1
|
Anil AT, Pandian R, Mishra SK. Introns with branchpoint-distant 3' splice sites: Splicing mechanism and regulatory roles. Biophys Chem 2024; 314:107307. [PMID: 39173313 DOI: 10.1016/j.bpc.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India.
| |
Collapse
|
2
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 PMCID: PMC11585973 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Li H, Ding Z, Fang ZY, Long N, Ang HY, Zhang Y, Fan YJ, Xu YZ. Conserved intronic secondary structures with concealed branch sites regulate alternative splicing of poison exons. Nucleic Acids Res 2024; 52:6002-6016. [PMID: 38499485 PMCID: PMC11162794 DOI: 10.1093/nar/gkae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Alternative splicing (AS) generates multiple RNA isoforms and increases the complexities of transcriptomes and proteomes. However, it remains unclear how RNA structures contribute to AS regulation. Here, we systematically search transcriptomes for secondary structures with concealed branch sites (BSs) in the alternatively spliced introns and predict thousands of them from six organisms, of which many are evolutionarily conserved. Intriguingly, a highly conserved stem-loop structure with concealed BSs is found in animal SF3B3 genes and colocalizes with a downstream poison exon (PE). Destabilization of this structure allows increased usage of the BSs and results in enhanced PE inclusion in human and Drosophila cells, leading to decreased expression of SF3B3. This structure is experimentally validated using an in-cell SHAPE-MaP assay. Through RNA interference screens of 28 RNA-binding proteins, we find that this stem-loop structure is sensitive to U2 factors. Furthermore, we find that SF3B3 also facilitates DNA repair and protects genome stability by enhancing interaction between ERCC6/CSB and arrested RNA polymerase II. Importantly, both Drosophila and human cells with the secondary structure mutated by genome editing exhibit altered DNA repair in vivo. This study provides a novel and common mechanism for AS regulation of PEs and reveals a physiological function of SF3B3 in DNA repair.
Collapse
Affiliation(s)
- Hao Li
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Zhan Ding
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Zhuo-Ya Fang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Ni Long
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Hao-Yang Ang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Yu Zhang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
5
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
6
|
Perchlik M, Sasse A, Mostafavi S, Fields S, Cuperus JT. Impact on splicing in Saccharomyces cerevisiae of random 50-base sequences inserted into an intron. RNA (NEW YORK, N.Y.) 2023; 30:52-67. [PMID: 37879864 PMCID: PMC10726166 DOI: 10.1261/rna.079752.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Intron splicing is a key regulatory step in gene expression in eukaryotes. Three sequence elements required for splicing-5' and 3' splice sites and a branchpoint-are especially well-characterized in Saccharomyces cerevisiae, but our understanding of additional intron features that impact splicing in this organism is incomplete, due largely to its small number of introns. To overcome this limitation, we constructed a library in S. cerevisiae of random 50-nt (N50) elements individually inserted into the intron of a reporter gene and quantified canonical splicing and the use of cryptic splice sites by sequencing analysis. More than 70% of approximately 140,000 N50 elements reduced splicing by at least 20%. N50 features, including higher GC content, presence of GU repeats, and stronger predicted secondary structure of its pre-mRNA, correlated with reduced splicing efficiency. A likely basis for the reduced splicing of such a large proportion of variants is the formation of RNA structures that pair N50 bases-such as the GU repeats-with other bases specifically within the reporter pre-mRNA analyzed. However, multiple models were unable to explain more than a small fraction of the variance in splicing efficiency across the library, suggesting that complex nonlinear interactions in RNA structures are not accurately captured by RNA structure prediction methods. Our results imply that the specific context of a pre-mRNA may determine the bases allowable in an intron to prevent secondary structures that reduce splicing. This large data set can serve as a resource for further exploration of splicing mechanisms.
Collapse
Affiliation(s)
- Molly Perchlik
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Alexander Sasse
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
7
|
Roy KR, Gabunilas J, Neutel D, Ai M, Yeh Z, Samson J, Lyu G, Chanfreau GF. Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites. Nucleic Acids Res 2023; 51:12428-12442. [PMID: 37956322 PMCID: PMC10711555 DOI: 10.1093/nar/gkad968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The fidelity of splice site selection is critical for proper gene expression. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is challenging considering the low complexity of the 3'SS consensus sequence YAG. Here, we show that absence of the Prp18p splicing factor results in genome-wide activation of alternative 3'SS in S. cerevisiae, including highly unusual non-YAG sequences. Usage of these non-canonical 3'SS in the absence of Prp18p is enhanced by upstream poly(U) tracts and by their potential to interact with the first intronic nucleoside, allowing them to dock in the spliceosome active site instead of the normal 3'SS. The role of Prp18p in 3'SS fidelity is facilitated by interactions with Slu7p and Prp8p, but cannot be fulfilled by Slu7p, identifying a unique role for Prp18p in 3'SS fidelity. This fidelity function is synergized by the downstream proofreading activity of the Prp22p helicase, but is independent from another late splicing helicase, Prp43p. Our results show that spliceosomes exhibit remarkably relaxed 3'SS sequence usage in the absence of Prp18p and identify a network of spliceosomal interactions centered on Prp18p which are required to promote the fidelity of the recognition of consensus 3'SS sequences.
Collapse
Affiliation(s)
- Kevin R Roy
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Dean Neutel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle Ai
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe Yeh
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce Samson
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guochang Lyu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
9
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Ye R, Hu N, Cao C, Su R, Xu S, Yang C, Zhou X, Xue Y. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol Cell 2023; 83:1311-1327.e7. [PMID: 36958328 DOI: 10.1016/j.molcel.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
RNA-binding proteins (RBPs) bind at different positions of the pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These "positional rules" can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihan Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Chen Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Roy KR, Gabunilas J, Neutel D, Ai M, Samson J, Lyu G, Chanfreau GF. Spliceosomal mutations decouple 3' splice site fidelity from cellular fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523824. [PMID: 36711521 PMCID: PMC9882110 DOI: 10.1101/2023.01.12.523824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The fidelity of splice site selection is thought to be critical for proper gene expression and cellular fitness. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is a daunting task considering the low complexity of the 3'SS consensus sequence YAG. Here we show that inactivating the near-essential splicing factor Prp18p results in a global activation of alternative 3'SS, many of which harbor sequences that highly diverge from the YAG consensus, including some highly unusual non-AG 3'SS. We show that the role of Prp18p in 3'SS fidelity is promoted by physical interactions with the essential splicing factors Slu7p and Prp8p and synergized by the proofreading activity of the Prp22p helicase. Strikingly, structure-guided point mutations that disrupt Prp18p-Slu7p and Prp18p-Prp8p interactions mimic the loss of 3'SS fidelity without any impact on cellular growth, suggesting that accumulation of incorrectly spliced transcripts does not have a major deleterious effect on cellular viability. These results show that spliceosomes exhibit remarkably relaxed fidelity in the absence of Prp18p, and that new 3'SS sampling can be achieved genome-wide without a major negative impact on cellular fitness, a feature that could be used during evolution to explore new productive alternative splice sites.
Collapse
|
12
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Anil AT, Choudhary K, Pandian R, Gupta P, Thakran P, Singh A, Sharma M, Mishra SK. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2. Nucleic Acids Res 2022; 50:10000-10014. [PMID: 36095128 PMCID: PMC9508853 DOI: 10.1093/nar/gkac769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intron diversity facilitates regulated gene expression and alternative splicing. Spliceosomes excise introns after recognizing their splicing signals: the 5'-splice site (5'ss), branchpoint (BP) and 3'-splice site (3'ss). The latter two signals are recognized by U2 small nuclear ribonucleoprotein (snRNP) and its accessory factors (U2AFs), but longer spacings between them result in weaker splicing. Here, we show that excision of introns with a BP-distant 3'ss (e.g. rap1 intron 2) requires the ubiquitin-fold-activated splicing regulator Sde2 in Schizosaccharomyces pombe. By monitoring splicing-specific ura4 reporters in a collection of S. pombe mutants, Cay1 and Tls1 were identified as additional regulators of this process. The role of Sde2, Cay1 and Tls1 was further confirmed by increasing BP-3'ss spacings in a canonical tho5 intron. We also examined BP-distant exons spliced independently of these factors and observed that RNA secondary structures possibly bridged the gap between the two signals. These proteins may guide the 3'ss towards the spliceosome's catalytic centre by folding the RNA between the BP and 3'ss. Orthologues of Sde2, Cay1 and Tls1, although missing in the intron-poor Saccharomyces cerevisiae, are present in intron-rich eukaryotes, including humans. This type of intron-specific pre-mRNA splicing appears to have evolved for regulated gene expression and alternative splicing of key heterochromatin factors.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Karan Choudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Praver Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Poonam Thakran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| |
Collapse
|
14
|
Thomas SE, Balcerowicz M, Chung BYW. RNA structure mediated thermoregulation: What can we learn from plants? FRONTIERS IN PLANT SCIENCE 2022; 13:938570. [PMID: 36092413 PMCID: PMC9450479 DOI: 10.3389/fpls.2022.938570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Balcerowicz
- Division of Plant Sciences, The James Hutton Institute, University of Dundee, Dundee, United Kingdom
| | - Betty Y.-W. Chung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Costa M. Group II Introns: Flexibility and Repurposing. Front Mol Biosci 2022; 9:916157. [PMID: 35865004 PMCID: PMC9294222 DOI: 10.3389/fmolb.2022.916157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
|
16
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
17
|
Georgakopoulos-Soares I, Parada GE, Hemberg M. Secondary structures in RNA synthesis, splicing and translation. Comput Struct Biotechnol J 2022; 20:2871-2884. [PMID: 35765654 PMCID: PMC9198270 DOI: 10.1016/j.csbj.2022.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
Even though the functional role of mRNA molecules is primarily decided by the nucleotide sequence, several properties are determined by secondary structure conformations. Examples of secondary structures include long range interactions, hairpins, R-loops and G-quadruplexes and they are formed through interactions of non-adjacent nucleotides. Here, we discuss advances in our understanding of how secondary structures can impact RNA synthesis, splicing, translation and mRNA half-life. During RNA synthesis, secondary structures determine RNA polymerase II (RNAPII) speed, thereby influencing splicing. Splicing is also determined by RNA binding proteins and their binding rates are modulated by secondary structures. For the initiation of translation, secondary structures can control the choice of translation start site. Here, we highlight the mechanisms by which secondary structures modulate these processes, discuss advances in technologies to detect and study them systematically, and consider the roles of RNA secondary structures in disease.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Guillermo E. Parada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5A 1A8, Canada
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Broft P, Rosenkranz R, Schleiff E, Hengesbach M, Schwalbe H. Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biol 2022; 19:266-278. [PMID: 35130120 PMCID: PMC8824230 DOI: 10.1080/15476286.2021.2024034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Temperature-dependent alternative splicing was recently demonstrated for intron 2 of the gene coding for heat shock factor HsfA2 of the tomato plant Solanum lycopersicum, but the molecular mechanism regulating the abundance of such temperature-dependent splice variants is still unknown. We report here on regulatory pre-mRNA structures that could function as regulators by controlling the use of splice sites in a temperature-dependent manner. We investigate pre-mRNA structures at the splice sites of intron 2 of the gene coding for HsfA2 from S. lycopersicum using NMR- and CD-spectroscopy as well as in-line probing. The pre-mRNA undergoes conformational changes between two different secondary structures at the 3ʹ splice site of the intron in a temperature-dependent manner. Previously, it was shown that three single nucleotide polymorphisms (SNPs) in intron 2 of the HsfA2 pre-mRNA affect the splicing efficiency of its pre-mRNA and are linked to the thermotolerance in different tomato species. By comparing pre-mRNA fragments of the tomato species S. lycopersicum and S. peruvianum, we show that these SNPs result in substantial structural differences between the pre-mRNAs of the two species.
Collapse
Affiliation(s)
- Patrizia Broft
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany
| | - Remus Rosenkranz
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
20
|
Meher PK, Satpathy S. Improved recognition of splice sites in A. thaliana by incorporating secondary structure information into sequence-derived features: a computational study. 3 Biotech 2021; 11:484. [PMID: 34790508 DOI: 10.1007/s13205-021-03036-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022] Open
Abstract
Identification of splice sites is an important aspect with regard to the prediction of gene structure. In most of the existing splice site prediction studies, machine learning algorithms coupled with sequence-derived features have been successfully employed for splice site recognition. However, the splice site identification by incorporating the secondary structure information is lacking, particularly in plant species. Thus, we made an attempt in this study to evaluate the performance of structural features on the splice site prediction accuracy in Arabidopsis thaliana. Prediction accuracies were evaluated with the sequence-derived features alone as well as by incorporating the structural features into the sequence-derived features, where support vector machine (SVM) was employed as prediction algorithm. Both short (40 base pairs) and long (105 base pairs) sequence datasets were considered for evaluation. After incorporating the secondary structure features, improvements in accuracies were observed only for the longer sequence dataset and the improvement was found to be higher with the sequence-derived features that accounted nucleotide dependencies. On the other hand, either a little or no improvement in accuracies was found for the short sequence dataset. The performance of SVM was further compared with that of LogitBoost, Random Forest (RF), AdaBoost and XGBoost machine learning methods. The prediction accuracies of SVM, AdaBoost and XGBoost were observed to be at par and higher than that of RF and LogitBoost algorithms. While prediction was performed by taking all the sequence-derived features along with the structural features, a little improvement in accuracies was found as compared to the combination of individual sequence-based features and structural features. To the best of our knowledge, this is the first attempt concerning the computational prediction of splice sites using machine learning methods by incorporating the secondary structure information into the sequence-derived features. All the source codes are available at https://github.com/meher861982/SSFeature. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03036-8.
Collapse
|
21
|
A broad analysis of splicing regulation in yeast using a large library of synthetic introns. PLoS Genet 2021; 17:e1009805. [PMID: 34570750 PMCID: PMC8496845 DOI: 10.1371/journal.pgen.1009805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/07/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022] Open
Abstract
RNA splicing is a key process in eukaryotic gene expression, in which an intron is spliced out of a pre-mRNA molecule to eventually produce a mature mRNA. Most intron-containing genes are constitutively spliced, hence efficient splicing of an intron is crucial for efficient regulation of gene expression. Here we use a large synthetic oligo library of ~20,000 variants to explore how different intronic sequence features affect splicing efficiency and mRNA expression levels in S. cerevisiae. Introns are defined by three functional sites, the 5’ donor site, the branch site, and the 3’ acceptor site. Using a combinatorial design of synthetic introns, we demonstrate how non-consensus splice site sequences in each of these sites affect splicing efficiency. We then show that S. cerevisiae splicing machinery tends to select alternative 3’ splice sites downstream of the original site, and we suggest that this tendency created a selective pressure, leading to the avoidance of cryptic splice site motifs near introns’ 3’ ends. We further use natural intronic sequences from other yeast species, whose splicing machineries have diverged to various extents, to show how intron architectures in the various species have been adapted to the organism’s splicing machinery. We suggest that the observed tendency for cryptic splicing is a result of a loss of a specific splicing factor, U2AF1. Lastly, we show that synthetic sequences containing two introns give rise to alternative RNA isoforms in S. cerevisiae, demonstrating that merely a synthetic fusion of two introns might be suffice to facilitate alternative splicing in yeast. Our study reveals novel mechanisms by which introns are shaped in evolution to allow cells to regulate their transcriptome. In addition, it provides a valuable resource to study the regulation of constitutive and alternative splicing in a model organism. RNA splicing is a process in which parts of a new pre-mRNA are spliced out of the mRNA molecule to produce eventually a mature mRNA. Those RNA segments that are spliced out are termed introns, and they are found in most genes in eukaryotic organisms. Hence regulation of this process has a major role in the control of gene expression. The budding yeast S. cerevisiae is a popular model organism for eukaryotic cell biology, but in terms of splicing it differs, as it has only few intron-containing genes. Nevertheless, this species has been used to study basic principles of splicing regulation based on its ~300 introns. Here we used the technology of a large synthetic genetic library to introduce many new intron-containing genes to the yeast genome, to explore splicing regulation at a wider scope than was possible so far. Reassuringly, our results confirm known regulatory mechanisms, and further expand our understanding of splicing regulation, specifically how the yeast splicing machinery interacts with the end of introns, and how through evolution introns have evolved to avoid unwanted misidentifications of this end. We further demonstrate the potential of the yeast splicing machinery to alternatively splice a two-intron gene, which is common in other eukaryotes but rare in yeast. Our work presents a first-of-its-kind resource for the systematic study of splicing in live cells.
Collapse
|
22
|
Schärfen L, Neugebauer KM. Transcription Regulation Through Nascent RNA Folding. J Mol Biol 2021; 433:166975. [PMID: 33811916 DOI: 10.1016/j.jmb.2021.166975] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Folding of RNA into secondary structures through intramolecular base pairing determines an RNA's three-dimensional architecture and associated function. Simple RNA structures like stem loops can provide specialized functions independent of coding capacity, such as protein binding, regulation of RNA processing and stability, stimulation or inhibition of translation. RNA catalysis is dependent on tertiary structures found in the ribosome, tRNAs and group I and II introns. While the extent to which non-coding RNAs contribute to cellular maintenance is generally appreciated, the fact that both non-coding and coding RNA can assume relevant structural states has only recently gained attention. In particular, the co-transcriptional folding of nascent RNA of all classes has the potential to regulate co-transcriptional processing, RNP (ribonucleoprotein particle) formation, and transcription itself. Riboswitches are established examples of co-transcriptionally folded coding RNAs that directly regulate transcription, mainly in prokaryotes. Here we discuss recent studies in both prokaryotes and eukaryotes showing that structure formation may carry a more widespread regulatory logic during RNA synthesis. Local structures forming close to the catalytic center of RNA polymerases have the potential to regulate transcription by reducing backtracking. In addition, stem loops or more complex structures may alter co-transcriptional RNA processing or its efficiency. Several examples of functional structures have been identified to date, and this review provides an overview of physiologically distinct processes where co-transcriptionally folded RNA plays a role. Experimental approaches such as single-molecule FRET and in vivo structural probing to further advance our insight into the significance of co-transcriptional structure formation are discussed.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nat Commun 2021; 12:1488. [PMID: 33674615 PMCID: PMC7935899 DOI: 10.1038/s41467-021-21745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.
Collapse
Affiliation(s)
| | | | | | - Martina Hallegger
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | | | | | | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | | |
Collapse
|
24
|
Saldi T, Riemondy K, Erickson B, Bentley DL. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol Cell 2021; 81:1789-1801.e5. [PMID: 33631106 DOI: 10.1016/j.molcel.2021.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
Most RNA processing occurs co-transcriptionally. We interrogated nascent pol II transcripts by chemical and enzymatic probing and determined how the "nascent RNA structureome" relates to splicing, A-I editing and transcription speed. RNA folding within introns and steep structural transitions at splice sites are associated with efficient co-transcriptional splicing. A slow pol II mutant elicits extensive remodeling into more folded conformations with increased A-I editing. Introns that become more structured at their 3' splice sites get co-transcriptionally excised more efficiently. Slow pol II altered folding of intronic Alu elements where cryptic splicing and intron retention are stimulated, an outcome mimicked by UV, which decelerates transcription. Slow transcription also remodeled RNA folding around alternative exons in distinct ways that predict whether skipping or inclusion is favored, even though it occurs post-transcriptionally. Hence, co-transcriptional RNA folding modulates post-transcriptional alternative splicing. In summary, the plasticity of nascent transcripts has widespread effects on RNA processing.
Collapse
Affiliation(s)
- Tassa Saldi
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Benjamin Erickson
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
Mol AA, Vogel M, Suess B. Inducible nuclear import by TetR aptamer-controlled 3' splice site selection. RNA (NEW YORK, N.Y.) 2021; 27:234-241. [PMID: 33148600 PMCID: PMC7812871 DOI: 10.1261/rna.077453.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Correct cellular localization is essential for the function of many eukaryotic proteins and hence cell physiology. Here, we present a synthetic genetic device that allows the control of nuclear and cytosolic localization based on controlled alternative splicing in human cells. The device is based on the fact that an alternative 3' splice site is located within a TetR aptamer that in turn is positioned between the branch point and the canonical splice site. The novel splice site is only recognized when the TetR repressor is bound. Addition of doxycycline prevents TetR aptamer binding and leads to recognition of the canonical 3' splice site. It is thus possible to produce two independent splice isoforms. Since the terminal loop of the aptamer may be replaced with any sequence of choice, one of the two isoforms may be extended by the respective sequence of choice depending on the presence of doxycycline. In a proof-of-concept study, we fused a nuclear localization sequence to a cytosolic target protein, thus directing the protein into the nucleus. However, the system is not limited to the control of nuclear localization. In principle, any target sequence can be integrated into the aptamer, allowing not only the production of a variety of different isoforms on demand, but also to study the function of mislocalized proteins. Moreover, it also provides a valuable tool for investigating the mechanism of alternative splicing in human cells.
Collapse
Affiliation(s)
- Adam A Mol
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
26
|
Liu Z, Liu Q, Yang X, Zhang Y, Norris M, Chen X, Cheema J, Zhang H, Ding Y. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol 2021; 22:11. [PMID: 33397430 PMCID: PMC7784297 DOI: 10.1186/s13059-020-02236-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND mRNA processing is critical for gene expression. A challenge in regulating mRNA processing is how to recognize the actual mRNA processing sites, such as splice and polyadenylation sites, when the sequence content is insufficient for this purpose. Previous studies suggested that RNA structure affects mRNA processing. However, the regulatory role of RNA structure in mRNA processing remains unclear. RESULTS Here, we perform in vivo selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemical profiling on Arabidopsis and generate the in vivo nuclear RNA structure landscape. We find that nuclear mRNAs fold differently from cytosolic mRNAs across translation start and stop sites. Notably, we discover a two-nucleotide single-stranded RNA structure feature upstream of 5' splice sites that is strongly associated with splicing and the selection of alternative 5' splice sites. The regulatory role of this RNA structure feature is further confirmed by experimental validation. Moreover, we find the single-strandedness of branch sites is also associated with 3' splice site recognition. We also identify an RNA structure feature comprising two close-by single-stranded regions that is specifically associated with both polyadenylation and alternative polyadenylation events. CONCLUSIONS We successfully identify pre-mRNA structure features associated with splicing and polyadenylation at whole-genome scale and validate an RNA structure feature which can regulate splicing. Our study unveils a new RNA structure regulatory mechanism for mRNA processing.
Collapse
Affiliation(s)
- Zhenshan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Qi Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Matthew Norris
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Xiaoxi Chen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024 China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
27
|
Capella M, Martín Caballero L, Pfander B, Braun S, Jentsch S. ESCRT recruitment by the S. cerevisiae inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. J Cell Sci 2020; 133:jcs250688. [PMID: 33262311 DOI: 10.1242/jcs.250688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Misassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matías Capella
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Lucía Martín Caballero
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Boris Pfander
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Stefan Jentsch
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
28
|
Temperature-Dependent Alternative Splicing of Precursor mRNAs and Its Biological Significance: A Review Focused on Post-Transcriptional Regulation of a Cold Shock Protein Gene in Hibernating Mammals. Int J Mol Sci 2020; 21:ijms21207599. [PMID: 33066638 PMCID: PMC7590145 DOI: 10.3390/ijms21207599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023] Open
Abstract
Multiple mRNA isoforms are often generated during processing such as alternative splicing of precursor mRNAs (pre-mRNA), resulting in a diversity of generated proteins. Alternative splicing is an essential mechanism for the functional complexity of eukaryotes. Temperature, which is involved in all life activities at various levels, is one of regulatory factors for controlling patterns of alternative splicing. Temperature-dependent alternative splicing is associated with various phenotypes such as flowering and circadian clock in plants and sex determination in poikilothermic animals. In some specific situations, temperature-dependent alternative splicing can be evoked even in homothermal animals. For example, the splicing pattern of mRNA for a cold shock protein, cold-inducible RNA-binding protein (CIRP or CIRBP), is changed in response to a marked drop in body temperature during hibernation of hamsters. In this review, we describe the current knowledge about mechanisms and functions of temperature-dependent alternative splicing in plants and animals. Then we discuss the physiological significance of hypothermia-induced alternative splicing of a cold shock protein gene in hibernating and non-hibernating animals.
Collapse
|
29
|
Hurtig JE, Kim M, Orlando-Coronel LJ, Ewan J, Foreman M, Notice LA, Steiger MA, van Hoof A. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts. RNA (NEW YORK, N.Y.) 2020; 26:1464-1480. [PMID: 32631843 PMCID: PMC7491326 DOI: 10.1261/rna.075655.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Luisa J Orlando-Coronel
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Jellisa Ewan
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle Foreman
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Lee-Ann Notice
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle A Steiger
- Department of Chemistry and Biochemistry, University of St. Thomas, Houston, Texas 77006, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| |
Collapse
|
30
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
31
|
Wood KA, Rowlands CF, Qureshi WMS, Thomas HB, Buczek WA, Briggs TA, Hubbard SJ, Hentges KE, Newman WG, O’Keefe RT. Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Hum Mol Genet 2019; 28:3704-3723. [PMID: 31304552 PMCID: PMC6935387 DOI: 10.1093/hmg/ddz169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.
Collapse
Affiliation(s)
- Katherine A Wood
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Charlie F Rowlands
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Huw B Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Weronika A Buczek
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Raymond T O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| |
Collapse
|
32
|
Neil CR, Fairbrother WG. Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194439. [PMID: 31682938 DOI: 10.1016/j.bbagrm.2019.194439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Christopher R Neil
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America
| | - William G Fairbrother
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America; Center for Computational Molecular Biology, Brown University, Providence, RI, United States of America.
| |
Collapse
|
33
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
34
|
Mikl M, Hamburg A, Pilpel Y, Segal E. Dissecting splicing decisions and cell-to-cell variability with designed sequence libraries. Nat Commun 2019; 10:4572. [PMID: 31594945 PMCID: PMC6783452 DOI: 10.1038/s41467-019-12642-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/22/2019] [Indexed: 11/18/2022] Open
Abstract
Most human genes are alternatively spliced, allowing for a large expansion of the proteome. The multitude of regulatory inputs to splicing limits the potential to infer general principles from investigating native sequences. Here, we create a rationally designed library of >32,000 splicing events to dissect the complexity of splicing regulation through systematic sequence alterations. Measuring RNA and protein splice isoforms allows us to investigate both cause and effect of splicing decisions, quantify diverse regulatory inputs and accurately predict (R2 = 0.73–0.85) isoform ratios from sequence and secondary structure. By profiling individual cells, we measure the cell-to-cell variability of splicing decisions and show that it can be encoded in the DNA and influenced by regulatory inputs, opening the door for a novel, single-cell perspective on splicing regulation. Alternative splicing is regulated by multiple mechanisms. Here the authors employed designed splice site libraries and massively parallel reporter assays to dissect the regulatory complexity and cell-to-cell variability of splicing decisions and to build accurate predictive models.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Amit Hamburg
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
35
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
36
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 PMCID: PMC6726248 DOI: 10.1371/journal.pgen.1008249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. The protein coding information in eukaryotic genes is broken by intervening sequences called introns that are removed from RNA during transcription by a large protein-RNA complex called the spliceosome. Where introns come from and how the spliceosome contributes to genome evolution are open questions. In this study, we find more than 150 new places in the yeast genome that are recognized by the spliceosome and spliced out as introns. Since they appear to have arisen very recently in evolution by sequence drift and do not appear to contribute to gene expression or its regulation, we call these protointrons. Protointrons are found in both protein-coding and non-coding RNAs and are not efficiently removed by the splicing machinery. Although most protointrons are not conserved and will likely disappear as evolution proceeds, a few are spliced more efficiently, and are located where they might begin to play functional roles in gene expression, as predicted by the proposed process of intronization. The challenge now is to understand how spontaneously appearing splicing events like protointrons might contribute to the creation of new genes, new genetic controls, and new protein isoforms as genomes evolve.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J. Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M. Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 DOI: 10.1101/515197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 05/28/2023] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
38
|
Andrews RJ, Moss WN. Computational approaches for the discovery of splicing regulatory RNA structures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194380. [PMID: 31048028 DOI: 10.1016/j.bbagrm.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Global RNA structure and local functional motifs mediate interactions important in determining the rates and patterns of mRNA splicing. In this review, we overview approaches for the computational prediction of RNA secondary structure with a special emphasis on the discovery of motifs important to RNA splicing. The process of identifying and modeling potential splicing regulatory structures is illustrated using a recently-developed approach for RNA structural motif discovery, the ScanFold pipeline, which is applied to the identification of a known splicing regulatory structure in influenza virus.
Collapse
Affiliation(s)
- Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
39
|
Healy TM, Schulte PM. Patterns of alternative splicing in response to cold acclimation in fish. ACTA ACUST UNITED AC 2019; 222:jeb.193516. [PMID: 30692167 DOI: 10.1242/jeb.193516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
40
|
Zhang L, Vielle A, Espinosa S, Zhao R. RNAs in the spliceosome: Insight from cryoEM structures. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1523. [PMID: 30729694 DOI: 10.1002/wrna.1523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022]
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex. The spliceosome undergoes dramatic compositional and conformational changes through the splicing cycle, forming at least 10 distinct complexes. Recent high-resolution cryoEM structures of various spliceosomal complexes revealed unprecedented details of this large molecular machine. This review highlights insight into the structure and function of the spliceosomal RNA components obtained from these new structures, with a focus on the yeast spliceosome. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Anne Vielle
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Sara Espinosa
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
41
|
Nibau C, Gallemí M, Dadarou D, Doonan JH, Cavallari N. Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2. FRONTIERS IN PLANT SCIENCE 2019; 10:1680. [PMID: 32038671 PMCID: PMC6987439 DOI: 10.3389/fpls.2019.01680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| | - Marçal Gallemí
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Despoina Dadarou
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nicola Cavallari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| |
Collapse
|
42
|
Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1010-1022. [PMID: 29602264 PMCID: PMC6032924 DOI: 10.1111/tpj.13914] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 05/19/2023]
Abstract
The ability to adapt growth and development to temperature variations is crucial to generate plant varieties resilient to predicted temperature changes. However, the mechanisms underlying plant response to progressive increases in temperature have just started to be elucidated. Here, we report that the cyclin-dependent kinase G1 (CDKG1) is a central element in a thermo-sensitive mRNA splicing cascade that transduces changes in ambient temperature into differential expression of the fundamental spliceosome component, ATU2AF65A. CDKG1 is alternatively spliced in a temperature-dependent manner. We found that this process is partly dependent on both the cyclin-dependent kinase G2 (CDKG2) and the interacting co-factor CYCLIN L1 (CYCL1), resulting in two distinct messenger RNAs. The relative abundance of both CDKG1 transcripts correlates with ambient temperature and possibly with different expression levels of the associated protein isoforms. Both CDKG1 alternative transcripts are necessary to fully complement the expression of ATU2AF65A across the temperature range. Our data support a previously unidentified temperature-dependent mechanism based on the alternative splicing (AS) of CDKG1 and regulated by CDKG2 and CYCL1. We propose that changes in ambient temperature affect the relative abundance of CDKG1 transcripts, and this in turn translates into differential CDKG1 protein expression coordinating the AS of ATU2AF65A.
Collapse
Affiliation(s)
- Nicola Cavallari
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
- Present address:
Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Candida Nibau
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| | - Armin Fuchs
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
| | - Despoina Dadarou
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| | - Andrea Barta
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
| | - John H. Doonan
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| |
Collapse
|
43
|
Saldi T, Fong N, Bentley DL. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing. Genes Dev 2018; 32:297-308. [PMID: 29483154 PMCID: PMC5859970 DOI: 10.1101/gad.310896.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
In this study, Saldi et al. investigated how transcription elongation rate influences cotranscriptional pre-mRNA maturation. Their findings show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled. Transcription elongation rate influences cotranscriptional pre-mRNA maturation, but how such kinetic coupling works is poorly understood. The formation of nonadenylated histone mRNA 3′ ends requires recognition of an RNA structure by stem–loop-binding protein (SLBP). We report that slow transcription by mutant RNA polymerase II (Pol II) caused accumulation of polyadenylated histone mRNAs that extend past the stem–loop processing site. UV irradiation, which decelerates Pol II elongation, also induced long poly(A)+ histone transcripts. Inhibition of 3′ processing by slow Pol II correlates with failure to recruit SLBP to histone genes. Chemical probing of nascent RNA structure showed that the stem–loop fails to fold in transcripts made by slow Pol II, thereby explaining the absence of SLBP and failure to process 3′ ends. These results show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
44
|
Somero GN. RNA thermosensors: how might animals exploit their regulatory potential? J Exp Biol 2018; 221:221/4/jeb162842. [DOI: 10.1242/jeb.162842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
The secondary and tertiary orders of RNA structure are crucial for a suite of RNA-related functions, including regulation of translation, gene expression and RNA turnover. The temperature sensitivity of RNA secondary and tertiary structures is exploited by bacteria to fabricate RNA thermosensing systems that allow a rapid adaptive response to temperature change. RNA thermometers (RNATs) present in non-coding regions of certain mRNAs of pathogenic bacteria enable rapid upregulation of translation of virulence proteins when the temperature of the bacterium rises after entering a mammalian host. Rapid upregulation of translation of bacterial heat-shock proteins likewise is governed in part by RNATs. Turnover of mRNA may be regulated by temperature-sensitive RNA structures. Whereas the roles of temperature-sensitive RNA structures similar to RNATs in Eukarya and Archaea are largely unknown, there would appear to be a potential for all taxa to adaptively regulate their thermal physiology through exploitation of RNA-based thermosensory responses akin to those of bacteria. In animals, these responses might include regulation of translation of stress-induced proteins, alternative splicing of messenger RNA precursors, differential expression of allelic proteins, modulation of activities of small non-coding RNAs, regulation of mRNA turnover and control of RNA editing. New methods for predicting, detecting and experimentally modifying RNA secondary structure offer promising windows into these fascinating aspects of RNA biochemistry. Elucidating whether animals too have exploited the types of RNA thermosensing tools that are used so effectively by bacteria seems likely to provide exciting new insights into the mechanisms of evolutionary adaptation and acclimatization to temperature.
Collapse
Affiliation(s)
- George N. Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
45
|
Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res 2017; 28:203-213. [PMID: 29254943 PMCID: PMC5793784 DOI: 10.1101/gr.225615.117] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/14/2017] [Indexed: 01/24/2023]
Abstract
The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggesting that splicing is more efficient when cotranscriptional. Moreover, we demonstrate that altering the RNA polymerase II elongation rate in either direction compromises splicing fidelity, and we reveal that splicing fidelity depends largely on intron length together with secondary structure and splice site score. These effects are notably stronger for the highly expressed ribosomal protein coding transcripts. We propose that transcription by RNA polymerase II is tuned to optimize the efficiency and accuracy of ribosomal protein gene expression, while allowing flexibility in splice site choice with the nonribosomal protein transcripts.
Collapse
|
46
|
Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R. Structure of the yeast spliceosomal postcatalytic P complex. Science 2017; 358:1278-1283. [PMID: 29146870 PMCID: PMC5828012 DOI: 10.1126/science.aar3462] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.
Collapse
Affiliation(s)
- Shiheng Liu
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiansen Jiang
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yanxiang Cui
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Z Hong Zhou
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
47
|
Qi F, Frishman D. Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions. Nucleic Acids Res 2017; 45:6109-6118. [PMID: 28335026 PMCID: PMC5449622 DOI: 10.1093/nar/gkx161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Secondary structure elements in the coding regions of mRNAs play an important role in gene expression and regulation, but distinguishing functional from non-functional structures remains challenging. Here we investigate the dependence of sequence–structure relationships in the coding regions on temperature based on the recent PARTE data by Wan et al. Our main finding is that the regions with high and low thermostability (high Tm and low Tm regions) are under evolutionary pressure to preserve RNA secondary structure and primary sequence, respectively. Sequences of low Tm regions display a higher degree of evolutionary conservation compared to high Tm regions. Low Tm regions are under strong synonymous constraint, while high Tm regions are not. These findings imply that high Tm regions contain thermo-stable functionally important RNA structures, which impose relaxed evolutionary constraint on sequence as long as the base-pairing patterns remain intact. By contrast, low thermostability regions contain single-stranded functionally important conserved RNA sequence elements accessible for binding by other molecules. We also find that theoretically predicted structures of paralogous mRNA pairs become more similar with growing temperature, while experimentally measured structures tend to diverge, which implies that the melting pathways of RNA structures cannot be fully captured by current computational approaches.
Collapse
Affiliation(s)
- Fei Qi
- Department of Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354 Freising, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354 Freising, Germany.,St Petersburg State Polytechnic University, St Petersburg 195251, Russia
| |
Collapse
|
48
|
Choi EK, Ulanowicz KA, Nguyen YAH, Frandsen JK, Mitton-Fry RM. SHAPE analysis of the htrA RNA thermometer from Salmonella enterica. RNA (NEW YORK, N.Y.) 2017; 23:1569-1581. [PMID: 28739676 PMCID: PMC5602114 DOI: 10.1261/rna.062299.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
RNA thermometers regulate expression of some genes involved in virulence of pathogenic bacteria such as Yersinia, Neisseria, and Salmonella They often function through temperature-dependent conformational changes that alter accessibility of the ribosome-binding site. The 5'-untranslated region (UTR) of the htrA mRNA from Salmonella enterica contains a very short RNA thermometer. We have systematically characterized the structure and dynamics of this thermometer at single-nucleotide resolution using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays. Our results confirm that the htrA thermometer adopts the predicted hairpin conformation at low temperatures, with conformational change occurring over a physiological temperature regime. Detailed SHAPE melting curves for individual nucleotides suggest that the thermometer unfolds in a cooperative fashion, with nucleotides from both upper and lower portions of the stem gaining flexibility at a common transition temperature. Intriguingly, analysis of an extended htrA 5' UTR sequence revealed not only the presence of the RNA thermometer, but also an additional, stable upstream structure. We generated and analyzed point mutants of the htrA thermometer, revealing elements that modulate its stability, allowing the hairpin to melt under the slightly elevated temperatures experienced during the infection of a warm-blooded host. This work sheds light on structure-function relationships in htrA and related thermometers, and it also illustrates the utility of SHAPE assays for detailed study of RNA thermometer systems.
Collapse
Affiliation(s)
- Edric K Choi
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Kelsey A Ulanowicz
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Yen Anh H Nguyen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Jane K Frandsen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Rachel M Mitton-Fry
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| |
Collapse
|
49
|
Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 2017; 18:637-650. [PMID: 28792005 DOI: 10.1038/nrm.2017.63] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Diana S M Ottoz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
50
|
Role of Ectopic Gene Conversion in the Evolution of a Candida krusei Pleiotropic Drug Resistance Transporter Family. Genetics 2017; 205:1619-1639. [PMID: 28159755 PMCID: PMC5378117 DOI: 10.1534/genetics.116.194811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Gene duplications enable the evolution of novel gene function, but strong positive selection is required to preserve advantageous mutations in a population. This is because frequent ectopic gene conversions (EGCs) between highly similar, tandem-duplicated, sequences, can rapidly remove fate-determining mutations by replacing them with the neighboring parent gene sequences. Unfortunately, the high sequence similarities between tandem-duplicated genes severely hamper empirical studies of this important evolutionary process, because deciphering their correct sequences is challenging. In this study, we employed the eukaryotic model organism Saccharomyces cerevisiae to clone and functionally characterize all 30 alleles of an important pair of tandem-duplicated multidrug efflux pump genes, ABC1 and ABC11, from seven strains of the diploid pathogenic yeast Candida krusei Discovery and functional characterization of their closest ancestor, C. krusei ABC12, helped elucidate the evolutionary history of the entire gene family. Our data support the proposal that the pleiotropic drug resistance (PDR) transporters Abc1p and Abc11p have evolved by concerted evolution for ∼134 MY. While >90% of their sequences remained identical, very strong purifying selection protected six short DNA patches encoding just 18 core amino acid (aa) differences in particular trans membrane span (TMS) regions causing two distinct efflux pump functions. A proline-kink change at the bottom of Abc11p TMS3 was possibly fate determining. Our data also enabled the first empirical estimates for key parameters of eukaryotic gene evolution, they provided rare examples of intron loss, and PDR transporter phylogeny confirmed that C. krusei belongs to a novel, yet unnamed, third major Saccharomycotina lineage.
Collapse
|