1
|
Chen X, Jin H. Essential Roles of Conserved Pseudouridines in Helix 69 for Ribosome Dynamics in Translation. J Mol Biol 2025; 437:169132. [PMID: 40194619 DOI: 10.1016/j.jmb.2025.169132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The widespread distribution of pseudouridine (Ψ), an isomer of the canonical uridine base, in RNA indicates its functional importance to the cell. In eukaryotes, it is estimated that around 2% of ribosomal RNA nucleotides are pseudouridines, most of which are located in functional regions of the ribosome. Defects in RNA pseudouridylation induce a range of detrimental effects from compromised cellular protein biosynthesis to disease phenotypes in humans. However, genome-wide changes to mRNA translation profiles by ribosomes lacking specific conserved pseudouridines have not been extensively studied. Here, using a new genomic method called 5PSeq and in vitro biochemistry, we investigated changes in ribosome dynamics and cellular translation profiles upon loss of Ψ2258 and Ψ2260 in helix 69, the two most conserved pseudouridines in the ribosome in yeast cells. We found that inhibiting the formation of these two pseudouridines challenges ribosomes to maintain the correct open reading frame and causes generally faster ribosome dynamics in translation. Furthermore, mutant ribosomes are more prone to pause while translating a subset of GC-rich codons, especially rare codons such as Arg (CGA) and Arg (CGG). These results demonstrate the presence of Ψ2258 and Ψ2260 contributes to the dynamics of the H69 RNA stem-loop, and helps to maintain functional interactions with the tRNAs as they move within the ribosome. The optimality of this ribosome-tRNA interaction is likely to be more critical for those limited tRNAs that decode rare codons. Consistent with the changes in ribosome dynamics, we observe that IRES-mediated translation is compromised in the mutant ribosome. These results explain the importance of Ψ2258 and Ψ2260 in H69 to maintain cellular fitness. The strong conservation of Ψ2258 and Ψ2260 in the ribosomes from bacteria to humans indicates their functional significance in modulating ribosome functions. It's likely that the identified functions of these covalent modifications are conserved across species.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States.
| |
Collapse
|
2
|
Luo N, Huang Q, Zhang M, Yi C. Functions and therapeutic applications of pseudouridylation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00852-1. [PMID: 40394244 DOI: 10.1038/s41580-025-00852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 05/22/2025]
Abstract
The success of using pseudouridine (Ψ) and its methylation derivative in mRNA vaccines against SARS-CoV-2 has sparked a renewed interest in this RNA modification, known as the 'fifth nucleotide' of RNA. In this Review, we discuss the emerging functions of pseudouridylation in gene regulation, focusing on how pseudouridine in mRNA, tRNA and ribosomal RNA (rRNA) regulates translation. We also discuss the effects of pseudouridylation on RNA secondary structure, pre-mRNA splicing, and in vitro mRNA stability. In addition to nuclear-genome-encoded RNAs, pseudouridine is also present in mitochondria-encoded rRNA, mRNA and tRNA, where it has different distributions and functions compared with their nuclear counterparts. We then discuss the therapeutic potential of programmable pseudouridylation and mRNA vaccine optimization through pseudouridylation. Lastly, we briefly describe the latest quantitative pseudouridine detection methods. We posit that pseudouridine is a highly promising modification that merits further epitranscriptomics investigation and therapeutic application.
Collapse
Affiliation(s)
- Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qiang Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
3
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Han B, Bai S, Liu Y, Wu J, Feng X, Xin R. Definer: A computational method for accurate identification of RNA pseudouridine sites based on deep learning. PLoS One 2025; 20:e0320077. [PMID: 40273178 PMCID: PMC12021131 DOI: 10.1371/journal.pone.0320077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/12/2025] [Indexed: 04/26/2025] Open
Abstract
Pseudouridine is an important modification site, which is widely present in a variety of non-coding RNAs and is involved in a variety of important biological processes. Studies have shown that pseudouridine is important in many biological functions such as gene expression, RNA structural stability, and various diseases. Therefore, accurate identification of pseudouridine sites can effectively explain the functional mechanism of this modification site. Due to the rapid increase of genomics data, traditional biological experimental methods to identify RNA modification sites can no longer meet the practical needs, and it is necessary to accurately identify pseudouridine sites from high-throughput RNA sequence data by computational methods. In this study, we propose a deep learning-based computational method, Definer, to accurately identify RNA pseudouridine loci in three species, Homo sapiens, Saccharomyces cerevisiae and Mus musculus. The method incorporates two sequence coding schemes, including NCP and One-hot, and then feeds the extracted RNA sequence features into a deep learning model constructed from CNN, GRU and Attention. The benchmark dataset contains data from three species, H. sapiens, S. cerevisiae and M. musculus, and the results using 10-fold cross-validation show that Definer significantly outperforms other existing methods. Meanwhile, the data sets of two species, H. sapiens and S. cerevisiae, were tested independently to further demonstrate the predictive ability of the model. In summary, our method, Definer, can accurately identify pseudouridine modification sites in RNA.
Collapse
Affiliation(s)
- Bo Han
- Jilin Chemical Hospital, Jilin, P.R. China
| | - Sudan Bai
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China
| | - Yang Liu
- Jilin Chemical Hospital, Jilin, P.R. China
| | - Jiezhang Wu
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin, P.R. China
| | - Ruihao Xin
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China
| |
Collapse
|
5
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Structural basis for hygromycin B inhibition of yeast pseudouridine-deficient ribosomes. SCIENCE ADVANCES 2025; 11:eadu0151. [PMID: 40173234 PMCID: PMC11963973 DOI: 10.1126/sciadv.adu0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here, we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the yeast wild-type and the pseudouridine-free ribosomes. We showed that the pseudouridine-free ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with a model internal ribosomal entry site RNA, elongation factor eEF2, GTP (guanosine triphosphate), and sordarin, hygromycin B preferentially binds to the pseudouridine-free ribosomes during initiation by blocking eEF2 binding, stalling ribosomes in a nonrotated conformation. The structures captured hygromycin B bound at the intersubunit bridge B2a enriched with pseudouridine and a deformed codon-anticodon duplex, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Saad AAA, Zhang K, Deng Q, Zhou J, Ge L, Wang H. The functions and modifications of tRNA-derived small RNAs in cancer biology. Cancer Metastasis Rev 2025; 44:38. [PMID: 40072687 DOI: 10.1007/s10555-025-10254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Recent progress in noncoding RNA research has highlighted transfer RNA-derived small RNAs (tsRNAs) as key regulators of gene expression, linking them to numerous cellular functions. tsRNAs, which are produced by ribonucleases such as angiogenin and Dicer, are classified based on their size and cleavage positions. They play diverse regulatory roles at the transcriptional, post-transcriptional, and translational levels. Furthermore, tRNAs undergo various modifications that influence their biogenesis, stability, functionality, biochemical characteristics, and protein-binding affinity. tsRNAs, with their aberrant expression patterns and modifications, act as both oncogenes and tumor suppressors. This review explores the biogenetic pathways of tsRNAs and their complex roles in gene regulation. We then focus on the importance of RNA modifications in tsRNAs, evaluating their impact on the biogenesis and biological functions on tsRNAs. Furthermore, we summarize recent data indicating that tsRNAs exhibit varied expression profiles across different cancer types, highlighting their potential as innovative biomarkers and therapeutic targets. This discussion integrates both existing and new knowledge about tsRNAs, emphasizing their importance in cancer biology and clinical advancement.
Collapse
Affiliation(s)
- Abdulaziz Ahmed A Saad
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Nanbu People'S Hospital; Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Qianqian Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lichen Ge
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
La Rosa M, Fiannaca A, Mendolia I, La Paglia L, Urso A. GL4SDA: Predicting snoRNA-disease associations using GNNs and LLM embeddings. Comput Struct Biotechnol J 2025; 27:1023-1033. [PMID: 40160859 PMCID: PMC11952811 DOI: 10.1016/j.csbj.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) play essential roles in various cellular processes, and their associations with diseases are increasingly recognized. Identifying these snoRNA-disease relationships is critical for advancing our understanding of their functional roles and potential therapeutic implications. This work presents a novel approach, called GL4SDA, to predict snoRNA-disease associations using Graph Neural Networks (GNN) and Large Language Models. Our methodology leverages the unique strengths of heterogeneous graph structures to model complex biological interactions. Differently from existing methods, we define a set of features able to capture deeper information content related to the inner attributes of both snoRNAs and diseases and design a GNN model based on highly performing layers, which can maximize results on this representation. We consider snoRNA secondary structures and disease embeddings derived from large language models to obtain snoRNAs and disease node features, respectively. By combining structural features of snoRNAs with rich semantic embeddings of diseases, we construct a feature-rich graph representation that improves the predictive performance of our model. We evaluate our approach using different architectures that exploit the capabilities of many graph convolutional layers and compare the results with three other state-of-the-art graph-based predictors. GL4SDA demonstrates improved scores in link prediction tasks and demonstrates its potential implication as a tool for exploring snoRNA-disease relationships. We also validate our findings through biological case studies about cancer diseases, highlighting the practical application of our method in real-world scenarios and obtaining the most important snoRNA features using explainable artificial intelligence methods.
Collapse
Affiliation(s)
| | | | - Isabella Mendolia
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146, Italy
| | | | | |
Collapse
|
8
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
9
|
Rivalta A, Hiregange DG, Bose T, Rajan KS, Yonath A, Zimmerman E, Waghalter M, Fridkin G, Martinez-Roman I, Rosenfield L, Fedorenko A, Bashan A, Yonath H. Ribosomes: from conserved origin to functional/medical mobility and heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230393. [PMID: 40045780 PMCID: PMC11883434 DOI: 10.1098/rstb.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes, the molecular machines that translate the genetic code from mRNA into proteins in all living cells, are highly structurally conserved across all domains of life and hence are believed to have evolved from a structurally unified pocket. Initially perceived as uniform cellular factories for protein synthesis, currently, ribosomes have emerged as more complex entities. Structural, medical and biochemical studies, including ours, have revealed significant variability in their compositions across tissues, species, functions and developmental stages, highlighting their multifunctional potential. Moreover, the diversity of ribosomes, their components and their associated biological factors challenge the traditional perception of uniform interactions under various conditions, including stress, and expose their mobility and heterogeneity. Evidence for their functional diversity can be seen even in modifications of ribosomal genes, where minor changes may play critical roles under stress or may lead to diseases called ribosomopathies, including Diamond-Blackfan anaemia, some types of cancer and Alzheimer's disease. Thus, through in-depth structural explorations, we improve the understanding of the mechanisms regulating protein biosynthesis in response to various environmental stressors. These findings should potentially reshape the perceptions of the various ribosomal roles.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Waghalter
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Irene Martinez-Roman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Rosenfield
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagith Yonath
- Human Genetics Institute and Internal Medicine A, Sheba Medical Center, Ramat-Gan and Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Faucher-Giguère L, de Préval BS, Rivera A, Scott MS, Elela SA. Small nucleolar RNAs: the hidden precursors of cancer ribosomes. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230376. [PMID: 40045787 PMCID: PMC11883439 DOI: 10.1098/rstb.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are heterogeneous in terms of their constituent proteins, structural RNAs and ribosomal RNA (rRNA) modifications, resulting in diverse potential translatomes. rRNA modifications, guided by small nucleolar RNAs (snoRNAs), enable fine-tuning of ribosome function and translation profiles. Recent studies have begun linking dysregulation of snoRNAs, via rRNA modifications, to tumourigenesis. Deciphering the specific contributions of individual rRNA modifications to cancer hallmarks and identifying snoRNAs with oncogenic potential could lead to novel therapeutic strategies. These strategies might target snoRNAs or exploit the dependence of cancer cells on specific rRNA modification sites, potentially disrupting aberrant ribosomal translation programs and hindering tumour growth. This review discusses current evidence and challenges in linking changes in snoRNA expression to rRNA modification and cancer biology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Laurence Faucher-Giguère
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Baudouin S. de Préval
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Andrea Rivera
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Sherif Abou Elela
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| |
Collapse
|
11
|
Kyei-Baffour ES, Lin QC, Alkan F, Faller WJ. High-throughput approaches for the identification of ribosome heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230381. [PMID: 40045778 PMCID: PMC11883430 DOI: 10.1098/rstb.2023.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 03/09/2025] Open
Abstract
Recent advances in the fields of RNA translation and ribosome biology have demonstrated the heterogeneous nature of ribosomes. This manifests not only across different cellular contexts but also within the same cell. Such variations in ribosomal composition, be it in ribosomal RNAs or proteins, can significantly influence cellular processes and responses by altering the mRNAs being translated or the dynamics of ribosomes during the translation process. Therefore, identifying this heterogeneity is crucial for unravelling the complexity of gene expression across different fields of biology. Here we provide an overview of recent advances in high-throughput techniques for identifying ribosomal heterogeneity. We cover methodologies for probing both rRNA and protein components of the ribosome and encompass the most recent next-generation sequencing and computational analyses, as well as a diverse array of mass spectrometry techniques.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Edwin S. Kyei-Baffour
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Qi Chang Lin
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - William J. Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| |
Collapse
|
12
|
Hamar R, Varga M. The zebrafish ( Danio rerio) snoRNAome. NAR Genom Bioinform 2025; 7:lqaf013. [PMID: 40046902 PMCID: PMC11880993 DOI: 10.1093/nargab/lqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most abundant and evolutionary ancient group of functional non-coding RNAs. They were originally described as guides of post-transcriptional rRNA modifications, but emerging evidence suggests that snoRNAs fulfil an impressive variety of cellular functions. To reveal the true complexity of snoRNA-dependent functions, we need to catalogue first the complete repertoire of snoRNAs in a given cellular context. While the systematic mapping and characterization of "snoRNAomes" for some species have been described recently, this has not been done hitherto for the zebrafish (Danio rerio). Using size-fractionated RNA sequencing data from adult zebrafish tissues, we created an interactive "snoRNAome" database for this species. Our custom-designed analysis pipeline allowed us to identify with high-confidence 67 previously unannotated snoRNAs in the zebrafish genome, resulting in the most complete set of snoRNAs to date in this species. Reanalyzing multiple previously published datasets, we also provide evidence for the dynamic expression of some snoRNAs during the early stages of zebrafish development and tissue-specific expression patterns for others in adults. To facilitate further investigations into the functions of snoRNAs in zebrafish, we created a novel interactive database, snoDanio, which can be used to explore small RNA expression from transcriptomic data.
Collapse
Affiliation(s)
- Renáta Hamar
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
13
|
Santamarina-Ojeda P, Fernández AF, Fraga MF. Epitranscriptomics in the Glioma Context: A Brief Overview. Cancers (Basel) 2025; 17:578. [PMID: 40002173 PMCID: PMC11853273 DOI: 10.3390/cancers17040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Epitranscriptomics, the study of chemical modifications in RNA, has emerged as a crucial field in cellular regulation, adding another layer to the established landscape of DNA- and histone-based epigenetics. A wide range of RNA modifications, including N6-methyladenosine, pseudouridine, and inosine, have been identified across nearly all RNA species, influencing essential processes such as transcription, splicing, RNA stability, and translation. In the context of brain tumors, particularly gliomas, specific epitranscriptomic signatures have been reported to play a role in tumorigenesis. Despite growing evidence, the biological implications of various RNA modifications remain poorly understood. This review offers an examination of the main RNA modifications, the interplay between modified and unmodified molecules, how they could contribute to glioma-like phenotypes, and the therapeutic impact of targeting these mechanisms.
Collapse
Affiliation(s)
- Pablo Santamarina-Ojeda
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Agustín F. Fernández
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mario F. Fraga
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
14
|
Cai Z, Song P, Yu K, Jia G. Advanced reactivity-based sequencing methods for mRNA epitranscriptome profiling. RSC Chem Biol 2025; 6:150-169. [PMID: 39759443 PMCID: PMC11694185 DOI: 10.1039/d4cb00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Currently, over 170 chemical modifications identified in RNA introduce an additional regulatory attribute to gene expression, known as the epitranscriptome. The development of detection methods to pinpoint the location and quantify these dynamic and reversible modifications has significantly expanded our understanding of their roles. This review goes deep into the latest progress in enzyme- and chemical-assisted sequencing methods, highlighting the opportunities presented by these reactivity-based techniques for detailed characterization of RNA modifications. Our survey provides a deeper understanding of the function and biological roles of RNA modification.
Collapse
Affiliation(s)
- Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Kemiao Yu
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
- Beijing Advanced Center of RNA Biology, Peking University Beijing 100871 China
| |
Collapse
|
15
|
Baldrich P. Pseudouridine is the hidden language of plant RNA translation. NATURE PLANTS 2025; 11:151-152. [PMID: 39900830 DOI: 10.1038/s41477-025-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
16
|
Li H, Wang G, Ye C, Zou Z, Jiang B, Yang F, He K, Ju C, Zhang L, Gao B, Liu S, Chen Y, Zhang J, He C. Quantitative RNA pseudouridine maps reveal multilayered translation control through plant rRNA, tRNA and mRNA pseudouridylation. NATURE PLANTS 2025; 11:234-247. [PMID: 39789092 DOI: 10.1038/s41477-024-01894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Pseudouridine (Ψ) is the most abundant RNA modification, yet studies of Ψ have been hindered by a lack of robust methods to profile comprehensive Ψ maps. Here we utilize bisulfite-induced deletion sequencing to generate transcriptome-wide Ψ maps at single-base resolution across various plant species. Integrating ribosomal RNA, transfer RNA and messenger RNA Ψ stoichiometry with mRNA abundance and polysome profiling data, we uncover a multilayered regulation of translation efficiency through Ψ modifications. rRNA pseudouridylation could globally control translation, although the effects vary at different rRNA Ψ sites. Ψ in the tRNA T-arm loop shows strong positive correlations between Ψ stoichiometry and the translation efficiency of their respective codons. We observed a general inverse correlation between Ψ level and mRNA stability, but a positive correlation with translation efficiency in Arabidopsis seedlings. In conclusion, our study provides critical resources for Ψ research in plants and proposes prevalent translation regulation through rRNA, tRNA and mRNA pseudouridylation.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Guanqun Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Bochen Jiang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Fan Yang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kayla He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chengwei Ju
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Boyang Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yanming Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
| |
Collapse
|
17
|
Wiechert F, Unbehaun A, Sprink T, Seibel H, Bürger J, Loerke J, Mielke T, Diebolder C, Schacherl M, Spahn CT. Visualizing the modification landscape of the human 60S ribosomal subunit at close to atomic resolution. Nucleic Acids Res 2025; 53:gkae1191. [PMID: 39658079 PMCID: PMC11724314 DOI: 10.1093/nar/gkae1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical modifications of ribosomal RNAs (rRNAs) and proteins expand their topological repertoire, and together with the plethora of bound ligands, fine-tune ribosomal function. Detailed knowledge of this natural composition provides important insights into ribosome genesis and function and clarifies some aspects of ribosomopathies. The discovery of new structural properties and functional aspects of ribosomes has gone hand in hand with cryo-electron microscopy (cryo-EM) and its technological development. In line with the ability to visualize atomic details - a prerequisite for identifying chemical modifications and ligands in cryo-EM maps - in this work we present the structure of the 60S ribosomal subunit from HeLa cells at the very high global resolution of 1.78 Å. We identified 113 rRNA modifications and four protein modifications including uL2-Hisβ-ox216, which stabilizes the local structure near the peptidyl transferase centre via an extended hydrogen-bonding network. We can differentiate metal ions Mg2+ and K+, polyamines spermine, spermidine and putrescine and identify thousands of water molecules binding to the 60S subunit. Approaching atomic resolution cryo-EM has become a powerful tool to examine fine details of macromolecular structures that will expand our knowledge about translation and other biological processes in the future and assess the variability of the chemical space due to differences between species/tissues or varying physicochemical environment.
Collapse
MESH Headings
- Humans
- Cryoelectron Microscopy
- HeLa Cells
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Models, Molecular
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
Collapse
Affiliation(s)
- Franziska Wiechert
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Helena Seibel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Magdalena Schacherl
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
18
|
Jia S, Yu X, Deng N, Zheng C, Ju M, Wang F, Zhang Y, Gao Z, Li Y, Zhou H, Li K. Deciphering the pseudouridine nucleobase modification in human diseases: From molecular mechanisms to clinical perspectives. Clin Transl Med 2025; 15:e70190. [PMID: 39834094 PMCID: PMC11746961 DOI: 10.1002/ctm2.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis. Cellular stresses trigger RNA pseudouridylation in organisms, suggesting that pseudouridylation-mediated epigenetic reprogramming is essential for maintaining cellular viability and responding to stress. This review examines the regulatory mechanisms and pathological implications of pseudouridylation in human diseases, with a focus on its involvement in tumourigenesis. Additionally, it explores the therapeutic potential of targeting pseudouridylation, presenting novel strategies for disease treatment. HIGHLIGHTS: Methods to detect pseudouridine were introduced from classic mass spectrometry-based methods to newer approaches such as nanopore-based technologies and BID sequencing, each with its advantages and limitations. RNA pseudouridylation is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Increased pseudouridylation is frequently associated with tumour initiation, progression, and poor prognosis, whereas its reduction is predominantly implicated in non-tumour diseases. A comprehensive understanding of the inducing factors for RNA pseudouridylation will be essential for elucidating its role in diseases. Such insights can provide robust evidence for how pseudouridylation influences disease progression and offer new avenues for therapeutic strategies targeting pseudouridylation dysregulation. The therapeutic potential of RNA pseudouridylation in diseases is enormous, including inhibitors targeting pseudouridine synthases, the application of RNA pseudouridylation in RNA therapeutics, and its role as a biological marker.
Collapse
Affiliation(s)
- Shiheng Jia
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Deng
- Department of HematologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chen Zheng
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mingguang Ju
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Fanglin Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yixiao Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ziming Gao
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yanshu Li
- Department of Cell BiologyKey Laboratory of Cell BiologyNational Health Commission of the PRC and Key Laboratory of Medical Cell BiologyMinistry of Education of the PRCChina Medical UniversityShenyangLiaoningChina
| | - Heng Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Kai Li
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
19
|
Liu K, Zhang S, Liu Y, Hu X, Gu X. Advancements in pseudouridine modifying enzyme and cancer. Front Cell Dev Biol 2024; 12:1465546. [PMID: 39737343 PMCID: PMC11683142 DOI: 10.3389/fcell.2024.1465546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine. Studies have linked Ψ expression to the development and progression of several digestive system cancers, such as liver cancer and colorectal cancer, and nondigestive system cancers, such as breast cancer, non-small cell lung cancer, prostate cancer, glioblastoma, ovarian cancer, oral squamous cell carcinoma, and pituitary cancer. The present review briefly outlines the chemical structure, synthesis, and regulatory mechanisms of Ψ. This review summarizes the effects of pseudouridylation on various substrates of RNA and briefly discusses methods for detecting Ψ. Last, it focuses on how RNA pseudouridylation influences different cancers, emphasizing the search for novel approaches to cancer diagnosis, treatment, and prognosis through Ψ modification.
Collapse
Affiliation(s)
- Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
20
|
Fiordoro S, Rosano C, Pechkova E, Barocci S, Izzotti A. Epigenetic modulation of immune cells: Mechanisms and implications. Adv Biol Regul 2024; 94:101043. [PMID: 39305736 DOI: 10.1016/j.jbior.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 12/12/2024]
Abstract
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
Collapse
Affiliation(s)
- S Fiordoro
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - C Rosano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - E Pechkova
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - S Barocci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| |
Collapse
|
21
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
22
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Genome alteration of Leishmania orientalis under Amphotericin B inhibiting conditions. PLoS Negl Trop Dis 2024; 18:e0012716. [PMID: 39689148 DOI: 10.1371/journal.pntd.0012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Amphotericin B (AmB) is a potent antifungal and antiparasitic medication that exerts its action by disrupting the cell membrane of the leishmanial parasite, leading to its death. Understanding the genetic alterations induced by Amphotericin B is crucial for gaining insights into drug resistance mechanisms and developing more effective treatments against Leishmania infections. As a new Leishmania species, the molecular response of Leishmania orientalis to anti-leishmanial drugs has not been fully explored. In this study, Leishmania orientalis strain PCM2 culture was subjected to AmB exposure at a concentration of 0.03 uM over 72 hours compared to the control. The genomic alteration and transcriptomic changes were investigated by utilising the whole genome and RNA sequencing methods, followed by the analysis of single nucleotide polymorphisms (SNPs), differential gene expression, and chromosomal copy number variations (CNVs) assessed using read depth coverage (RDC) values across the entire genome. The chromosomal CNV analysis showed no significant difference between L. orientalis from the control and AmB-treated groups. The distribution of SNPs displayed notable variability, with higher SNP incidence in the control group compared to the AmB-treated group. Gene ontology analysis unveiled functions of the SNPs -associated genes involved in transporter function, genetic precursor synthesis, and purine nucleotide metabolism. Notably, the impact of AmB treatment on the L. orientalis gene expression profiles exhibited diverse expressional alterations, particularly the downregulation of pivotal genes such as the tubulin alpha chain gene. The intricate interplay between SNPs and gene expression alterations might underscore the complex regulatory networks underlying the AmB resistance of L. orientalis strain PCM2.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
23
|
McCormick CA, Meseonznik M, Qiu Y, Fanari O, Thomas M, Liu Y, Bloch D, Klink IN, Jain M, Wanunu M, Rouhanifard SH. mRNA psi profiling using nanopore DRS reveals cell type-specific pseudouridylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593203. [PMID: 38766185 PMCID: PMC11100687 DOI: 10.1101/2024.05.08.593203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pseudouridine (psi) is one of the most abundant human mRNA modifications generated via psi synthases, including TRUB1 and PUS7. Nanopore direct RNA sequencing combined with our recently developed tool, Mod-p ID, enables psi mapping, transcriptome-wide, without chemical derivatization of the input RNA and/or conversion to cDNA. This method is sensitive for detecting differences in the positional occupancy of psi across cell types, which can inform our understanding of the impact of psi on gene expression. We sequenced, mapped, and compared the positional psi occupancy across six immortalized human cell lines derived from diverse tissue types. We found that lung-derived cells have the highest proportion of psi, while liver-derived cells have the lowest. Further, we find that conserved psi positions on mRNAs produce higher levels of protein than expected, suggesting a role in translation regulation. Interestingly, we identify cell type-specific sites of psi modification in ubiquitously expressed genes. Finally, we characterize transcripts with multiple psi modifications and found that these psi sites can be conserved or cell type-specific, including examples of multiple psi modifications within the same motif. Our data suggest that psi modifications contribute to regulating translation and that cell type-specific transacting factors play a major role in driving pseudouridylation.
Collapse
Affiliation(s)
| | | | - Yuchen Qiu
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | | | - Mitchell Thomas
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Yifang Liu
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Dylan Bloch
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Isabel N Klink
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Miten Jain
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | - Meni Wanunu
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | | |
Collapse
|
24
|
Fang X, Lu Z, Wang Y, Zhao R, Mo J, Yang W, Sun M, Zhou X, Weng X. Exonuclease-assisted enrichment and base resolution analysis of pseudouridine in single-stranded RNA. Chem Sci 2024:d4sc03576c. [PMID: 39479159 PMCID: PMC11515940 DOI: 10.1039/d4sc03576c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Pseudouridine (Ψ) is one of the most abundant RNA modifications, playing crucial roles in various biological processes. Identifying Ψ sites is vital for understanding their functions. In this study, we proposed a novel method for identifying Ψ sites with an improved signal-to-noise ratio. This method, called RNA exonuclease-assisted identification of pseudouridine sites (RIPS), combines specific CMC-labeling of Ψ sites with an exonuclease-assisted digestion strategy for the detection of Ψ sites. Utilizing exonuclease XRN1 to digest RNA strands not labeled by CMC, RIPS significantly reduces the background signal from unlabeled strands and enhances the positive signal of Ψ sites labeled by CMC, which terminates exonuclease digestion. As a result, we can enrich Ψ sites and identify them at single-base resolution. Considering the unique functions of single-stranded RNA (ssRNA), we employed RIPS to distinguish Ψ sites in single-stranded and double-stranded regions of RNA. Our results indicated that CMC could specifically label Ψ sites in ssRNA under natural conditions, enabling RIPS to selectively identify Ψ sites in ssRNA, which may facilitate the study on the functions of Ψ sites.
Collapse
Affiliation(s)
- Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yafen Wang
- School of Public Health, Wuhan University Wuhan Hubei 430071 P. R. China
| | - Ruiqi Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University Wuhan Hubei 430071 P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Mei Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 P. R. China
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University Wuhan Hubei P. R. China
| |
Collapse
|
25
|
Gunage R, Zon LI. Role of RNA modifications in blood development and regeneration. Exp Hematol 2024; 138:104279. [PMID: 39009277 DOI: 10.1016/j.exphem.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Blood development and regeneration require rapid turnover of cells, and ribonucleic acid (RNA) modifications play a key role in it via regulating stemness and cell fate regulation. RNA modifications affect gene activity via posttranscriptional and translation-mediated mechanisms. Diverse molecular players involved in RNA-modification processes are abundantly expressed by hematopoietic stem cells and lineages. Close to 150 RNA chemical modifications have been reported, but only N6-methyl adenosine (m6A), inosine (I), pseudouridine (Ψ), and m1A-a handful-have been studied in-cell fate regulation. The role of RNA modification in blood diseases and disorders is an emerging field and offers potential for therapeutic interventions. Knowledge of RNA-modification and enzymatic activities could be used to design therapies in the future. Here, we summarized the recent advances in RNA modification and the epitranscriptome field and discussed their regulation of blood development and regeneration.
Collapse
Affiliation(s)
- Rajesh Gunage
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA.
| |
Collapse
|
26
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
27
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Unveil the Molecular Interplay between Aminoglycosides and Pseudouridine in IRES Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614200. [PMID: 39345397 PMCID: PMC11429969 DOI: 10.1101/2024.09.20.614200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the wild-type ribosomes and those lacking pseudouridine ( cbf5 -D95A). We showed that the cbf5 -D95A ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with an internal ribosome entry site (IRES) RNA, elongation factor eEF2, GTP, sordarin, hygromycin B preferentially binds to the cbf5 -D95A ribosomes during initiation by blocking eEF2 binding and stalls the ribosomes in a non-rotated conformation, further hindering translocation. Hygromycin B binds to the inter-subunit bridge B2a that is known to be sensitive to pseudouridine, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides. Highlights Loss of pseudouridine increases cell sensitivity to aminoglycosidesPseudouridine enhances ribosome thermostabilityHygromycin B competes with eEF2 for the non-rotated ribosomeHygromycin B deforms the codon-anticodon duplex.
Collapse
|
28
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
29
|
Chen M, Zou Q, Qi R, Ding Y. PseU-KeMRF: A Novel Method for Identifying RNA Pseudouridine Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1423-1435. [PMID: 38625768 DOI: 10.1109/tcbb.2024.3389094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Pseudouridine is a type of abundant RNA modification that is seen in many different animals and is crucial for a variety of biological functions. Accurately identifying pseudouridine sites within the RNA sequence is vital for the subsequent study of various biological mechanisms of pseudouridine. However, the use of traditional experimental methods faces certain challenges. The development of fast and convenient computational methods is necessary to accurately identify pseudouridine sites from RNA sequence information. To address this, we introduce a novel pseudouridine site prediction model called PseU-KeMRF, which can identify pseudouridine sites in three species, H. sapiens, S. cerevisiae, and M. musculus. Through comprehensive analysis, we selected four RNA coding schemes, including binary feature, position-specific trinucleotide propensity based on single strand (PSTNPss), nucleotide chemical property (NCP) and pseudo k-tuple composition (PseKNC). Then the support vector machine-recursive feature elimination (SVM-RFE) method was used for feature selection and the feature subset was optimized. Finally, the best feature subsets are input into the kernel based on multinomial random forests (KeMRF) classifier for cross-validation and independent testing. As a new classification method, compared with the traditional random forest, KeMRF not only improves the node splitting process of decision tree construction based on multinomial distribution, but also combines the easy to interpret kernel method for prediction, which makes the classification performance better. Our results indicate superior predictive performance of PseU-KeMRF over other existing models, which can prove that PseU-KeMRF is a highly competitive predictive model that can successfully identify pseudouridine sites in RNA sequences.
Collapse
|
30
|
Zhao Y, Ma X, Ye C, Li W, Pajdzik K, Dai Q, Sun HL, He C. Pseudouridine Detection and Quantification Using Bisulfite Incorporation Hindered Ligation. ACS Chem Biol 2024; 19:1813-1819. [PMID: 39014961 PMCID: PMC12043245 DOI: 10.1021/acschembio.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Pseudouridine (Ψ) is a widespread RNA modification found in various RNA species, including rRNA, tRNA, snRNA, mRNA, and long noncoding RNA (lncRNA). Understanding the function of Ψ in these RNA types requires a robust method for the detection and quantification of the Ψ level at single-nucleotide resolution. A previously used method utilizes Ψ labeling by N-cyclohexyl-N'-β-(4-methylmorpholinium)ethylcarbodiimide (CMC). The quantification of Ψ is based on the stop ratio after reverse transcription. However, the use of CMC followed by strong alkaline treatment causes severe RNA degradation, often requiring a large amount of RNA. The removal of CMC and recovery of RNA by ethanol precipitation are also time-consuming. Here, we introduce a Bisulfite Incorporation Hindered ligation-based method (BIHIND), which can detect and quantify Ψ sites on rRNA, mRNA, and noncoding RNA. BIHIND can be coupled with quantitative PCR (BIHIND-qPCR) for quantitative detection of Ψ fraction at individual modification sites, as well as with next-generation sequencing (BIHIND-seq) for high-throughput sequencing of Ψ without requiring reverse transcription. We validated the robustness of BIHIND with the elucidation of Ψ dynamics following pseudouridine synthase depletion.
Collapse
Affiliation(s)
- Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xinyuan Ma
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wenlong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kinga Pajdzik
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Jalan A, Jayasree PJ, Karemore P, Narayan KP, Khandelia P. Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease. Mol Biotechnol 2024; 66:1581-1598. [PMID: 37341888 DOI: 10.1007/s12033-023-00792-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Cellular RNAs, both coding and noncoding are adorned by > 100 chemical modifications, which impact various facets of RNA metabolism and gene expression. Very often derailments in these modifications are associated with a plethora of human diseases. One of the most oldest of such modification is pseudouridylation of RNA, wherein uridine is converted to a pseudouridine (Ψ) via an isomerization reaction. When discovered, Ψ was referred to as the 'fifth nucleotide' and is chemically distinct from uridine and any other known nucleotides. Experimental evidence accumulated over the past six decades, coupled together with the recent technological advances in pseudouridine detection, suggest the presence of pseudouridine on messenger RNA, as well as on diverse classes of non-coding RNA in human cells. RNA pseudouridylation has widespread effects on cellular RNA metabolism and gene expression, primarily via stabilizing RNA conformations and destabilizing interactions with RNA-binding proteins. However, much remains to be understood about the RNA targets and their recognition by the pseudouridylation machinery, the regulation of RNA pseudouridylation, and its crosstalk with other RNA modifications and gene regulatory processes. In this review, we summarize the mechanism and molecular machinery involved in depositing pseudouridine on target RNAs, molecular functions of RNA pseudouridylation, tools to detect pseudouridines, the role of RNA pseudouridylation in human diseases like cancer, and finally, the potential of pseudouridine to serve as a biomarker and as an attractive therapeutic target.
Collapse
Affiliation(s)
- Abhishek Jalan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India.
| |
Collapse
|
32
|
Ero R, Leppik M, Reier K, Liiv A, Remme J. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res 2024; 52:6614-6628. [PMID: 38554109 PMCID: PMC11194073 DOI: 10.1093/nar/gkae222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Large/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Rya Ero
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Leppik
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kaspar Reier
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
33
|
Fang X, Zhao R, Wang Y, Sun M, Xu J, Long S, Mo J, Liu H, Li X, Wang F, Zhou X, Weng X. A bisulfite-assisted and ligation-based qPCR amplification technology for locus-specific pseudouridine detection at base resolution. Nucleic Acids Res 2024; 52:e49. [PMID: 38709875 PMCID: PMC11162771 DOI: 10.1093/nar/gkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/09/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Over 150 types of chemical modifications have been identified in RNA to date, with pseudouridine (Ψ) being one of the most prevalent modifications in RNA. Ψ plays vital roles in various biological processes, and precise, base-resolution detection methods are fundamental for deep analysis of its distribution and function. In this study, we introduced a novel base-resolution Ψ detection method named pseU-TRACE. pseU-TRACE relied on the fact that RNA containing Ψ underwent a base deletion after treatment of bisulfite (BS) during reverse transcription, which enabled efficient ligation of two probes complementary to the cDNA sequence on either side of the Ψ site and successful amplification in subsequent real-time quantitative PCR (qPCR), thereby achieving selective and accurate Ψ detection. Our method accurately and sensitively detected several known Ψ sites in 28S, 18S, 5.8S, and even mRNA. Moreover, pseU-TRACE could be employed to measure the Ψ fraction in RNA and explore the Ψ metabolism of different pseudouridine synthases (PUSs), providing valuable insights into the function of Ψ. Overall, pseU-TRACE represents a reliable, time-efficient and sensitive Ψ detection method.
Collapse
Affiliation(s)
- Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Ruiqi Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Mei Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jin Xu
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hudan Liu
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Wuhan TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Wuhan TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P. R. China
| |
Collapse
|
34
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
35
|
Leppik M, Pomerants L, Põldes A, Mihkelson P, Remme J, Tamm T. Loss of Conserved rRNA Modifications in the Peptidyl Transferase Center Leads to Diminished Protein Synthesis and Cell Growth in Budding Yeast. Int J Mol Sci 2024; 25:5194. [PMID: 38791231 PMCID: PMC11121408 DOI: 10.3390/ijms25105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia; (M.L.); (L.P.); (A.P.); (P.M.); (J.R.)
| |
Collapse
|
36
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
37
|
Chen M, Sun M, Su X, Tiwari P, Ding Y. Fuzzy kernel evidence Random Forest for identifying pseudouridine sites. Brief Bioinform 2024; 25:bbae169. [PMID: 38622357 PMCID: PMC11018548 DOI: 10.1093/bib/bbae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Pseudouridine is an RNA modification that is widely distributed in both prokaryotes and eukaryotes, and plays a critical role in numerous biological activities. Despite its importance, the precise identification of pseudouridine sites through experimental approaches poses significant challenges, requiring substantial time and resources.Therefore, there is a growing need for computational techniques that can reliably and quickly identify pseudouridine sites from vast amounts of RNA sequencing data. In this study, we propose fuzzy kernel evidence Random Forest (FKeERF) to identify pseudouridine sites. This method is called PseU-FKeERF, which demonstrates high accuracy in identifying pseudouridine sites from RNA sequencing data. The PseU-FKeERF model selected four RNA feature coding schemes with relatively good performance for feature combination, and then input them into the newly proposed FKeERF method for category prediction. FKeERF not only uses fuzzy logic to expand the original feature space, but also combines kernel methods that are easy to interpret in general for category prediction. Both cross-validation tests and independent tests on benchmark datasets have shown that PseU-FKeERF has better predictive performance than several state-of-the-art methods. This new method not only improves the accuracy of pseudouridine site identification, but also provides a certain reference for disease control and related drug development in the future.
Collapse
Affiliation(s)
- Mingshuai Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China
| | - Mingai Sun
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Xi Su
- Foshan Women and Children Hospital, Foshan 528000, China
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China
| |
Collapse
|
38
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
39
|
Wang R, Chung CR, Lee TY. Interpretable Multi-Scale Deep Learning for RNA Methylation Analysis across Multiple Species. Int J Mol Sci 2024; 25:2869. [PMID: 38474116 DOI: 10.3390/ijms25052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
RNA modification plays a crucial role in cellular regulation. However, traditional high-throughput sequencing methods for elucidating their functional mechanisms are time-consuming and labor-intensive, despite extensive research. Moreover, existing methods often limit their focus to specific species, neglecting the simultaneous exploration of RNA modifications across diverse species. Therefore, a versatile computational approach is necessary for interpretable analysis of RNA modifications across species. A multi-scale biological language-based deep learning model is proposed for interpretable, sequential-level prediction of diverse RNA modifications. Benchmark comparisons across species demonstrate the model's superiority in predicting various RNA methylation types over current state-of-the-art methods. The cross-species validation and attention weight visualization also highlight the model's capability to capture sequential and functional semantics from genomic backgrounds. Our analysis of RNA modifications helps us find the potential existence of "biological grammars" in each modification type, which could be effective for mapping methylation-related sequential patterns and understanding the underlying biological mechanisms of RNA modifications.
Collapse
Affiliation(s)
- Rulan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
40
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
42
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
43
|
Catalanotto C, Barbato C, Cogoni C, Benelli D. The RNA-Binding Function of Ribosomal Proteins and Ribosome Biogenesis Factors in Human Health and Disease. Biomedicines 2023; 11:2969. [PMID: 38001969 PMCID: PMC10669870 DOI: 10.3390/biomedicines11112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Christian Barbato
- National Research Council (CNR), Department of Sense Organs DOS, Institute of Biochemistry and Cell Biology (IBBC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Carlo Cogoni
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| |
Collapse
|
44
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
45
|
Paiva ACF, Lemos AR, Busse P, Martins MT, Silva DO, Freitas MC, Santos SP, Freire F, Barrey EJ, Manival X, Koetzner L, Heinrich T, Wegener A, Grädler U, Bandeiras TM, Schwarz D, Sousa PMF. Extract2Chip-Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. BIOSENSORS 2023; 13:913. [PMID: 37887106 PMCID: PMC10605449 DOI: 10.3390/bios13100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.
Collapse
Affiliation(s)
- Ana C. F. Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Madalena T. Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
| | - Diana O. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Evelyne J. Barrey
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Xavier Manival
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Lisa Koetzner
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ulrich Grädler
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel Schwarz
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
46
|
Abstract
Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.
Collapse
Affiliation(s)
- Qing Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Haoduo Qiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yao Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Nina He
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Jie Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| |
Collapse
|
47
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
48
|
Luo W, Xu Z, Wang H, Lu Z, Ding L, Wang R, Xie H, Zheng Q, Lin Y, Zhou Z, Li Y, Chen X, Li G, Xia L. HIF1A-repressed PUS10 regulates NUDC/Cofilin1 dependent renal cell carcinoma migration by promoting the maturation of miR-194-5p. Cell Biosci 2023; 13:153. [PMID: 37596681 PMCID: PMC10439626 DOI: 10.1186/s13578-023-01094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is characterized by a high rate of distant metastasis, which leads to poor prognosis in patients with advanced RCC. PUS10 has been recognized as a member of the pseudouridine synthase family, and recently other functions beyond the synthesis of the RNA modification have been uncovered. However, little is known about its role in diseases such as cancer. METHODS RT-qPCR, western blot and immunohistochemistry were used to measure the expression of PUS10 in RCC tissues. Transwell assay, wound healing assay, and in vivo metastasis model were conducted to determine the function of PUS10 in RCC progression. MicroRNA sequencing and GEO database were used to screen for the downstream microRNAs of PUS10. RNA immunoprecipitation, dual luciferase reporter assay, immunostaining, and rescue experiments were employed to establish the PUS10/miR-194-5p/nuclear distribution protein C(NUDC)/Cofilin1 axis in RCC migration. Chromatin immunoprecipitation and dual luciferase reporter assay were used to verify its upstream transcriptional regulator. RESULTS The expression of PUS10 was significantly decreased in RCC tissues, and low expression predicted poor prognosis. In vitro and in vivo experiments showed that PUS10 suppressed RCC migration, which, however, was independent of its classical pseudouridine catalytic function. Mechanically, PUS10 promoted the maturation of miR-194-5p, which sequentially inhibited RCC migration via disrupting NUDC-dependent cytoskeleton. Furthermore, hypoxia and HIF-1 A were found involved in the downregulation of PUS10. CONCLUSION We unraveled PUS10 restrained RCC migration via the PUS10/miR-194-5p/NUDC/Cofilin1 pathway, which independent of its classical catalytic function. Furthermore, a linkage between the critical tumor microenvironment hallmark with malfunction of the forementioned metastasis inhibition mechanism was presented, as demonstrated by repressed expression of PUS10 due to hypoxia and HIF-1A.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
49
|
Zhao Y, Rai J, Li H. Regulation of translation by ribosomal RNA pseudouridylation. SCIENCE ADVANCES 2023; 9:eadg8190. [PMID: 37595043 PMCID: PMC10438446 DOI: 10.1126/sciadv.adg8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Pseudouridine is enriched in ribosomal, spliceosomal, transfer, and messenger RNA and thus integral to the central dogma. The chemical basis for how pseudouridine affects the molecular apparatus such as ribosome, however, remains elusive owing to the lack of structures without this natural modification. Here, we studied the translation of a hypopseudouridylated ribosome initiated by the internal ribosome entry site (IRES) elements. We analyzed eight cryo-electron microscopy structures of the ribosome bound with the Taura syndrome virus IRES in multiple functional states. We found widespread loss of pseudouridine-mediated interactions through water and long-range base pairings. In the presence of the translocase, eukaryotic elongation factor 2, and guanosine 5'-triphosphate hydrolysis, the hypopseudouridylated ribosome favors a rare unconducive conformation for decoding that is partially recouped in the ribosome population that remains modified at the P-site uridine. The structural principles learned establish the link between functional defects and modification loss and are likely applicable to other pseudouridine-associated processes.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
50
|
Chabronova A, van den Akker G, Housmans BAC, Caron MMJ, Cremers A, Surtel DAM, Peffers MJ, van Rhijn LW, Marchand V, Motorin Y, Welting TJM. Depletion of SNORA33 Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus. Int J Mol Sci 2023; 24:12578. [PMID: 37628759 PMCID: PMC10454564 DOI: 10.3390/ijms241612578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Bas A. C. Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Marjolein M. J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Don A. M. Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7TX, UK
| | - Lodewijk W. van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, France
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, France
- UMR7365 IMOPA, CNRS-Université de Lorraine, F54000 Nancy, France
| | - Tim J. M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+ (MUMC+), 6229 HX Maastricht, The Netherlands
| |
Collapse
|