterial RNP-bodies (BR-bodies), similar to eukaryotic P-bodies and stress granules. RNase E requires RNA to assemble a BR-body, and disassembly requires RNA cleavage, suggesting BR-bodies provide localized sites of RNA degradation. The unstructured C-terminal domain of RNase E is both necessary and sufficient to assemble the core of the BR-body, is functionally conserved in related α-proteobacteria, and influences mRNA degradation. BR-bodies are rapidly induced under cellular stresses and provide enhanced cell growth under stress. To our knowledge, Caulobacter RNase E is the first bacterial protein identified that forms LLPS condensates, providing an effective strategy for subcellular organization in cells lacking membrane-bound compartments.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Obaidah Bitar
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
48
|
Lee HY, Chao JC, Cheng KY, Leu JY. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging. J Cell Sci 2018; 131:jcs.220202. [PMID: 30054385 DOI: 10.1242/jcs.220202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Alteration of protein localization is an important strategy for cells to regulate protein homeostasis upon environmental stresses. In the budding yeast Saccharomyces cerevisiae, many proteins relocalize and form cytosolic granules during chronological aging. However, the functions and exact components of these protein granules remain uncharacterized in most cases. In this study, we performed a genome-wide analysis of protein localization in stationary phase cells, leading to the discovery of 307 granule-forming proteins and the identification of new components in the Hsp42-stationary phase granule (Hsp42-SPG), P-bodies, Ret2 granules and actin bodies. We further characterized the Hsp42-SPG, which contains the largest number of protein components, including many molecular chaperones, metabolic enzymes and regulatory proteins. Formation of the Hsp42-SPG efficiently downregulates the activities of sequestered components, which can be differentially released from the granule based on environmental cues. We found a similar structure in the pre-whole genome duplication yeast species, Lachancea kluyveri, suggesting that the Hsp42-SPG is a common machinery allowing chronologically aged cells to contend with changing environments when available energy is limited. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hsin-Yi Lee
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Yu Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.,Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jun-Yi Leu
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
49
|
P-Body Localization of the Hrr25/Casein Kinase 1 Protein Kinase Is Required for the Completion of Meiosis. Mol Cell Biol 2018; 38:MCB.00678-17. [PMID: 29915153 DOI: 10.1128/mcb.00678-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
P-bodies are liquid droplet-like compartments that lack a limiting membrane and are present in many eukaryotic cells. These structures contain specific sets of proteins and mRNAs at concentrations higher than that in the surrounding environment. Although highly conserved, the normal physiological roles of these ribonucleoprotein (RNP) granules remain poorly defined. Here, we report that P-bodies are required for the efficient completion of meiosis in the budding yeast Saccharomyces cerevisiae P-bodies were found to be present during all phases of the meiotic program and to provide protection for the Hrr25/CK1 protein kinase, a key regulator of this developmental process. A failure to associate with these RNP granules resulted in diminished levels of Hrr25 and an ensuing inability to complete meiosis. This work therefore identifies a novel function for these RNP granules and indicates how protein recruitment to these structures can have a significant impact on eukaryotic cell biology.
Collapse
|
50
|
Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet 2018; 34:612-626. [PMID: 29908710 DOI: 10.1016/j.tig.2018.05.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated. P-bodies were recently isolated from human cells by a novel fluorescence-activated particle sorting (FAPS) approach that enabled the characterization of their protein and RNA content, providing new insights into their function. Together with recent innovative imaging studies, these new data show that mammalian PBs are primarily involved not in RNA decay but rather in the coordinated storage of mRNAs encoding regulatory functions. These small cytoplasmic droplets could thus be important for cell adaptation to the environment.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| |
Collapse
|