1
|
Sun Y, Patterson-Fortin J, Han S, Li Z, Nowicka Z, Hirohashi Y, Kilgas S, Yi JK, Spektor A, Fendler W, Konstantinopoulos PA, Chowdhury D. 53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer. Nat Commun 2024; 15:6676. [PMID: 39107288 PMCID: PMC11303708 DOI: 10.1038/s41467-024-50999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.
Collapse
MESH Headings
- Tumor Suppressor p53-Binding Protein 1/metabolism
- Tumor Suppressor p53-Binding Protein 1/genetics
- Female
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Humans
- Animals
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Mice
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- BRCA1 Protein/metabolism
- BRCA1 Protein/genetics
- Signal Transduction
- CD8-Positive T-Lymphocytes/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Immunity, Innate
Collapse
Affiliation(s)
- Yajie Sun
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jeffrey Patterson-Fortin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sen Han
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Yuna Hirohashi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jae Kyo Yi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Lavi ES, Lin ZP, Ratner ES. Gene expression of non-homologous end-joining pathways in the prognosis of ovarian cancer. iScience 2023; 26:107934. [PMID: 37810216 PMCID: PMC10558711 DOI: 10.1016/j.isci.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy in women, with a 46% five-year overall survival rate. The objective of the study was to investigate the effects of non-homologous end-joining (NHEJ) genes on clinical outcomes of ovarian cancer patients. To determine if these genes act as prognostic biomarkers of mortality and disease progression, the expression profiles of 48 NHEJ-associated genes were analyzed using an array of statistical and machine learning techniques: logistic regression models, decision trees, naive-Bayes, two sample t-tests, support vector machines, hierarchical clustering, principal component analysis, and neural networks. In this process, the correlation of genes with patient survival and disease progression and recurrence was noted. Also, multiple features from the gene set were found to have significant predictive capabilities. APTX, BRCA1, PAXX, LIG1, and TP53 were identified as most important out of all the candidate genes for predicting clinical outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Ethan S. Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
6
|
Acosta AM, Al-Obaidy KI, Sholl LM, Dickson BC, Lindeman NI, Hirsch MS, Collins K, Fletcher CD, Idrees MT. Sarcomatoid Yolk Sac Tumor Harbors Somatic Mutations That Are Otherwise Rare in Testicular Germ Cell Tumors. Am J Surg Pathol 2022; 46:701-712. [PMID: 35034041 DOI: 10.1097/pas.0000000000001865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In testicular germ cell tumors (TGCTs), components with nonspecific sarcomatous features that express keratins and glypican 3 are classified as sarcomatoid yolk sac tumor (SYST). SYST is most frequently seen in metastatic sites after chemotherapy. Like so-called "somatic-type" malignancies arising in TGCTs, SYST is markedly resistant to systemic therapy and has a more aggressive clinical course than conventional types of TGCT. However, the clinicopathologic and molecular features of SYST remain incompletely described. This study evaluated a multi-institutional series of 20 SYSTs using massively parallel sequencing and p53 immunohistochemistry. The histologic and clinical characteristics of the cases were also assessed, including analyses of disease-specific outcomes. DNA sequencing identified somatic mutations in 12/20 cases (60%), including recurrent TP53 and RIF1 mutations (present in 4/20 cases, 20% each). In 3 of the 4 SYST with TP53 mutations, there was molecular evidence of loss of heterozygosity. Immunohistochemistry demonstrated diffuse overexpression of p53 protein in 3/4 (75%) cases with TP53 mutations. The remaining TP53-mutant case demonstrated multifocal overexpression of p53, suggestive of subclonal inactivation of the gene. Overexpression of p53 protein was not seen in any of 15 TP53 wild-type cases evaluated by immunohistochemistry. A subset of 4 cases underwent RNA sequencing (fusion panel), which demonstrated the absence of oncogenic gene fusions. A 2-tiered grading system based on 3 histologic parameters (cellularity, number of mitoses, and necrosis) demonstrated that high-grade SYSTs have a higher risk of disease-specific death compared to low-grade tumors. The risk of disease-specific mortality was also higher in SYSTs with somatic mutations. In conclusion, this study demonstrated that 60% of SYSTs harbor somatic oncogenic mutations that are otherwise rare in TGCTs, and the presence of these mutations is associated with an aggressive clinical course. In addition, the results presented herein suggest that grading SYSTs may be clinically relevant.
Collapse
Affiliation(s)
- Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Khaleel I Al-Obaidy
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Brendan C Dickson
- Department of Pathology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Katrina Collins
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| | - Christopher D Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Muhammad T Idrees
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
Histone chaperone ASF1 acts with RIF1 to promote DNA end joining in BRCA1-deficient cells. J Biol Chem 2022; 298:101979. [PMID: 35472331 PMCID: PMC9127577 DOI: 10.1016/j.jbc.2022.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Replication timing regulatory factor 1 (RIF1) acts downstream of p53-binding protein 53BP1 to inhibit the resection of DNA broken ends, which plays critical roles in determining the DNA double-strand break repair pathway choice between nonhomologous end joining and homologous recombination (HR). However, the mechanism by which this choice is made is not yet clear. In this study, we identified that histone chaperone protein ASF1 associates with RIF1 and regulates RIF1-dependent functions in the DNA damage response. Similar to loss of RIF1, we found that loss of ASF1 resulted in resistance to poly (ADP-ribose) polymerase (PARP) inhibition in BRCA1-deficient cells with restored HR and decreased telomere fusion in telomeric repeat–binding protein 2 (TRF2)-depleted cells. Moreover, we showed that these functions of ASF1 are dependent on its interaction with RIF1 but not on its histone chaperone activity. Thus, our study supports a new role for ASF1 in dictating double-strand break repair choice. Considering that the status of 53BP1–RIF1 axis is important in determining the outcome of PARP inhibitor–based therapy in BRCA1- or HR-deficient cancers, the identification of ASF1 function in this critical pathway uncovers an interesting connection between these S-phase events, which may reveal new strategies to overcome PARP inhibitor resistance.
Collapse
|
8
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
9
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
10
|
Gnan S, Flyamer IM, Klein KN, Castelli E, Rapp A, Maiser A, Chen N, Weber P, Enervald E, Cardoso MC, Bickmore WA, Gilbert DM, Buonomo SCB. Nuclear organisation and replication timing are coupled through RIF1-PP1 interaction. Nat Commun 2021; 12:2910. [PMID: 34006872 PMCID: PMC8131703 DOI: 10.1038/s41467-021-22899-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.
Collapse
Affiliation(s)
- Stefano Gnan
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.462584.90000 0004 0367 1475Present Address: Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| | - Ilya M. Flyamer
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kyle N. Klein
- grid.255986.50000 0004 0472 0419Department of Biological Science, Florida State University, Tallahassee, FL USA
| | - Eleonora Castelli
- grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.482245.d0000 0001 2110 3787Present Address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexander Rapp
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Andreas Maiser
- grid.5252.00000 0004 1936 973XDepartment of Biology II, LMU Munich, Munich, Germany
| | - Naiming Chen
- grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK
| | - Patrick Weber
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Elin Enervald
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.10548.380000 0004 1936 9377Present Address: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Wendy A. Bickmore
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David M. Gilbert
- grid.255986.50000 0004 0472 0419Department of Biological Science, Florida State University, Tallahassee, FL USA
| | - Sara C. B. Buonomo
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Tang M, Li S, Chen J. Ubiquitylation in DNA double-strand break repair. DNA Repair (Amst) 2021; 103:103129. [PMID: 33990032 DOI: 10.1016/j.dnarep.2021.103129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
14
|
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X, Chen J. FOXK1 Participates in DNA Damage Response by Controlling 53BP1 Function. Cell Rep 2020; 32:108018. [PMID: 32783940 PMCID: PMC7458625 DOI: 10.1016/j.celrep.2020.108018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
53BP1 plays a central role in dictating DNA repair choice between non-homologous end joining (NHEJ) and homologous recombination (HR), which is important for the sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPis) of BRCA1-deficient cancers. In this study, we show that FOXK1 associates with 53BP1 and regulates 53BP1-dependent functions. FOXK1-53BP1 interaction is significantly enhanced upon DNA damage during the S phase in an ATM/CHK2-dependent manner, which reduces the association of 53BP1 with its downstream factors RIF1 and PTIP. Depletion of FOXK1 impairs DNA repair and induces compromised cell survival upon DNA damage. Overexpression of FOXK1 diminishes 53BP1 foci formation, which leads to resistance to PARPis and elevation of HR in BRCA1-deficient cells and decreased telomere fusion in TRF2-depleted cells. Collectively, our findings demonstrate that FOXK1 negatively regulates 53BP1 function by inhibiting 53BP1 localization to sites of DNA damage, which alters the DSB-induced protein complexes centering on 53BP1 and thus influences DNA repair choice.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Aleksandrov R, Hristova R, Stoynov S, Gospodinov A. The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells 2020; 9:cells9081853. [PMID: 32784607 PMCID: PMC7464352 DOI: 10.3390/cells9081853] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular DNA is constantly being damaged by numerous internal and external mutagenic factors. Probably the most severe type of insults DNA could suffer are the double-strand DNA breaks (DSBs). They sever both DNA strands and compromise genomic stability, causing deleterious chromosomal aberrations that are implicated in numerous maladies, including cancer. Not surprisingly, cells have evolved several DSB repair pathways encompassing hundreds of different DNA repair proteins to cope with this challenge. In eukaryotic cells, DSB repair is fulfilled in the immensely complex environment of the chromatin. The chromatin is not just a passive background that accommodates the multitude of DNA repair proteins, but it is a highly dynamic and active participant in the repair process. Chromatin alterations, such as changing patterns of histone modifications shaped by numerous histone-modifying enzymes and chromatin remodeling, are pivotal for proficient DSB repair. Dynamic chromatin changes ensure accessibility to the damaged region, recruit DNA repair proteins, and regulate their association and activity, contributing to DSB repair pathway choice and coordination. Given the paramount importance of DSB repair in tumorigenesis and cancer progression, DSB repair has turned into an attractive target for the development of novel anticancer therapies, some of which have already entered the clinic.
Collapse
|
16
|
Fackrell K, Bobins L, Parul, Tomida J. FAM35A/SHLD2/RINN2: A novel determinant of double strand break repair pathway choice and genome stability in cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:709-715. [PMID: 32306447 DOI: 10.1002/em.22379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
FAM35A, alternatively known as SHLD2 and RINN2, was recently characterized as a DNA repair gene, evolutionarily conserved in higher vertebrates. FAM35A is a 53BP1-pathway factor and a component of the Shieldin/RINN complex. Among 53BP1-pathway factors, FAM35A has unique domains: an N-terminal disordered domain and three C-terminal OB-fold domains. These C-terminal domains have homology with the OB-fold domains of the single-stranded DNA binding protein, RPA1. With other 53BP1-pathway factors, FAM35A inhibits DNA end resection. FAM35A defective cell lines are sensitive to DNA double-strand break inducing agents. Concurrent FAM35A and BRCA1 defects in mammalian cell lines cause resistance to PARP inhibitors and camptothecin. The clinical relevance of this interaction is still unknown, but cancer genomics databases indicate that FAM35A is deleted in 6-13% of prostate cancers and in at least one triple negative breast cancer patient-derived BRCA1 defective cell line. From meta-analysis, FAM35A overexpression in patients with triple negative and basal-like breast cancers is associated with poor survival compared to patients with low expression. From this evidence, clarification of FAM35A's function and the related mechanism of chemoresistance is likely to have clinical implications.
Collapse
Affiliation(s)
- Kylie Fackrell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - LoriAnn Bobins
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Parul
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Junya Tomida
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
17
|
Limiting the DNA Double-Strand Break Resectosome for Genome Protection. Trends Biochem Sci 2020; 45:779-793. [PMID: 32513599 DOI: 10.1016/j.tibs.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.
Collapse
|
18
|
Mohseni-Salehi FS, Zare-Mirakabad F, Sadeghi M, Ghafouri-Fard S. A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle. Bull Math Biol 2020; 82:11. [PMID: 31933029 DOI: 10.1007/s11538-019-00692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Cell cycle phase is a decisive factor in determining the repair pathway of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ) or homologous recombination (HR). Recent experimental studies revealed that 53BP1 and BRCA1 are the key mediators of the DNA damage response (DDR) with antagonizing roles in choosing the appropriate DSB repair pathway in G1, S, and G2 phases. Here, we present a stochastic model of biochemical kinetics involved in detecting and repairing DNA DSBs induced by ionizing radiation during the cell cycle progression. A three-dimensional stochastic process is defined to monitor the cell cycle phase and DSBs repair at times after irradiation. To estimate the model parameters, a Metropolis Monte Carlo method is applied to perform maximum likelihood estimation utilizing the kinetics of γ-H2AX and RAD51 foci formation in G1, S, and G2 phases. The recruitment of DSB repair proteins is verified by comparing our model predictions with the corresponding experimental data on human cells after exposure to X and γ-radiation. Furthermore, the interaction between 53BP1 and BRCA1 is simulated for G1 and S/G2 phases determining the competition between NHEJ and HR pathways in repairing induced DSBs throughout the cell cycle. In accordance with recent biological data, the numerical results demonstrate that the maximum proportion of HR occurs in S phase cells and the high level of NHEJ takes place in G1 and G2 phases. Moreover, the stochastic realizations of the total yield of simple and complex DSBs ligation are compared for G1 and S/G2 damaged cells. Finally, the proposed stochastic model is validated when DSBs induced by different particle radiation such as iron, silicon, oxygen, proton, and carbon.
Collapse
Affiliation(s)
- Fazeleh S Mohseni-Salehi
- Mathematics and Computer Science Department, Amirkabir University of Technology (Tehran Polytechinc), Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Mathematics and Computer Science Department, Amirkabir University of Technology (Tehran Polytechinc), Tehran, Iran.
| | - Mehdi Sadeghi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Dev H, Chiang TWW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, Herzog M, Lam J, Shea A, Demir M, Wu Q, Yang F, Fu B, Lai Z, Balmus G, Belotserkovskaya R, Serra V, O'Connor MJ, Bruna A, Beli P, Pellegrini L, Caldas C, Deriano L, Jacobs JJL, Galanty Y, Jackson SP. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol 2018; 20:954-965. [PMID: 30022119 PMCID: PMC6145444 DOI: 10.1038/s41556-018-0140-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023]
Abstract
BRCA1 deficiencies cause breast, ovarian, prostate and other cancers, and render tumours hypersensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. To understand the resistance mechanisms, we conducted whole-genome CRISPR-Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP inhibitors. We identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance. Mechanistically, we show that C20orf196 and FAM35A form a complex, 'Shieldin' (SHLD1/2), with FAM35A interacting with single-stranded DNA through its C-terminal oligonucleotide/oligosaccharide-binding fold region. We establish that Shieldin acts as the downstream effector of 53BP1/RIF1/MAD2L2 to promote DNA double-strand break (DSB) end-joining by restricting DSB resection and to counteract homologous recombination by antagonizing BRCA2/RAD51 loading in BRCA1-deficient cells. Notably, Shieldin inactivation further sensitizes BRCA1-deficient cells to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. Highlighting this potential, we document reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance.
Collapse
Affiliation(s)
- Harveer Dev
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Academic Urology Group, Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Ting-Wei Will Chiang
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chloe Lescale
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan , Amsterdam, the Netherlands
| | - Alistair G Martin
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Domenic Pilger
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Julia Coates
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matylda Sczaniecka-Clift
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Wenming Wei
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | | | - Mareike Herzog
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Lam
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail Shea
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Mukerrem Demir
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Qian Wu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Gabriel Balmus
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Rimma Belotserkovskaya
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Alejandra Bruna
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan , Amsterdam, the Netherlands.
| | - Yaron Galanty
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci Rep 2017; 7:2119. [PMID: 28522851 PMCID: PMC5437018 DOI: 10.1038/s41598-017-01910-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Rif1 is a conserved protein that plays essential roles in orchestrating DNA replication timing, controlling nuclear architecture, telomere length and DNA repair. However, the relationship between these different roles, as well as the molecular basis of Rif1 function is still unclear. The association of Rif1 with insoluble nuclear lamina has thus far hampered exhaustive characterization of the associated protein complexes. We devised a protocol that overcomes this problem, and were thus able to discover a number of novel Rif1 interactors, involved in chromatin metabolism and phosphorylation. Among them, we focus here on PP1. Data from different systems have suggested that Rif1-PP1 interaction is conserved and has important biological roles. Using mutagenesis, NMR, isothermal calorimetry and surface plasmon resonance we demonstrate that Rif1 is a high-affinity PP1 adaptor, able to out-compete the well-established PP1-inhibitor I2 in vitro. Our conclusions have important implications for understanding Rif1 diverse roles and the relationship between the biological processes controlled by Rif1.
Collapse
|
22
|
Rif1-Dependent Regulation of Genome Replication in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:259-272. [DOI: 10.1007/978-981-10-6955-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Feng L, Li N, Li Y, Wang J, Gao M, Wang W, Chen J. Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov 2015; 1:15019. [PMID: 27462418 PMCID: PMC4860855 DOI: 10.1038/celldisc.2015.19] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
DNA damage response mediator protein 53BP1 is a key regulator of non-homologous end-joining (NHEJ) repair. 53BP1 protects DNA broken ends from resection by recruiting two downstream factors, RIF1 (RAP1-interacting factor 1) and PTIP (Pax transactivation domain-interacting protein), to double-stranded breaks (DSBs) via ATM (ataxia telangiectasia mutated)-mediated 53BP1 phosphorylation, and competes with BRCA1-mediated homologous recombination (HR) repair in G1 phase. In contrast, BRCA1 antagonizes 53BP1-direct NHEJ repair in S/G2 phases. We and others have found that BRCA1 prevents the translocation of RIF1 to DSBs in S/G2 phases; however, the underlying mechanism remains unclear. Here we show that efficient ATM-dependent 53BP1 phosphorylation is restricted to the G1 phase of the cell cycle, as a consequence RIF1 and PTIP accumulation at DSB sites only occur in G1 phase. Mechanistically, both BRCT and RING domains of BRCA1 are required for the inhibition of 53BP1 phosphorylation in S and G2 phases. Thus, our findings reveal how BRCA1 antagonizes 53BP1 signaling to ensure that HR repair is the dominant repair pathway in S/G2 phases.
Collapse
Affiliation(s)
- Lin Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Yujing Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; State Key Laboratory for Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Medical Isotopes Research Center, School of Basic Medical Sciences, Peking University , Beijing, China
| | - Min Gao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
24
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
25
|
Li P, Ma X, Adams IR, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis 2015; 6:e1588. [PMID: 25569105 PMCID: PMC4669749 DOI: 10.1038/cddis.2014.551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Prolonged culture of embryonic stem cells (ESCs) leads them to adopt embryonal carcinoma cell features, creating enormous dangers for their further application. The mechanism involved in ESC stability has not, however, been extensively studied. We previously reported that SMAD family member 3 (Smad3) has an important role in maintaining mouse ESC stability, as depletion of Smad3 results in cancer cell-like properties in ESCs and Smad3-/- ESCs are prone to grow large, malignant teratomas. To understand how Smad3 contributes to ESC stability, we performed microarray analysis to compare the transcriptome of wild-type and Smad3-/- ESCs. We found that Rif1 (RAP1-associated protein 1), a factor important for genomic stability, is significantly upregulated in Smad3-/- ESCs. The expression level of Rif1 needs to be tightly controlled in ESCs, as a low level of Rif1 is associated with ESC differentiation, but a high level of Rif1 is linked to ESC transformation. In ESCs, Oct4 activates Rif1, whereas Smad3 represses its expression. Oct4 recruits Smad3 to bind to Rif1 promoter, but Smad3 joining facilitates the loading of a polycomb complex that generates a repressive epigenetic modification on Rif1 promoter, and thus maintains the expression of Rif1 at a proper level in ESCs. Interestingly, Rif1 short hairpin RNA (shRNA)-transduced Smad3-/- ESCs showed less malignant properties than the control shRNA-transduced Smad3-/- ESCs, suggesting a critical role of Rif1 in maintaining the stability of ESCs during proliferation.
Collapse
Affiliation(s)
- P Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - X Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - I R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - P Yuan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
27
|
Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun 2014; 5:3561. [PMID: 24705021 PMCID: PMC4041212 DOI: 10.1038/ncomms4561] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/05/2014] [Indexed: 12/23/2022] Open
Abstract
Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle. Impairment of EXO1 phosphorylation attenuates resection, chromosomal integrity, cell survival and HR, but augments NHEJ upon DNA damage. In contrast, cells expressing phospho-mimic EXO1 are proficient in resection even after CDK inhibition and favour HR over NHEJ. Mutation of cyclin-binding sites on EXO1 attenuates CDK binding and EXO1 phosphorylation, causing a resection defect that can be rescued by phospho-mimic mutations. Mechanistically, phosphorylation of EXO1 augments its recruitment to DNA breaks possibly via interactions with BRCA1. In summary, phosphorylation of EXO1 by CDKs is a novel mechanism regulating repair pathway choice.
Collapse
|