1
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
2
|
Gurkalo F, He C, Poutos K, He N. Effects of innovative reinforced concrete slit shaft configuration on seismic performance of elevated water tanks. Sci Rep 2024; 14:6113. [PMID: 38480913 PMCID: PMC10937947 DOI: 10.1038/s41598-024-56851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
Elevated water tanks are considered crucial infrastructure due to their significant role in supporting essential services. A strong ground motion may result in a failure or significant damage to a reinforced concrete shaft of an elevated water tank because hysteric energy dissipation is limited to the formation of plastic hinges at the base of the shaft, while the nonlinear properties of the rest of the shaft remain underutilised. The innovative system of assembling RC shafts for elevated water tanks using a slit wall technique was developed to enhance energy dissipation along with the shaft height by introducing slit zones. The comparative nonlinear dynamic analysis between three-dimensional models of elevated water tanks with different shaft diameters and heights was conducted using SAP2000 software. The results of elevated water tanks with slit and solid reinforced concrete shafts were compared. The research findings showed that during a seismic event, the slit zones increased the ductility of the shaft, reduced stress concentration in the lower part of the shaft, and provided uniform stress distribution throughout the shaft's height. The effect of the innovative system is especially noticeable in the elevated water tanks with tall and slender shafts.
Collapse
Affiliation(s)
- Filip Gurkalo
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Chaofan He
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Konstantinos Poutos
- Faculty of Engineering, Computing and the Environment, Kingston University, London, UK
| | - Na He
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan, China.
| |
Collapse
|
3
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
4
|
Pollin G, De Assuncao T, Doria Jorge S, Chi YI, Charlesworth M, Madden B, Iovanna J, Zimmermann M, Urrutia R, Lomberk G. Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry. Biosci Rep 2023; 43:BSR20231093. [PMID: 37782747 PMCID: PMC10611923 DOI: 10.1042/bsr20231093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Thiago M. De Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Salomao Doria Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN, U.S.A
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
5
|
Feng Z, Yang C, Zhang Y, Li H, Fang W, Wang J, Nie Y, Wang CY, Liu Z, Jiang Z, Wang J, Wang Y. Structure-Based Design and Characterization of the Highly Potent and Selective Covalent Inhibitors Targeting the Lysine Methyltransferases G9a/GLP. J Med Chem 2023. [PMID: 37268593 DOI: 10.1021/acs.jmedchem.3c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3K9 and nonhistone proteins, play important roles in diverse cellular processes. Overexpression or dysregulation of G9a and GLP has been identified in various types of cancer. Here, we report the discovery of a highly potent and selective covalent inhibitor 27 of G9a/GLP via the structure-based drug design approach following structure-activity relationship exploration and cellular potency optimization. Mass spectrometry assays and washout experiments confirmed its covalent inhibition mechanism. Compound 27 displayed improved potency in inhibiting the proliferation and colony formation of PANC-1 and MDA-MB-231 cell lines and exhibited enhanced potency in reducing the levels of H3K9me2 in cells compared to noncovalent inhibitor 26. In vivo, 27 showed significant antitumor efficacy in the PANC-1 xenograft model with good safety. These results clearly indicate that 27 is a highly potent and selective covalent inhibitor of G9a/GLP.
Collapse
Affiliation(s)
- Zongbo Feng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Pharmacy, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Chunju Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junhua Wang
- The Department of Biliary-Pancreatic Surgery, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Chang-Yun Wang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiqing Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhimin Jiang
- School of Pharmacy, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Sigismondo G, Arseni L, Palacio-Escat N, Hofmann TG, Seiffert M, Krijgsveld J. Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Nucleic Acids Res 2023; 51:687-711. [PMID: 36629267 PMCID: PMC9881138 DOI: 10.1093/nar/gkac1264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.
Collapse
Affiliation(s)
- Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nicolàs Palacio-Escat
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
7
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
8
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
9
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
10
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
11
|
Niemtu W, Qin K, Toseef M. A study on sustainable air travel behavior under the possible remedy of risk knowledge: A mediating perspective of risk perception during COVID-19. Front Psychol 2022; 13:874541. [PMID: 36118464 PMCID: PMC9479081 DOI: 10.3389/fpsyg.2022.874541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
The aviation industry is the center of gravity for tourism-dependent countries seeking to uplift their economic activities. The COVID-19 pandemic in the early part of 2020 threatened people and the air industry to the maximum extent. This paper investigated the sustainable air travel behavior of passengers under the risk knowledge path. The mediating role of risk perception, i.e., physical risk, psychological risk, and service quality, was also tested for the risk knowledge-air travel behavior association. We surveyed 339 travelers at six airports in Thailand from January to June 2021 to record their responses. We applied covariance-variance-based structural equation modeling (CB-SEM), and the study results revealed a direct effect of risk knowledge with an indirect impact via risk perception paths on air travel behavior. This paper highlights knowledge as a remedial response to the perceptual makeup of air services sustainability. The study has solid managerial implications for aviation management in the design of ideal pathways for retaining air services during the current public emergency of COVID-19.
Collapse
Affiliation(s)
- Warangsiri Niemtu
- Faculty of Management and Economics, Kunming University of Science and Technology, Kunming, China
| | | | | |
Collapse
|
12
|
Zhu Q, Chen J, Lu X, Wen H, Zhu WG. G9a/GLP catalyzes H3K14me1 and H3K14me2 in vivo and in vitro. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1043-1045. [PMID: 35192124 DOI: 10.1007/s11427-021-2062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology; International Cancer Center; Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology; International Cancer Center; Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology; International Cancer Center; Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology; International Cancer Center; Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology; International Cancer Center; Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
14
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
15
|
Zhang P, Guergues J, Alleyne AR, Cirino TJ, Nadeau O, Figueroa AM, Stacy HM, Suzuki T, McLaughlin JP, Stevens SM, Liu B. Novel Histone Modifications in Microglia Derived from a Mouse Model of Chronic Pain. Proteomics 2022; 22:e2100137. [PMID: 35081661 DOI: 10.1002/pmic.202100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Abstract
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased histone 3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a 2-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pre-treatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel non-opioid therapeutics for the effective management of chronic pain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Amy R Alleyne
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Owen Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Heather M Stacy
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Kang X, Yang X, Guo X, Li Y, Yang C, Wei H, Chang J. OUP accepted manuscript. J Mol Cell Biol 2022; 14:6544677. [PMID: 35259279 PMCID: PMC9254884 DOI: 10.1093/jmcb/mjac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissue-specific clinical cancers. These clinical site mutants acquire a distinctively new epigenetic role and mediate cancer evolution. In this study, we mimicked histone H3 at the 56th lysine (H3K56) mutant incorporation in mouse embryonic stem cells (mESCs) by lentivirus-mediated ectopic expression and analyzed the effects on replication and epigenetic regulation. The data show that two types of H3K56 mutants, namely H3 lysine 56-to-methionine (H3K56M) and H3 lysine 56-to-alanine (H3K56A), promote replication by recruiting more minichromosome maintenance complex component 3 and checkpoint kinase 1 onto chromatin compared with wild-type histone H3 and other site substitution mutants. Under this condition, the frequency of genomic copy number gain in H3K56M and H3K56A cells globally increases, especially in the Mycl1 region, a known molecular marker frequently occurring in multiple malignant cancers. Additionally, we found the disruption of H3K56 acetylation distribution in the copy-gain regions, which indicates a probable epigenetic mechanism of H3K56M and H3K56A. We then identified that H3K56M and H3K56A can trigger a potential adaptation to transcription; genes involved in the mitogen-activated protein kinase pathway are partially upregulated, whereas genes associated with intrinsic apoptotic function show obvious downregulation. The final outcome of ectopic H3K56M and H3K56A incorporation in mESCs is an enhanced ability to form carcinomas. This work indicates that H3K56 site conservation and proper modification play important roles in harmonizing the function of the replication machinery in mESCs.
Collapse
Affiliation(s)
- Xuan Kang
- Correspondence to: Xuan Kang, E-mail:
| | - Xiaomei Yang
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaobo Guo
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yabin Li
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenxin Yang
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | | | |
Collapse
|
17
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
18
|
SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc Natl Acad Sci U S A 2021; 118:2011278118. [PMID: 34074749 PMCID: PMC8201831 DOI: 10.1073/pnas.2011278118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.
Collapse
|
19
|
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer 2021; 148:2375-2388. [PMID: 33128779 DOI: 10.1002/ijc.33375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Histone lysine demethylases (KDMs) are enzymes that remove the methylation marks on lysines in nucleosomes' histone tails. These changes in methylation marks regulate gene transcription during both development and malignant transformation. Depending on which lysine residue is targeted, the effect of a given KDM on gene transcription can be either activating or repressing, and KDMs can regulate the expression of both oncogenes and tumour suppressors. Thus, the functions of KDMs can be regarded as both oncogenic and tumour suppressive, contingent on cell context and the enzyme isoform. Finally, KDMs also demethylate nonhistone proteins and have a variety of demethylase-independent functions. These epigenetic and other mechanisms that KDMs control make them important regulators of malignant tumours. Here, we present an overview of eight KDM subfamilies, their most-studied lysine targets and selected recent data on their roles in cancer stem cells, tumour aggressiveness and drug tolerance.
Collapse
Affiliation(s)
- Jayden Sterling
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lenka Munoz
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Kang JY, Park JW, Hahm JY, Jung H, Seo SB. Histone H3K79 demethylation by KDM2B facilitates proper DNA replication through PCNA dissociation from chromatin. Cell Prolif 2020; 53:e12920. [PMID: 33029857 PMCID: PMC7653264 DOI: 10.1111/cpr.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives The level of histone H3 lysine 79 methylation is regulated by the cell cycle and involved in cell proliferation. KDM2B is an H3K79 demethylase. Proliferating cell nuclear antigen (PCNA) is a component of the DNA replication machinery. This study aimed at elucidating a molecular link between H3K79me recognition of PCNA and cell cycle control. Materials and methods We generated KDM2B‐depleted 293T cells and histone H3‐K79R mutant‐expressing 293T cells. Western blots were primarily utilized to examine the H3K79me level and its effect on subsequent PCNA dissociation from chromatin. We applied IP, peptide pull‐down, isothermal titration calorimetry (ITC) and ChIP experiments to show the PCNA binding towards methylated H3K79 and DNA replication origins. Flow cytometry, MTT, iPOND and DNA fibre assays were used to assess the necessity of KDM2B for DNA replication and cell proliferation. Results We revealed that KDM2B‐mediated H3K79 demethylation regulated cell cycle progression. We found that PCNA bound chromatin in an H3K79me‐dependent manner during S phase. KDM2B was responsible for the timely dissociation of PCNA from chromatin, allowing to efficient DNA replication. Depletion of KDM2B aberrantly enriched chromatin with PCNA and caused slow dissociation of residual PCNA, leading to a negative effect on cell proliferation. Conclusions We suggested a novel interaction between PCNA and H3K79me. Thus, our findings provide a new mechanism of KDM2B in regulation of DNA replication and cell proliferation.
Collapse
Affiliation(s)
- Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| |
Collapse
|
21
|
Histone Modifications and Other Facets of Epigenetic Regulation in Trypanosomatids: Leaving Their Mark. mBio 2020; 11:mBio.01079-20. [PMID: 32873754 PMCID: PMC7468196 DOI: 10.1128/mbio.01079-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Trypanosomatids, however, are early diverging eukaryotes. Although possessing all four canonical histones as well as several variants, their sequences diverge from those of other eukaryotes, particularly in the tails. Consequently, the modifications they carry also vary. Initial analyses almost 15 years ago suggested that trypanosomatids possessed a smaller collection of histone modifications. However, exhaustive high resolution mass spectrometry analyses in the last few years have overturned this belief, and it is now evident that the “histone code” proposed by Allis and coworkers in the early years of this century is as complex in these organisms as in other eukaryotes. Trypanosomatids cause several diseases, and the members of this group of organisms have varied lifestyles, evolving diverse mechanisms to evade the host immune system, some of which have been found to be principally controlled by epigenetic mechanisms. This minireview aims to acquaint the reader with the impact of histone PTMs on trypanosomatid cellular processes, as well as other facets of trypanosomatid epigenetic regulation, including the influence of three-dimensional (3D) genome architecture, and discusses avenues for future investigations.
Collapse
|
22
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
23
|
Sharma N, Speed MC, Allen CP, Maranon DG, Williamson E, Singh S, Hromas R, Nickoloff JA. Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress responses. NAR Cancer 2020; 2:zcaa008. [PMID: 32743552 PMCID: PMC7380491 DOI: 10.1093/narcan/zcaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
Accurate DNA replication and segregation are critical for maintaining genome integrity and suppressing cancer. Metnase and EEPD1 are DNA damage response (DDR) proteins frequently dysregulated in cancer and implicated in cancer etiology and tumor response to genotoxic chemo- and radiotherapy. Here, we examine the DDR in human cell lines with CRISPR/Cas9 knockout of Metnase or EEPD1. The knockout cell lines exhibit slightly slower growth rates, significant hypersensitivity to replication stress, increased genome instability and distinct alterations in DDR signaling. Metnase and EEPD1 are structure-specific nucleases. EEPD1 is recruited to and cleaves stalled forks to initiate fork restart by homologous recombination. Here, we demonstrate that Metnase is also recruited to stalled forks where it appears to dimethylate histone H3 lysine 36 (H3K36me2), raising the possibility that H3K36me2 promotes DDR factor recruitment or limits nucleosome eviction to protect forks from nucleolytic attack. We show that stalled forks are cleaved normally in the absence of Metnase, an important and novel result because a prior study indicated that Metnase nuclease is important for timely fork restart. A double knockout was as sensitive to etoposide as either single knockout, suggesting a degree of epistasis between Metnase and EEPD1. We propose that EEPD1 initiates fork restart by cleaving stalled forks, and that Metnase may promote fork restart by processing homologous recombination intermediates and/or inducing H3K36me2 to recruit DDR factors. By accelerating fork restart, Metnase and EEPD1 reduce the chance that stalled replication forks will adopt toxic or genome-destabilizing structures, preventing genome instability and cancer. Metnase and EEPD1 are overexpressed in some cancers and thus may also promote resistance to genotoxic therapeutics.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Michael C Speed
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Christopher P Allen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Elizabeth Williamson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sudha Singh
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
24
|
Karányi Z, Hornyák L, Székvölgyi L. Histone H3 Lysine 56 Acetylation Is Required for Formation of Normal Levels of Meiotic DNA Breaks in S. cerevisiae. Front Cell Dev Biol 2020; 7:364. [PMID: 31998719 PMCID: PMC6970188 DOI: 10.3389/fcell.2019.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023] Open
Abstract
Meiotic recombination is initiated by Spo11-catalyzed DNA double-strand breaks (DSBs) that are promoted by histone modifications and histone modifying enzymes. Herein we investigated the role of histone H3 lysine 56 acetylation (H3K56ac) located near the entry/exit points of the DNA in the globular H3 domain. We generated a series of mutant cells (asf1Δ, rtt109Δ, hst3/4Δ, and H3K56A) in which the endogenous level of H3K56ac was manipulated and tracked during meiotic growth. We show that complete loss or increased abundance of H3K56ac in these mutants allows timely entry into meiosis and sporulation and does not impair S phase progression, first and second meiotic cell divisions, and spore viability. In the asf1Δ, rtt109Δ, hst3/4Δ mutants, DSBs and crossovers form normal levels with a short (60-min) delay at the HIS4-LEU2 artificial recombination hotspot, however, DSB formation shows a ∼threefold decrease in the H3K56A mutant at the natural BUD23-ARE1 hotspot. The latter DSB phenotype, showing significant DSB reduction in the H3K56A mutant, was also observed at DSB sites using genome-wide mapping of Rfa1-coated single-stranded DNA flanking DSBs (RPA ChIP). Parallel mapping of H3K56-acetylated histones in wild type cells revealed strong depletion of the H3K56ac ChIP signal over Spo11-oligo DSBs, albeit most H3K56-acetylated histones were enriched adjacent to the identified RPA ChIP binding sites. Taken together, these associations demonstrate a prominent role of H3 lysine 56 acetylation in the formation of DNA breaks within recombination hotspot regions.
Collapse
Affiliation(s)
- Zsolt Karányi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilla Hornyák
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Ciechomska IA, Jayaprakash C, Maleszewska M, Kaminska B. Histone Modifying Enzymes and Chromatin Modifiers in Glioma Pathobiology and Therapy Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:259-279. [PMID: 32034718 DOI: 10.1007/978-3-030-30651-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal transduction pathways directly communicate and transform chromatin to change the epigenetic landscape and regulate gene expression. Chromatin acts as a dynamic platform of signal integration and storage. Histone modifications and alteration of chromatin structure play the main role in chromatin-based gene expression regulation. Alterations in genes coding for histone modifying enzymes and chromatin modifiers result in malfunction of proteins that regulate chromatin modification and remodeling. Such dysregulations culminate in profound changes in chromatin structure and distorted patterns of gene expression. Gliomagenesis is a multistep process, involving both genetic and epigenetic alterations. Recent applications of next generation sequencing have revealed that many chromatin regulation-related genes, including ATRX, ARID1A, SMARCA4, SMARCA2, SMARCC2, BAF155 and hSNF5 are mutated in gliomas. In this review we summarize newly identified mechanisms affecting expression or functions of selected histone modifying enzymes and chromatin modifiers in gliomas. We focus on selected examples of pathogenic mechanisms involving ATRX, histone methyltransferase G9a, histone acetylases/deacetylases and chromatin remodeling complexes SMARCA2/4. We discuss the impact of selected epigenetics alterations on glioma pathobiology, signaling and therapeutic responses. We assess the attempts of targeting defective pathways with new inhibitors.
Collapse
Affiliation(s)
- Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
26
|
Urrutia G, Salmonson A, Toro-Zapata J, de Assuncao TM, Mathison A, Dusetti N, Iovanna J, Urrutia R, Lomberk G. Combined Targeting of G9a and Checkpoint Kinase 1 Synergistically Inhibits Pancreatic Cancer Cell Growth by Replication Fork Collapse. Mol Cancer Res 2019; 18:448-462. [PMID: 31822519 DOI: 10.1158/1541-7786.mcr-19-0490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Because of its dismal outcome, pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge making the testing of new pharmacologic tools a goal of paramount importance. Here, we developed a rational approach for inhibiting PDAC growth based on leveraging cell-cycle arrest of malignant cells at a phase that shows increased sensitivity to distinct epigenomic inhibitors. Specifically, we simultaneously inhibited checkpoint kinase 1 (Chk1) by prexasertib and the G9a histone methyltransferase with BRD4770, thereby targeting two key pathways for replication fork stability. Methodologically, the antitumor effects and molecular mechanisms of the combination were assessed by an extensive battery of assays, utilizing cell lines and patient-derived cells as well as 3D spheroids and xenografts. We find that the prexasertib-BRD4770 combination displays a synergistic effect on replication-associated phenomena, including cell growth, DNA synthesis, cell-cycle progression at S phase, and DNA damage signaling, ultimately leading to a highly efficient induction of cell death. Moreover, cellular and molecular data reveal that the synergistic effect of these pathways can be explained, at least in large part, by the convergence of both Chk1 and G9a functions at the level of the ATR-RPA-checkpoint pathway, which is operational during replication stress. Thus, targeting the epigenetic regulator G9a, which is necessary for replication fork stability, combined with inhibition of the DNA damage checkpoint, offers a novel approach for controlling PDAC growth through replication catastrophe. IMPLICATIONS: This study offers an improved, context-dependent, paradigm for the use of epigenomic inhibitors and provides mechanistic insight into their potential therapeutic use against PDAC.
Collapse
Affiliation(s)
- Guillermo Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ann Salmonson
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jorge Toro-Zapata
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thiago M de Assuncao
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Mathison
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gwen Lomberk
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin. .,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Srivastava M, Chen Z, Zhang H, Tang M, Wang C, Jung SY, Chen J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep 2019; 25:3869-3883.e4. [PMID: 30590055 PMCID: PMC6364303 DOI: 10.1016/j.celrep.2018.11.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Abstract
Protein methylation is an important and reversible post-translational modification
that regulates many biological processes in cells. It occurs mainly on lysine and arginine
residues and involves many important biological processes, including transcriptional
activity, signal transduction, and the regulation of gene expression. Protein methylation
and its regulatory enzymes are related to a variety of human diseases, so improved identification
of methylation sites is useful for designing drugs for a variety of related diseases.
In this review, we systematically summarize and analyze the tools used for the prediction
of protein methylation sites on arginine and lysine residues over the last decade.
Collapse
Affiliation(s)
- Chunyan Ao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shunshan Jin
- Department of Neurology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Yuan Lin
- Department of System Integration, Sparebanken Vest, Bergen, Norway
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
30
|
5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Sci Rep 2019; 9:11065. [PMID: 31363131 PMCID: PMC6667497 DOI: 10.1038/s41598-019-47528-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.
Collapse
|
31
|
Abstract
The epigenetic control of gene expression could be affected by addition and/or removal of post-translational modifications such as phosphorylation, acetylation and methylation of histone proteins, as well as methylation of DNA (5-methylation on cytosines). Misregulation of these modifications is associated with altered gene expression, resulting in various disease conditions. G9a belongs to the protein lysine methyltransferases that specifically methylates the K9 residue of histone H3, leading to suppression of several tumor suppressor genes. In this review, G9a functions, role in various diseases, structural biology aspects for inhibitor design, structure-activity relationship among the reported inhibitors are discussed which could aid in the design and development of potent G9a inhibitors for cancer treatment in the future.
Collapse
|
32
|
Milite C, Feoli A, Horton JR, Rescigno D, Cipriano A, Pisapia V, Viviano M, Pepe G, Amendola G, Novellino E, Cosconati S, Cheng X, Castellano S, Sbardella G. Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. J Med Chem 2019; 62:2666-2689. [PMID: 30753076 DOI: 10.1021/acs.jmedchem.8b02008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of compound BIX01294 over 10 years ago, only a very limited number of nonquinazoline inhibitors of H3K9-specific methyltransferases G9a and G9a-like protein (GLP) have been reported. Herein, we report the identification of a novel chemotype for G9a/GLP inhibitors, based on the underinvestigated 2-alkyl-5-amino- and 2-aryl-5-amino-substituted 3 H-benzo[ e][1,4]diazepine scaffold. Our research efforts resulted in the identification 12a (EML741), which not only maintained the high in vitro and cellular potency of its quinazoline counterpart, but also displayed improved inhibitory potency against DNA methyltransferase 1, improved selectivity against other methyltransferases, low cell toxicity, and improved apparent permeability values in both parallel artificial membrane permeability assay (PAMPA) and blood-brain barrier-specific PAMPA, and therefore might potentially be a better candidate for animal studies. Finally, the co-crystal structure of GLP in complex with 12a provides the basis for the further development of benzodiazepine-based G9a/GLP inhibitors.
Collapse
Affiliation(s)
| | | | - John R Horton
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | | | | | | | | - Giorgio Amendola
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Ettore Novellino
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Sandro Cosconati
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
33
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
34
|
Janssen A, Colmenares SU, Lee T, Karpen GH. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev 2018; 33:103-115. [PMID: 30578303 PMCID: PMC6317320 DOI: 10.1101/gad.317537.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) must be orchestrated properly within diverse chromatin domains in order to maintain genetic stability. Euchromatin and heterochromatin domains display major differences in histone modifications, biophysical properties, and spatiotemporal dynamics of DSB repair. However, it is unclear whether differential histone-modifying activities are required for DSB repair in these distinct domains. We showed previously that the Drosophila melanogaster KDM4A (dKDM4A) histone demethylase is required for heterochromatic DSB mobility. Here we used locus-specific DSB induction in Drosophila animal tissues and cultured cells to more deeply interrogate the impact of dKDM4A on chromatin changes, temporal progression, and pathway utilization during DSB repair. We found that dKDM4A promotes the demethylation of heterochromatin-associated histone marks at DSBs in heterochromatin but not euchromatin. Most importantly, we demonstrate that dKDM4A is required to complete DSB repair in a timely manner and regulate the relative utilization of homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways but exclusively for heterochromatic DSBs. We conclude that the temporal kinetics and pathway utilization during heterochromatic DSB repair depend on dKDM4A-dependent demethylation of heterochromatic histone marks. Thus, distinct pre-existing chromatin states require specialized epigenetic alterations to ensure proper DSB repair.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Timothy Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Ramya Chandar Charles M, Hsieh HP, Selvaraj Coumar M. Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study. J Biomol Struct Dyn 2018; 37:2581-2592. [PMID: 30047835 DOI: 10.1080/07391102.2018.1491422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mono- and di-methylation of the H3K9 residue in the histone tail by G9a lysine methyltransferase is associated with transcriptional suppression of genes. Here, we use molecular dynamics simulation and free energy calculations of five different modified/mutated G9a substrate peptides to elucidate the rationale behind the substrate binding to G9a. We also investigated the binding energy contribution based architecture of the active site of G9a to understand substrate and inhibitor binding. Wild-type peptide (H3K9) shows better binding affinity than mono- and di-methylated lysine (K9) and other modified peptides (K9A and R8A). Arg8 of the substrate peptide is crucial for determining the degree of conformational freedom/stability of the wild-type substrate peptide, as well as binding to G9a. Our results also suggest that the G9a active site is segregated into energy rich and low regions, and the energy rich region alone is used by the inhibitors for binding. These insights into the active site architecture should be taken into consideration in virtual screening experiments designed to discover novel inhibitors for G9a. In particular, compounds that could interact with the six residues of G9a - Asp1074, Asp1083, Leu1086, Asp1088, Tyr1154 and Phe1158 - should be preferentially tested in G9a inhibition biological assays. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Hsing-Pang Hsieh
- b Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan , Taiwan , ROC
| | | |
Collapse
|
36
|
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837:8-24. [PMID: 30125562 DOI: 10.1016/j.ejphar.2018.08.021] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023]
Abstract
Addition of chemical tags on the DNA and modification of histone proteins impart a distinct feature on chromatin architecture. With the advancement in scientific research, the key players underlying these changes have been identified as epigenetic modifiers of the chromatin. Indeed, the plethora of enzymes catalyzing these modifications, portray the diversity of epigenetic space and the intricacy in regulating gene expression. These epigenetic players are categorized as writers: that introduce various chemical modifications on DNA and histones, readers: the specialized domain containing proteins that identify and interpret those modifications and erasers: the dedicated group of enzymes proficient in removing these chemical tags. Research over the past few decades has established that these epigenetic tools are associated with numerous disease conditions especially cancer. Besides, with the involvement of epigenetics in cancer, these enzymes and protein domains provide new targets for cancer drug development. This is certain from the volume of epigenetic research conducted in universities and R&D sector of pharmaceutical industry. Here we have highlighted the different types of epigenetic enzymes and protein domains with an emphasis on methylation and acetylation. This review also deals with the recent developments in small molecule inhibitors as potential anti-cancer drugs targeting the epigenetic space.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
37
|
Zhang Y, Chang JF, Sun J, Chen L, Yang XM, Tang HY, Jing YY, Kang X, He ZM, Wu JY, Wei HM, Wang DL, Xu RG, Zhu RB, Shen Y, Zeng SY, Wang C, Liu KN, Zhang Y, Mao ZY, Jiang CZ, Sun FL. Histone H3K27 methylation is required for NHEJ and genome stability by modulating the dynamics of FANCD2 on chromatin. J Cell Sci 2018; 131:jcs.215525. [PMID: 29760279 DOI: 10.1242/jcs.215525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of homeostatic balance in di- and tri-methyl H3K27 levels or that caused by mis-sense mutations of histone H3 (H3K27M) was reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in DIPG patients, dramatically attenuated the presence of 53BP1 foci and NHEJ repair capability in HDF cells. H3.1K27M cells showed increased rates of genomic insertions/deletions (In/Dels) and copy number variations (CNVs), as well as augmented p53-dependent apoptotic cells. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player to orchestrate DNA repair pathway choice. H3.1K27M triggered an accumulation of FANCD2 on chromatin, supporting the interaction between H3.1K27M and FANCD2. Most interestingly, knock-down of FANCD2 in H3.1K27M cells recovered the number of 53BP1 foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the case of endogenous H3.1K27M mutant regulation in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.
Collapse
Affiliation(s)
- Ye Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lu Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Huan-Yin Tang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yuan-Ya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Min He
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jun-Yu Wu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Hui-Min Wei
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Da-Liang Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rong-Gang Xu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rui-Bao Zhu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Ying Shen
- School of Software Engineering, Tongji University, Shanghai 200092, PR China
| | - Shi-Yang Zeng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Chen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yong Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Ying Mao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Ci-Zhong Jiang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
38
|
Deng W, Wang Y, Ma L, Zhang Y, Ullah S, Xue Y. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Brief Bioinform 2017; 18:647-658. [PMID: 27241573 DOI: 10.1093/bib/bbw041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
Protein methylation is an essential posttranslational modification (PTM) mostly occurs at lysine and arginine residues, and regulates a variety of cellular processes. Owing to the rapid progresses in the large-scale identification of methylation sites, the available data set was dramatically expanded, and more attention has been paid on the identification of specific methylation types of modification residues. Here, we briefly summarized the current progresses in computational prediction of methylation sites, which provided an accurate, rapid and efficient approach in contrast with labor-intensive experiments. We collected 5421 methyllysines and methylarginines in 2592 proteins from the literature, and classified most of the sites into different types. Data analyses demonstrated that different types of methylated proteins were preferentially involved in different biological processes and pathways, whereas a unique sequence preference was observed for each type of methylation sites. Thus, we developed a predictor of GPS-MSP, which can predict mono-, di- and tri-methylation types for specific lysines, and mono-, symmetric di- and asymmetrical di-methylation types for specific arginines. We critically evaluated the performance of GPS-MSP, and compared it with other existing tools. The satisfying results exhibited that the classification of methylation sites into different types for training can considerably improve the prediction accuracy. Taken together, we anticipate that our study provides a new lead for future computational analysis of protein methylation, and the prediction of methylation types of covalently modified lysine and arginine residues can generate more useful information for further experimental manipulation.
Collapse
|
39
|
Ginjala V, Rodriguez-Colon L, Ganguly B, Gangidi P, Gallina P, Al-Hraishawi H, Kulkarni A, Tang J, Gheeya J, Simhadri S, Yao M, Xia B, Ganesan S. Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage. Sci Rep 2017; 7:16613. [PMID: 29192276 PMCID: PMC5709370 DOI: 10.1038/s41598-017-16480-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
Upon induction of DNA breaks, ATM activation leads to a cascade of local chromatin modifications that promote efficient recruitment of DNA repair proteins. Errors in this DNA repair pathway lead to genomic instability and cancer predisposition. Here, we show that the protein lysine methyltransferase G9a (also known as EHMT2) and GLP1 (also known as EHMT1) are critical components of the DNA repair pathway. G9a and GLP1 rapidly localizes to DNA breaks, with GLP1 localization being dependent on G9a. ATM phosphorylation of G9a on serine 569 is required for its recruitment to DNA breaks. G9a catalytic activity is required for the early recruitment of DNA repair factors including 53BP and BRCA1 to DNA breaks. Inhibition of G9a catalytic activity disrupts DNA repair pathways and increases sensitivity to ionizing radiation. Thus, G9a is a potential therapeutic target in the DNA repair pathway.
Collapse
Affiliation(s)
- Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA.
| | - Lizahira Rodriguez-Colon
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Bratati Ganguly
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Prawallika Gangidi
- Cornell University, College of Engineering, Department of Biological Engineering, 111 Wing Drive, Ithaca, NY, 14853-5701, USA
| | - Paul Gallina
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Husam Al-Hraishawi
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Atul Kulkarni
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Jeremy Tang
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Jinesh Gheeya
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Srilatha Simhadri
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Ming Yao
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Bing Xia
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA.
| |
Collapse
|
40
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
41
|
Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong CC, Ruan K. Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J 2017; 284:3422-3436. [DOI: 10.1111/febs.14198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/11/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Li Xu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Aimin Cheng
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Min Huang
- National Center for Protein Science Shanghai; Institute of Biochemistry and Cell Biology; Chinese Academy of Sciences; Shanghai China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Hongyu Bao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jia Gao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Na Wang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jiuyang Liu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Catherine C.L. Wong
- National Center for Protein Science Shanghai; Institute of Biochemistry and Cell Biology; Chinese Academy of Sciences; Shanghai China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| |
Collapse
|
42
|
Choe KN, Moldovan GL. Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell 2017; 65:380-392. [PMID: 28157503 DOI: 10.1016/j.molcel.2016.12.020] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) lies at the center of the faithful duplication of eukaryotic genomes. With its distinctive doughnut-shaped molecular structure, PCNA was originally studied for its role in stimulating DNA polymerases. However, we now know that PCNA does much more than promote processive DNA synthesis. Because of the complexity of the events involved, cellular DNA replication poses major threats to genomic integrity. Whatever predicament lies ahead for the replication fork, PCNA is there to orchestrate the events necessary to handle it. Through its many protein interactions and various post-translational modifications, PCNA has far-reaching impacts on a myriad of cellular functions.
Collapse
Affiliation(s)
- Katherine N Choe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
43
|
Xiong Y, Li F, Babault N, Wu H, Dong A, Zeng H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Bioorg Med Chem 2017; 25:4414-4423. [PMID: 28662962 DOI: 10.1016/j.bmc.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Given the high homology between the protein lysine methyltransferases G9a-like protein (GLP) and G9a, it has been challenging to develop potent and selective inhibitors for either enzyme. Recently, we reported two quinazoline compounds, MS0124 and MS012, as GLP selective inhibitors. To further investigate the structure-activity relationships (SAR) of the quinazoline scaffold, we designed and synthesized a range of analogs bearing different 2-amino substitutions and evaluated their inhibition potencies against both GLP and G9a. These studies led to the identification of two new GLP selective inhibitors, 13 (MS3748) and 17 (MS3745), with 59- and 65-fold higher potency for GLP over G9a, which were confirmed by isothermal titration calorimetry (ITC). Crystal structures of GLP and G9a in complex with 13 and 17 provide insight into the interactions of the inhibitors with both proteins. In addition, we generated GLP selective inhibitors bearing a quinoline core instead of the quinazoline core.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
44
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
45
|
Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft. Invest New Drugs 2017; 35:412-426. [DOI: 10.1007/s10637-017-0448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
|
46
|
Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. J Med Chem 2017; 60:1876-1891. [PMID: 28135087 DOI: 10.1021/acs.jmedchem.6b01645] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
47
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
48
|
Griffin NI, Sharma G, Zhao X, Mirza S, Srivastava S, Dave BJ, Aleskandarany M, Rakha E, Mohibi S, Band H, Band V. ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. Breast Cancer Res 2016; 18:113. [PMID: 27852327 PMCID: PMC5112670 DOI: 10.1186/s13058-016-0770-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background We have established the critical role of ADA3 as a coactivator of estrogen receptor (ER), as well as its role in cell cycle progression. Furthermore, we showed that ADA3 is predominantly nuclear in mammary epithelium, and in ER+, but is cytoplasmic in ER- breast cancers, the latter correlating with poor survival. However, the role of nuclear ADA3 in human mammary epithelial cells (hMECs), and in ER+ breast cancer cells, as well as the importance of ADA3 expression in relation to patient prognosis and survival in ER+ breast cancer have remained uncharacterized. Methods We overexpressed ADA3 in hMECs or in ER+ breast cancer cells and assessed the effect on cell proliferation. The expression of ADA3 was analyzed then correlated with the expression of various prognostic markers, as well as survival of breast cancer patients. Results Overexpression of ADA3 in ER- hMECs as well as in ER+ breast cancer cell lines enhanced cell proliferation. These cells showed increased cyclin B and c-MYC, decreased p27 and increased SKP2 levels. This was accompanied by increased mRNA levels of early response genes c-FOS, EGR1, and c-MYC. Analysis of breast cancer tissue specimens showed a significant correlation of ADA3 nuclear expression with c-MYC expression. Furthermore, nuclear ADA3 and c-MYC expression together showed significant correlation with tumor grade, mitosis, pleomorphism, NPI, ER/PR status, Ki67 and p27 expression. Importantly, within ER+ cases, expression of nuclear ADA3 and c-MYC also significantly correlated with Ki67 and p27 expression. Univariate Kaplan Meier analysis of four groups in the whole, as well as the ER+ patients showed that c-MYC and ADA3 combinatorial phenotypes showed significantly different breast cancer specific survival with c-MYC-high and ADA3-Low subgroup had the worst outcome. Using multivariate analyses within the whole cohort and the ER+ subgroups, the significant association of ADA3 and c-MYC expression with patients’ outcome was independent of tumor grade, stage and size, and ER status. Conclusion ADA3 overexpression enhances cell proliferation that is associated with increased expression of c-MYC. Expression patterns with respect to ADA3/c-MYC can divide patients into four significantly different subgroups, with c-MYC High and ADA3 Low status independently predicting poor survival in patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0770-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas I Griffin
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gayatri Sharma
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiangshan Zhao
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mirza
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shashank Srivastava
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavana J Dave
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Human Genetics Laboratories, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohammed Aleskandarany
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Emad Rakha
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Shakur Mohibi
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hamid Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA. .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
49
|
Stejskal S, Stepka K, Tesarova L, Stejskal K, Matejkova M, Simara P, Zdrahal Z, Koutna I. Cell cycle-dependent changes in H3K56ac in human cells. Cell Cycle 2016; 14:3851-63. [PMID: 26645646 DOI: 10.1080/15384101.2015.1106760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.
Collapse
Affiliation(s)
- Stanislav Stejskal
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stepka
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Lenka Tesarova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stejskal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Martina Matejkova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Pavel Simara
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Zbynek Zdrahal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Irena Koutna
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| |
Collapse
|
50
|
Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene 2016; 36:922-932. [PMID: 27452519 DOI: 10.1038/onc.2016.258] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Abstract
p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.
Collapse
|