1
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
2
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
3
|
Harel T, Spicher C, Scheer E, Buchan JG, Cech J, Folland C, Frey T, Holtz AM, Innes AM, Keren B, Macken WL, Marcelis C, Otten CE, Paolucci SA, Petit F, Pfundt R, Pitceathly RDS, Rauch A, Ravenscroft G, Sanchev R, Steindl K, Tammer F, Tyndall A, Devys D, Vincent SD, Elpeleg O, Tora L. De novo variants in ATXN7L3 lead to developmental delay, hypotonia and distinctive facial features. Brain 2024; 147:2732-2744. [PMID: 38753057 DOI: 10.1093/brain/awae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Deubiquitination is crucial for the proper functioning of numerous biological pathways, such as DNA repair, cell cycle progression, transcription, signal transduction and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders and congenital abnormalities. ATXN7L3 is a component of the DUB module of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex and two other related DUB modules, and it serves as an obligate adaptor protein of three ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and by using GeneMatcher, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia and distinctive facial characteristics, including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set, posteriorly rotated ears. To assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel, 9112001
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 9112001
| | - Camille Spicher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jillian G Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7110, USA
| | - Jennifer Cech
- University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Tanja Frey
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Boris Keren
- Department of Genetics and Referral Center for Intellectual Disabilities of Rare Causes, AP-HP, Sorbonne Université, Assistance Publique-Hopitaux de Paris, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Catherine E Otten
- University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sarah A Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7110, USA
| | - Florence Petit
- CHU Lille, Clinique de génétique Guy Fontaine, F-59000 Lille, France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
- University Children's Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich Research Priority Program ITINERARE: Innovative Therapies in Rare Diseases, 8032 Zurich, Switzerland
- University of Zurich Research Priority Program AdaBD: Adaptive Brain Circuits in Development and Learning, 8057 Zurich, Switzerland
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Rani Sanchev
- Centre for Clinical Genetics, Sydney Children's Hospitals Network-Randwick, Sydney, NSW 2031, Australia
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Femke Tammer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Amanda Tyndall
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel, 9112001
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 9112001
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
4
|
Wang L, Liu C, Li L, Wei H, Wei W, Zhou Q, Chen Y, Meng T, Jiao R, Wang Z, Sun Q, Li W. RNF20 Regulates Oocyte Meiotic Spindle Assembly by Recruiting TPM3 to Centromeres and Spindle Poles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306986. [PMID: 38240347 PMCID: PMC10987117 DOI: 10.1002/advs.202306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/02/2023] [Indexed: 04/04/2024]
Abstract
Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.
Collapse
Affiliation(s)
- Liying Wang
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Chao Liu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Huafang Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Wei Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Qiuxing Zhou
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tie‐Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Renjie Jiao
- The State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Wei Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Kieffer F, Hilal F, Gay AS, Debayle D, Pronot M, Poupon G, Lacagne I, Bardoni B, Martin S, Gwizdek C. Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP. Front Mol Biosci 2022; 9:954087. [PMID: 36237573 PMCID: PMC9553004 DOI: 10.3389/fmolb.2022.954087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.
Collapse
Affiliation(s)
- Félicie Kieffer
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fahd Hilal
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Iliona Lacagne
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Carole Gwizdek,
| |
Collapse
|
6
|
Zarreen F, Karim MJ, Chakraborty S. The diverse roles of histone 2B monoubiquitination in the life of plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3854-3865. [PMID: 35348666 DOI: 10.1093/jxb/erac120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Covalent modification of histones is an important tool for gene transcriptional control in eukaryotes, which coordinates growth, development, and adaptation to environmental changes. In recent years, an important role for monoubiquitination of histone 2B (H2B) has emerged in plants, where it is associated with transcriptional activation. In this review, we discuss the dynamics of the H2B monoubiquitination system in plants and its role in regulating developmental processes including flowering, circadian rhythm, photomorphogenesis, and the response to abiotic and biotic stress including drought, salinity, and fungal, bacterial, and viral pathogens. Furthermore, we highlight the crosstalk between H2B monoubiquitination and other histone modifications which fine-tunes transcription and ensures developmental plasticity. Finally, we put into perspective how this versatile regulatory mechanism can be developed as a useful tool for crop improvement.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Zhao Y, Pan J, Cao C, Liang X, Yang S, Liu L, Tao C, Zhao J, Wang Y. RNF20 affects porcine adipocyte differentiation via regulation of mitotic clonal expansion. Cell Prolif 2021; 54:e13131. [PMID: 34647359 PMCID: PMC8666272 DOI: 10.1111/cpr.13131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives RNF20 is recognized as a main E3 ligase for monoubiquitination of histone H2B at lysine 120 (H2Bub). The critical role of RNF20 and H2Bub in various molecular events, such as DNA replication, RNA transcription, and DNA damage response, has been widely investigated and documented. However, its role in porcine adipogenesis remains unknown. In this study, we aimed to clarify the effect of RNF20 on porcine preadipocyte differentiation. Materials and Methods Backfat tissues from fat‐type pigs (Bama and Meishan) and lean‐type pigs (Yorkshire and Landrace) were collected to detect the expression level of RNF20. Preadipocytes were isolated from Bama piglets and induced to differentiation. Small interfering RNAs were applied to deplete RNF20. Oil Red O staining, quantitative real‐time PCR, RNA‐seq, Western blot analysis, and EdU assays were performed to study the regulatory mechanism of RNF20 during adipogenesis. Results We found that the expression levels of RNF20 and H2Bub were significantly higher in backfat tissues from fat‐type pigs than in those from lean‐type pigs. Consistently, the significantly induced expression of RNF20 and H2Bub was also observed in porcine differentiated adipocytes. In addition, knockdown of RNF20 greatly inhibited porcine adipogenesis, as evidenced by dramatically decreased lipid droplet formation and lower expression levels of adipogenic transcription masters in RNF20 knockdown cells. Mechanistically, the depletion of RNF20 decreases the cell proliferation and the level of p‐C/EBPβ via the Ras‐Raf‐MEK1/2‐ERK1/2 cascade pathway at the mitotic clonal expansion phase and therefore suppresses cell differentiation. Conclusions Our results demonstrate that RNF20 is required for porcine preadipocyte differentiation.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lulu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wang F, El-Saafin F, Ye T, Stierle M, Negroni L, Durik M, Fischer V, Devys D, Vincent SD, Tora L. Histone H2Bub1 deubiquitylation is essential for mouse development, but does not regulate global RNA polymerase II transcription. Cell Death Differ 2021; 28:2385-2403. [PMID: 33731875 PMCID: PMC8329007 DOI: 10.1038/s41418-021-00759-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Co-activator complexes dynamically deposit post-translational modifications (PTMs) on histones, or remove them, to regulate chromatin accessibility and/or to create/erase docking surfaces for proteins that recognize histone PTMs. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved multisubunit co-activator complex with modular organization. The deubiquitylation module (DUB) of mammalian SAGA complex is composed of the ubiquitin-specific protease 22 (USP22) and three adaptor proteins, ATXN7, ATXN7L3 and ENY2, which are all needed for the full activity of the USP22 enzyme to remove monoubiquitin (ub1) from histone H2B. Two additional USP22-related ubiquitin hydrolases (called USP27X or USP51) have been described to form alternative DUBs with ATXN7L3 and ENY2, which can also deubiquitylate H2Bub1. Here we report that USP22 and ATXN7L3 are essential for normal embryonic development of mice, however their requirements are not identical during this process, as Atxn7l3-/- embryos show developmental delay already at embryonic day (E) 7.5, while Usp22-/- embryos are normal at this stage, but die at E14.5. Global histone H2Bub1 levels were only slightly affected in Usp22 null embryos, in contrast H2Bub1 levels were strongly increased in Atxn7l3 null embryos and derived cell lines. Our transcriptomic analyses carried out from wild type and Atxn7l3-/- mouse embryonic stem cells (mESCs), or primary mouse embryonic fibroblasts (MEFs) suggest that the ATXN7L3-related DUB activity regulates only a subset of genes in both cell types. However, the gene sets and the extent of their deregulation were different in mESCs and MEFs. Interestingly, the strong increase of H2Bub1 levels observed in the Atxn7l3-/- mESCs, or Atxn7l3-/- MEFs, does not correlate with the modest changes in RNA Polymerase II (Pol II) occupancy and lack of changes in Pol II elongation observed in the two Atxn7l3-/- cellular systems. These observations together indicate that deubiquitylation of histone H2Bub1 does not directly regulate global Pol II transcription elongation.
Collapse
Affiliation(s)
- Fang Wang
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Farrah El-Saafin
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,grid.482637.cPresent Address: Olivia Newton-John Cancer Research Institute, Melbourne, VIC Australia
| | - Tao Ye
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,Plateforme GenomEast, infrastructure France Génomique, 67404 Illkirch, France
| | - Matthieu Stierle
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Matej Durik
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Veronique Fischer
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Didier Devys
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D. Vincent
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - László Tora
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
9
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
10
|
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67:695-705. [PMID: 34089069 DOI: 10.1007/s00294-021-01196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023]
Abstract
Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.
Collapse
Affiliation(s)
- Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Vivane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Lai F, Cheng Y, Zou J, Wang H, Zhu W, Wang X, Cheng H, Zhou R. Identification of Histone Modifications Reveals a Role of H2b Monoubiquitination in Transcriptional Regulation of dmrt1 in Monopterus albus. Int J Biol Sci 2021; 17:2009-2020. [PMID: 34131402 PMCID: PMC8193266 DOI: 10.7150/ijbs.59347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Gonadal trans-differentiation from ovary to testis occurs in a same individual, suggesting a role of epigenetic regulation. However, histone modifications concerning the sex reversal process remain elusive. We analyzed histone modifications using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) technology was used to test chromatin immunoprecipitation of gonads. Western blot analysis was performed to analyze protein expression. Immunofluorescence analysis was conducted to localize proteins in gonadal tissues. Here, we report a developmental atlas of histone modifications in the gonadal differentiation, including acetylation, methylation, and ubiquitination. We provided a detail distribution map of these modification sites including novel histone modifications along histones H2a, H2b, H3, and H4, and revealed their relationship with types of gonadal differentiation. We then determined a testis-enriched histone modification site, H2b monoubiquitination at K120, and its association with spermatogenesis. ChIP-seq demonstrated that the modification was highly enriched in the male sex-determining gene dmrt1 (doublesex and mab-3 related transcription factor 1), in particular, in its exon regions, suggesting its role in transcriptional regulation of dmrt1 in testis. Together, these data not only provide a new resource for epigenetic study in gonadal development, but also define an association of histone modifications with gonadal differentiation from ovary to testis.
Collapse
Affiliation(s)
- Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yibin Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wang Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
13
|
Eyboulet F, Jeronimo C, Côté J, Robert F. The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 2020; 9:e61264. [PMID: 33226341 PMCID: PMC7682988 DOI: 10.7554/elife.61264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institut de recherches cliniques de MontréalMontréalCanada
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - Célia Jeronimo
- Institut de recherches cliniques de MontréalMontréalCanada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - François Robert
- Institut de recherches cliniques de MontréalMontréalCanada
- Département de Médecine, Faculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
14
|
Cheon Y, Kim H, Park K, Kim M, Lee D. Dynamic modules of the coactivator SAGA in eukaryotic transcription. Exp Mol Med 2020; 52:991-1003. [PMID: 32616828 PMCID: PMC8080568 DOI: 10.1038/s12276-020-0463-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) is a highly conserved transcriptional coactivator that consists of four functionally independent modules. Its two distinct enzymatic activities, histone acetylation and deubiquitylation, establish specific epigenetic patterns on chromatin and thereby regulate gene expression. Whereas earlier studies emphasized the importance of SAGA in regulating global transcription, more recent reports have indicated that SAGA is involved in other aspects of gene expression and thus plays a more comprehensive role in regulating the overall process. Here, we discuss recent structural and functional studies of each SAGA module and compare the subunit compositions of SAGA with related complexes in yeast and metazoans. We discuss the regulatory role of the SAGA deubiquitylating module (DUBm) in mRNA surveillance and export, and in transcription initiation and elongation. The findings suggest that SAGA plays numerous roles in multiple stages of transcription. Further, we describe how SAGA is related to human disease. Overall, in this report, we illustrate the newly revealed understanding of SAGA in transcription regulation and disease implications for fine-tuning gene expression. A protein that helps add epigenetic information to genome, SAGA, controls many aspects of gene activation, potentially making it a target for cancer therapies. To fit inside the tiny cell nucleus, the genome is tightly packaged, and genes must be unpacked before they can be activated. Known to be important in genome opening, SAGA has now been shown to also play many roles in gene activation. Daeyoup Lee at the KAIST, Daejeon, South Korea, and co-workers have reviewed recent discoveries about SAGA’s structure, function, and roles in disease. They report that SAGA’s complex (19 subunits organized into four modules) allows it to play so many roles, genome opening, initiating transcription, and efficiently exporting mRNAs. Its master role means that malfunction of SAGA may be linked to many diseases.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Harim Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Kyubin Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
15
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Fournier LA, Kumar A, Stirling PC. Chromatin as a Platform for Modulating the Replication Stress Response. Genes (Basel) 2018; 9:genes9120622. [PMID: 30544989 PMCID: PMC6316668 DOI: 10.3390/genes9120622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA replication occurs in the context of chromatin. Recent years have seen major advances in our understanding of histone supply, histone recycling and nascent histone incorporation during replication. Furthermore, much is now known about the roles of histone remodellers and post-translational modifications in replication. It has also become clear that nucleosome dynamics during replication play critical roles in genome maintenance and that chromatin modifiers are important for preventing DNA replication stress. An understanding of how cells deploy specific nucleosome modifiers, chaperones and remodellers directly at sites of replication fork stalling has been building more slowly. Here we will specifically discuss recent advances in understanding how chromatin composition contribute to replication fork stability and restart.
Collapse
Affiliation(s)
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
17
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
18
|
Dargemont C, Babour A. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription. Nucleus 2017; 8:482-488. [PMID: 28816581 DOI: 10.1080/19491034.2017.1342916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The first step of gene expression results in the production of mRNA ribonucleoparticles (mRNPs) that are exported to the cytoplasm via the NPC for translation into the cytoplasm. During this process, the mRNA molecule synthesized by RNA polymerase II (Pol II) undergoes extensive maturation, folding and packaging events that are intimately coupled to its synthesis. All these events take place in a chromatin context and it is therefore not surprising that a growing number of studies recently reported specific contributions of chromatin dynamics to various steps of mRNP biogenesis. In this extra view, we replace our recent findings highlighting the contribution of the yeast chromatin remodeling complex ISW1 to nuclear mRNA quality control in the context of the recent literature.
Collapse
Affiliation(s)
- Catherine Dargemont
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| | - Anna Babour
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| |
Collapse
|
19
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
20
|
Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc Natl Acad Sci U S A 2017; 114:E2205-E2214. [PMID: 28246327 PMCID: PMC5358361 DOI: 10.1073/pnas.1612633114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA lesion bypass is mediated by DNA damage tolerance (DDT) pathways and homologous recombination (HR). The DDT pathways, which involve translesion synthesis and template switching (TS), are activated by the ubiquitylation (ub) of PCNA through components of the RAD6-RAD18 pathway, whereas the HR pathway is independent of RAD18 However, it is unclear how these processes are coordinated within the context of chromatin. Here we show that Bre1, an ubiquitin ligase specific for histone H2B, is recruited to chromatin in a manner coupled to replication of damaged DNA. In the absence of Bre1 or H2Bub, cells exhibit accumulation of unrepaired DNA lesions. Consequently, the damaged forks become unstable and resistant to repair. We provide physical, genetic, and cytological evidence that H2Bub contributes toward both Rad18-dependent TS and replication fork repair by HR. Using an inducible system of DNA damage bypass, we further show that H2Bub is required for the regulation of DDT after genome duplication. We propose that Bre1-H2Bub facilitates fork recovery and gap-filling repair by controlling chromatin dynamics in response to replicative DNA damage.
Collapse
|
21
|
Fischl H, Howe FS, Furger A, Mellor J. Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol Cell 2017; 65:685-698.e8. [PMID: 28190769 PMCID: PMC5316414 DOI: 10.1016/j.molcel.2017.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andre Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Abstract
Recently, we reported the unexpected finding that the monoubiquitination of histone H2B (H2Bub1) regulates inducible enhancers. Here, we propose a conceptual framework to reconcile the apparently discrepant roles of H2Bub1 in transcription initiation and elongation, and we discuss how H2Bub1 could regulate cellular processes linked to non-coding transcription.
Collapse
Affiliation(s)
- Gregory Segala
- a Département de Biologie Cellulaire , Université de Genève , Genève , Switzerland
| | - Didier Picard
- a Département de Biologie Cellulaire , Université de Genève , Genève , Switzerland
| |
Collapse
|
23
|
Harlen KM, Churchman LS. Subgenic Pol II interactomes identify region-specific transcription elongation regulators. Mol Syst Biol 2017; 13:900. [PMID: 28043953 PMCID: PMC5293154 DOI: 10.15252/msb.20167279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcription, RNA processing, and chromatin‐related factors all interact with RNA polymerase II (Pol II) to ensure proper timing and coordination of transcription and co‐transcriptional processes. Many transcription elongation regulators must function simultaneously to coordinate these processes, yet few strategies exist to explore the complement of factors regulating specific stages of transcription. To this end, we developed a strategy to purify Pol II elongation complexes from subgenic regions of a single gene, namely the 5′ and 3′ regions, using sequences in the nascent RNA. Applying this strategy to Saccharomyces cerevisiae, we determined the specific set of factors that interact with Pol II at precise stages during transcription. We identify many known region‐specific factors as well as determine unappreciated associations of regulatory factors during early and late stages of transcription. These data reveal a role for the transcription termination factor, Rai1, in regulating the early stages of transcription genome‐wide and support the role of Bye1 as a negative regulator of early elongation. We also demonstrate a role for the ubiquitin ligase, Bre1, in regulating Pol II dynamics during the latter stages of transcription. These data and our approach to analyze subgenic transcription elongation complexes will shed new light on the myriad factors that regulate the different stages of transcription and coordinate co‐transcriptional processes.
Collapse
Affiliation(s)
- Kevin M Harlen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
24
|
Niño CA, Guet D, Gay A, Brutus S, Jourquin F, Mendiratta S, Salamero J, Géli V, Dargemont C. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket. J Cell Biol 2016; 212:167-80. [PMID: 26783300 PMCID: PMC4738382 DOI: 10.1083/jcb.201506130] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin modifications of the nuclear pore complex (NPC) control the architectural plasticity of the nuclear basket, contributing to its tethering to the core NPC, with consequences on the cellular response to DNA damage and telomere recombination. The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in regulating the association dynamics of Nup60 and its partner, Nup2, with the NPC through an interaction with Nup84, a component of the Y complex. Although major nuclear transport routes are not regulated by Nup60 modifications, monoubiquitylation of Nup60 is stimulated upon genotoxic stress and regulates the DNA-damage response and telomere repair. Together, these data reveal an original mechanism contributing to the plasticity of the NPC at a molecular-organization and functional level.
Collapse
Affiliation(s)
- Carlos A Niño
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - David Guet
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Alexandre Gay
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Sergine Brutus
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Frédéric Jourquin
- Aix-Marseille University, CNRS UMR 7258, INSERM UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Equipe labellisée Ligue contre le cancer, 13273 Marseille, France
| | - Shweta Mendiratta
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Jean Salamero
- Institut Curie, PSL Research University, CNRS UMR 144, Pierre-and-Marie-Curie Université, Team-Space time imaging of endomembranes and organelles dynamics and PICT-IBiSA Imaging Core Facility, 75005 Paris, France
| | - Vincent Géli
- Aix-Marseille University, CNRS UMR 7258, INSERM UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Equipe labellisée Ligue contre le cancer, 13273 Marseille, France
| | - Catherine Dargemont
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| |
Collapse
|
25
|
Kato A, Komatsu K. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair. Genes (Basel) 2015; 6:592-606. [PMID: 26184323 PMCID: PMC4584319 DOI: 10.3390/genes6030592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/25/2023] Open
Abstract
Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.
Collapse
Affiliation(s)
- Akihiro Kato
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
26
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Aibara S, Katahira J, Valkov E, Stewart M. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res 2015; 43:1883-93. [PMID: 25628361 PMCID: PMC4330390 DOI: 10.1093/nar/gkv032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The NXF1:NXT1 complex (also known as TAP:p15) is a general mRNA nuclear export factor that is conserved from yeast to humans. NXF1 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA domains). It is currently unclear how NXF1:NXT1 binds transcripts and whether there is higher organization of the NXF1 domains. We report here the 3.4 Å resolution crystal structure of the first three domains of human NXF1 together with NXT1 that has two copies of the complex in the asymmetric unit arranged to form an intimate domain-swapped dimer. In this dimer, the linkers between the NXF1 LRR and NTF2-like domains interact with NXT1, generating a 2-fold symmetric platform in which the RNA-binding RRM, LRR and NTF2-like domains are arranged on one face. In addition to bulk transcripts, NXF1:NXT1 also facilitates the export of unspliced retroviral genomic RNA from simple type-D retroviruses such as SRV-1 that contain a constitutive transport element (CTE), a cis-acting 2-fold symmetric RNA stem–loop motif. Complementary structural, biochemical and cellular techniques indicated that the formation of a symmetric RNA binding platform generated by dimerization of NXF1:NXT1 facilitates the recognition of CTE-RNA and promotes its nuclear export.
Collapse
Affiliation(s)
- Shintaro Aibara
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jun Katahira
- Biomolecular Networks Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoka, Suita, Osaka 565-0871, Japan Department of Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Eugene Valkov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
28
|
Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2784-2795. [PMID: 25116306 PMCID: PMC4161953 DOI: 10.1016/j.bbamcr.2014.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
Abstract
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18 to 23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA.
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, 4117 Rollins Research Center, 1510 Clifton Road, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Bonizec M, Hérissant L, Pokrzywa W, Geng F, Wenzel S, Howard GC, Rodriguez P, Krause S, Tansey WP, Hoppe T, Dargemont C. The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B. Nucleic Acids Res 2014; 42:10975-86. [PMID: 25183520 PMCID: PMC4176170 DOI: 10.1093/nar/gku786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/14/2022] Open
Abstract
Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.
Collapse
Affiliation(s)
- Mélanie Bonizec
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Lucas Hérissant
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Sabine Wenzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Paco Rodriguez
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Sabine Krause
- Laboratory for Molecular Myology, Friedrich Baur Institute, Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Catherine Dargemont
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| |
Collapse
|
30
|
The oncogenic polycomb histone methyltransferase EZH2 methylates lysine 120 on histone H2B and competes ubiquitination. Neoplasia 2014; 15:1251-61. [PMID: 24339737 DOI: 10.1593/neo.131436] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
The histone methyltransferase enhancer of zeste 2 (EZH2) is known to be a polycomb protein homologous to Drosophila enhancer of zeste and catalyzes the addition of methyl groups to histone H3 at lysine 27 (H3K27). We previously reported that EZH2 was overexpressed in various types of cancer and plays a crucial role in the cell cycle regulation of cancer cells. In the present study, we demonstrated that EZH2 has the function to monomethylate lysine 120 on histone H2B (H2BK120). EZH2-dependent H2BK120 methylation in cancer cells was confirmed with an H2BK120 methylation-specific antibody. Overexpression of EZH2 significantly attenuated the ubiquitination of H2BK120, a key posttranslational modification of histones for transcriptional regulation. Concordantly, knockdown of EZH2 increased the ubiquitination level of H2BK120, suggesting that the methylation of H2BK120 by EZH2 may competitively inhibit the ubiquitination of H2BK120. Subsequent chromatin immunoprecipitation-Seq and microarray analyses identified downstream candidate genes regulated by EZH2 through the methylation of H2BK120. This is the first report to describe a novel substrate of EZH2, H2BK120, unveiling a new aspect of EZH2 functions in human carcinogenesis.
Collapse
|
31
|
Efficient mRNA polyadenylation requires a ubiquitin-like domain, a zinc knuckle, and a RING finger domain, all contained in the Mpe1 protein. Mol Cell Biol 2014; 34:3955-67. [PMID: 25135474 DOI: 10.1128/mcb.00077-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Almost all eukaryotic mRNAs must be polyadenylated at their 3' ends to function in protein synthesis. This modification occurs via a large nuclear complex that recognizes signal sequences surrounding a poly(A) site on mRNA precursor, cleaves at that site, and adds a poly(A) tail. While the composition of this complex is known, the functions of some subunits remain unclear. One of these is a multidomain protein called Mpe1 in the yeast Saccharomyces cerevisiae and RBBP6 in metazoans. The three conserved domains of Mpe1 are a ubiquitin-like (UBL) domain, a zinc knuckle, and a RING finger domain characteristic of some ubiquitin ligases. We show that mRNA 3'-end processing requires all three domains of Mpe1 and that more than one region of Mpe1 is involved in contact with the cleavage/polyadenylation factor in which Mpe1 resides. Surprisingly, both the zinc knuckle and the RING finger are needed for RNA-binding activity. Consistent with a role for Mpe1 in ubiquitination, mutation of Mpe1 decreases the association of ubiquitin with Pap1, the poly(A) polymerase, and suppressors of mpe1 mutants are linked to ubiquitin ligases. Furthermore, an inhibitor of ubiquitin-mediated interactions blocks cleavage, demonstrating for the first time a direct role for ubiquitination in mRNA 3'-end processing.
Collapse
|
32
|
Fuchs G, Hollander D, Voichek Y, Ast G, Oren M. Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 2014; 24:1572-83. [PMID: 25049226 PMCID: PMC4199367 DOI: 10.1101/gr.176487.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various histone modifications decorate nucleosomes within transcribed genes. Among these, monoubiquitylation of histone H2B (H2Bub1) and methylation of histone H3 on lysines 36 (H3K36me2/3) and 79 (H3K79me2/3) correlate positively with gene expression. By measuring the progression of the transcriptional machinery along genes within live cells, we now report that H2B monoubiquitylation occurs cotranscriptionally and accurately reflects the advance of RNA polymerase II (Pol II). In contrast, H3K36me3 and H3K79me2 are less dynamic and represent Pol II movement less faithfully. High-resolution ChIP-seq reveals that H2Bub1 levels are selectively reduced at exons and decrease in an exon-dependent stepwise manner toward the 3' end of genes. Exonic depletion of H2Bub1 in gene bodies is highly correlated with Pol II pausing at exons, suggesting elongation rate changes associated with intron-exon structure. In support of this notion, H2Bub1 levels were found to be significantly correlated with transcription elongation rates measured in various cell lines. Overall, our data shed light on the organization of H2Bub1 within transcribed genes and single out H2Bub1 as a reliable marker for ongoing transcription elongation.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
33
|
Bonnet J, Devys D, Tora L. Histone H2B ubiquitination: signaling not scrapping. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e19-e27. [PMID: 25027370 DOI: 10.1016/j.ddtec.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monoubiquitination of histone H2B has emerged as an important chromatin modification with roles not only in transcription but also in cell differentiation, DNA repair or mRNA processing. Recently, the genome-wide distribution of histone H2B ubiquitination in different organisms has been reported. In this review we discuss the mechanisms regulating H2B ubiquitination and its downstream effectors as well as the suggested functions for this mark in light of these recent studies.:
Collapse
Affiliation(s)
- Jacques Bonnet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| |
Collapse
|
34
|
Hérissant L, Moehle EA, Bertaccini D, Van Dorsselaer A, Schaeffer-Reiss C, Guthrie C, Dargemont C. H2B ubiquitylation modulates spliceosome assembly and function in budding yeast. Biol Cell 2014; 106:126-38. [PMID: 24476359 DOI: 10.1111/boc.201400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing. RESULTS Here, we perform genome-wide analyses showing that inhibition of specific marks - H2B ubiquitylation, H3K4 methylation and H3K36 methylation - perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs. CONCLUSIONS These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways.
Collapse
Affiliation(s)
- Lucas Hérissant
- Pathologie Cellulaire, University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital Saint Louis, Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:694-701. [PMID: 24412854 DOI: 10.1016/j.bbagrm.2014.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Monoubiquitylation of histone H2B (H2Bub1), catalyzed by the heterodimeric ubiquitin ligase complex RNF20/40, regulates multiple molecular and biological processes. The addition of a large ubiquitin moiety to the small H2B is believed to change the biochemical features of the chromatin. H2B monoubiquitylation alters nucleosome stability, nucleosome reassembly and higher order compaction of the chromatin. While these effects explain some of the direct roles of H2Bub1, there is growing evidence that H2Bub1 can also regulate multiple DNA-templated processes indirectly, by recruitment of specific factors ("readers") to the chromatin. H2Bub1 readers mediate much of the effect of H2Bub1 on histone crosstalk, transcriptional outcome and probably other chromatin-related activities. Here we summarize the current knowledge about H2Bub1-specific readers and their role in various biological processes. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat Commun 2013; 4:2641. [DOI: 10.1038/ncomms3641] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
|
37
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
38
|
Acquaviva L, Drogat J, Dehé PM, de La Roche Saint-André C, Géli V. Spp1 at the crossroads of H3K4me3 regulation and meiotic recombination. Epigenetics 2013; 8:355-60. [PMID: 23511748 PMCID: PMC3674044 DOI: 10.4161/epi.24295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, all H3K4 methylation is performed by a single Set1 Complex (Set1C) that is composed of the catalytic (Set1) and seven other subunits (Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1 and Shg1). It has been known for quite some time that trimethylated H3K4 (H3K4me3) is enriched in the vicinity of meiotic double-strand breaks (DSBs), but the link between H3K4me3 and the meiotic nuclease Spo11 was uncovered only recently. The PHD-containing subunit Spp1, by interacting with H3K4me3 and Mer2, was shown to promote the recruitment of potential meiotic DSB sites to the chromosomal axis allowing their subsequent cleavage by Spo11. Therefore, Spp1 emerged as a key regulator of the H3K4 trimethylation catalyzed by Set1C and of the formation of meiotic DSBs. These findings illustrate the remarkable multifunctionality of Spp1, which not only regulates the catalytic activity of the enzyme (Set1), but also interacts with the deposited mark, and mediates its biological effect (meiotic DSB formation) independently of the complex. As it was previously described for Swd2, and now for Spp1, we anticipate that other Set1C subunits, in addition to regulating H3K4 methylation, may participate in diverse biological functions inside or outside of the complex.
Collapse
Affiliation(s)
- Laurent Acquaviva
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | - Julie Drogat
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | - Pierre-Marie Dehé
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | | | - Vincent Géli
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| |
Collapse
|
39
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
40
|
Moehle EA, Ryan CJ, Krogan NJ, Kress TL, Guthrie C. The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 2012; 8:e1003101. [PMID: 23209445 PMCID: PMC3510044 DOI: 10.1371/journal.pgen.1003101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/02/2012] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic gene expression involves tight coordination between transcription and pre–mRNA splicing; however, factors responsible for this coordination remain incompletely defined. Here, we explored the genetic, functional, and biochemical interactions of a likely coordinator, Npl3, an SR-like protein in Saccharomyces cerevisiae that we recently showed is required for efficient co-transcriptional recruitment of the splicing machinery. We surveyed the NPL3 genetic interaction space and observed a significant enrichment for genes involved in histone modification and chromatin remodeling. Specifically, we found that Npl3 genetically interacts with both Bre1, which mono-ubiquitinates histone H2B as part of the RAD6 Complex, and Ubp8, the de-ubiquitinase of the SAGA Complex. In support of these genetic data, we show that Bre1 physically interacts with Npl3 in an RNA–independent manner. Furthermore, using a genome-wide splicing microarray, we found that the known splicing defect of a strain lacking Npl3 is exacerbated by deletion of BRE1 or UBP8, a phenomenon phenocopied by a point mutation in H2B that abrogates ubiquitination. Intriguingly, even in the presence of wild-type NPL3, deletion of BRE1 exhibits a mild splicing defect and elicits a growth defect in combination with deletions of early and late splicing factors. Taken together, our data reveal a connection between Npl3 and an extensive array of chromatin factors and describe an unanticipated functional link between histone H2B ubiquitination and pre–mRNA splicing. Pre-messenger RNA splicing is the process by which an intron is identified and removed from a transcript and the protein-coding exons are ligated together. It is carried out by the spliceosome, a large and dynamic molecular machine that catalyzes the splicing reaction. It is now apparent that most splicing occurs while the transcript is still engaged with RNA polymerase, implying that the biologically relevant splicing substrate is chromatin-associated. Here, we used a genetic approach to understand which factors participate in the coordination of transcription and splicing. Having recently shown that the Npl3 protein is involved in the recruitment of splicing factors to chromatin-associated transcripts, we performed a systematic screen for genetically interacting factors. Interestingly, we identified factors that influence the ubiquitin modification of histone H2B, a mark involved in transcription initiation and elongation. We show that disruption of the H2B ubiquitination/de-ubiquitination cycle results in defects in splicing, particularly in the absence of Npl3. Furthermore, the ubiquitin ligase, Bre1, shows genetic interactions with other, more canonical spliceosomal factors. Taken together with the myriad Npl3 interaction partners we found, our data suggest an extensive cross-talk between the spliceosome and chromatin.
Collapse
Affiliation(s)
- Erica A. Moehle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Colm J. Ryan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Tracy L. Kress
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
- * E-mail: (TLK); (CG)
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (TLK); (CG)
| |
Collapse
|
41
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
42
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
43
|
Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 2012; 46:662-73. [PMID: 22681888 DOI: 10.1016/j.molcel.2012.05.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/06/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sansó M, Lee KM, Viladevall L, Jacques PÉ, Pagé V, Nagy S, Racine A, St. Amour CV, Zhang C, Shokat KM, Schwer B, Robert F, Fisher RP, Tanny JC. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genet 2012; 8:e1002822. [PMID: 22876190 PMCID: PMC3410854 DOI: 10.1371/journal.pgen.1002822] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022] Open
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification. Modification of histone proteins is an important transcriptional regulatory mechanism in eukaryotic cells. Although various histone modifications are found primarily within the coding regions of transcribed genes, how they influence transcription elongation remains unclear. Among these modifications is mono-ubiquitylation of histone H2B (H2Bub1), which is needed for co-transcriptional methylation of histone H3 at specific sites. Here we show that H2Bub1 and Cdk9, the kinase component of positive transcription elongation factor b (P-TEFb), are jointly regulated by a positive feedback loop: Cdk9 activity is needed for co-transcriptional H2Bub1, and H2Bub1 in turn stimulates Cdk9 activity toward one of its major substrates, the conserved elongation factor Spt5. We provide genetic evidence that the combined action of H2Bub1 on Spt5 phosphorylation and histone methylation accounts for the gene-regulatory effects of this modification. Surprisingly, our genetic and genome-wide studies indicate that P-TEFb and H2Bub1 act in opposition on elongating RNA polymerase. We suggest that the positive feedback linking P-TEFb and H2Bub1 helps to maintain a balance between their opposing actions. These results highlight a novel regulatory role for a conserved histone modification during transcription elongation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Karen M. Lee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Laia Viladevall
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Stephen Nagy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Ariane Racine
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Courtney V. St. Amour
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - François Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (RPF); (JCT)
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- * E-mail: (RPF); (JCT)
| |
Collapse
|
45
|
Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586:1592-601. [PMID: 22564770 DOI: 10.1016/j.febslet.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
The post-translational modification of histone proteins plays an important role in controlling cell fate by directing essentially all DNA-associated nuclear processes. Misregulation and mutation of histone modifying enzymes is a hallmark of tumorigenesis. However, how these different epigenetic modifications lead to tumor initiation and/or progression remains poorly understood. Recent studies have uncovered a potential tumor suppressor role for histone H2B monoubiquitination (H2Bub1). Like many other histone modifications, H2Bub1 has diverse functions and plays roles both in transcriptional activation and repression as well as in controlling mRNA processing and directing DNA repair processes. Notably, H2Bub1 has been linked to transcriptional elongation and is preferentially found in the transcribed region of active genes. Its activity is intimately connected to active transcription and the transcriptional elongation regulatory protein cyclin-dependent kinase-9 (CDK9) and the facilitates chromatin transcription (FACT) complex. This review provides an overview of the current understanding of H2Bub1 function in mammalian systems with a particular emphasis on its role in cancer and potential options for exploiting this knowledge for the treatment of cancer.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
46
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|