1
|
Suresh P, Wijne C, Sun ZYJ, Becht N, Sahay I, Pishesha N, Ploegh H. A nanobody that binds to the backside of the ubiquitin conjugating enzyme Ube2G2 differentially affects interactions with its partner E3 Ligases. Commun Biol 2025; 8:614. [PMID: 40234692 PMCID: PMC12000298 DOI: 10.1038/s42003-025-08038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Ubiquitin conjugating E2 enzymes are a set of ~40 proteins that play a central role in the ubiquitination cascade. They transfer ubiquitin from an E1 enzyme to substrates with the help of an E3 enzyme. The members of the E2 family share structural similarity in their conserved UBC fold. This complicates an assessment of the specificity of E2-E3 interactions. We identified a nanobody that binds to the 'backside' region of Ube2G2, an E2 involved in ER protein quality control. This binding does not affect ubiquitin loading but shows varying degrees of inhibition on E3-mediated ubiquitination, in the order HRD1 > CHIP >> TRC8. A naturally occurring segment that binds Ube2G2's backside, referred to as G2BR (Ube2G2 Binding Region), shows a similar inhibitory effect depending on the identity of the interacting E3. The G2BR in the Ube2G2-cognate E3 Gp78 enhances Ube2G2's activity, but its deletion results in a similar inhibition upon addition of the nanobody. Occupation of a single binding site on an E2 can thus affect its interactions with different E3s.
Collapse
Affiliation(s)
- Pavana Suresh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nanette Becht
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ishani Sahay
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Novalia Pishesha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Renz C, Asimaki E, Meister C, Albanèse V, Petriukov K, Krapoth NC, Wegmann S, Wollscheid HP, Wong RP, Fulzele A, Chen JX, Léon S, Ulrich HD. Ubiquiton-An inducible, linkage-specific polyubiquitylation tool. Mol Cell 2024; 84:386-400.e11. [PMID: 38103558 PMCID: PMC10804999 DOI: 10.1016/j.molcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Evrydiki Asimaki
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nils C Krapoth
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sabrina Wegmann
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Dandage R, Papkov M, Greco BM, Fishman D, Friesen H, Wang K, Styles E, Kraus O, Grys B, Boone C, Andrews B, Parts L, Kuzmin E. Single-cell imaging of protein dynamics of paralogs reveals mechanisms of gene retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568466. [PMID: 38045359 PMCID: PMC10690282 DOI: 10.1101/2023.11.23.568466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene duplication is common across the tree of life, including yeast and humans, and contributes to genomic robustness. In this study, we examined changes in the subcellular localization and abundance of proteins in response to the deletion of their paralogs originating from the whole-genome duplication event, which is a largely unexplored mechanism of functional divergence. We performed a systematic single-cell imaging analysis of protein dynamics and screened subcellular redistribution of proteins, capturing their localization and abundance changes, providing insight into forces determining paralog retention. Paralogs showed dependency, whereby proteins required their paralog to maintain their native abundance or localization, more often than compensation. Network feature analysis suggested the importance of functional redundancy and rewiring of protein and genetic interactions underlying redistribution response of paralogs. Translation of non-canonical protein isoform emerged as a novel compensatory mechanism. This study provides new insights into paralog retention and evolutionary forces that shape genomes.
Collapse
|
4
|
Nenadic A, Zaman MF, Johansen J, Volpiana MW, Beh CT. Increased Phospholipid Flux Bypasses Overlapping Essential Requirements for the Yeast Sac1p Phosphoinositide Phosphatase and ER-PM Membrane Contact Sites. J Biol Chem 2023; 299:105092. [PMID: 37507017 PMCID: PMC10470028 DOI: 10.1016/j.jbc.2023.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.
Collapse
Affiliation(s)
- Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
5
|
Mehrtash AB, Hochstrasser M. Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets. iScience 2022; 25:105351. [PMID: 36325070 PMCID: PMC9619350 DOI: 10.1016/j.isci.2022.105351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
In ER-associated degradation (ERAD), misfolded ER proteins are degraded by the proteasome after undergoing ubiquitylation. Yeast Doa10 (human MARCHF6/TEB4) is a membrane-embedded E3 ubiquitin ligase that functions with E2s Ubc6 and Ubc7. Ubc6 attaches a single ubiquitin to substrates, which is extended by Ubc7 to form a polyubiquitin chain. We show the conserved C-terminal element (CTE) of Doa10 promotes E3-mediated Ubc6 activity. Doa10 substrates undergoing an alternative ubiquitylation mechanism are still degraded in CTE-mutant cells. Structure prediction by AlphaFold2 suggests the CTE binds near the catalytic RING-CH domain, implying a direct role in substrate ubiquitylation, and we confirm this interaction using intragenic suppression. Truncation analysis defines a minimal E2-binding region of Doa10; structural predictions suggest that Doa10 forms a retrotranslocation channel and that E2s bind within the cofactor-binding region defined here. These results provide mechanistic insight into how Doa10, and potentially other ligases, interact with their cofactors and mediate ERAD. The conserved Doa10 C-terminus promotes E3-mediated activity of Ubc6 The minimal E2-binding region of Doa10 includes TMs 1–9 The N- and C-terminus of Doa10 interact, likely forming an ERAD protein channel
Collapse
Affiliation(s)
- Adrian B. Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
| | - Mark Hochstrasser
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
- Corresponding author
| |
Collapse
|
6
|
Brunner J, Schvartz D, Gouiller A, Hainard A, Borchard G. Impact of peptide permeation enhancer on tight junctions opening cellular mechanisms. Biochem Biophys Rep 2022; 32:101375. [PMID: 36324528 PMCID: PMC9618981 DOI: 10.1016/j.bbrep.2022.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The myristoylated pentapeptide, L-R5, contains an amino acid sequence of the zeta inhibitory peptide (ZIP) portion (pseudosubstrate) of protein kinase C zeta (PKC ζ). As PKC ζ is involved in the modulation of epithelial tight junctions (TJs) through the phosphorylation of TJ proteins, L-R5 was suggested to interact with the enzyme resulting in the enhancement of paracellular permeability. This study shows that L-R5 does not bind to the enzyme but interacts directly with TJ proteins. We show here that the binding of PKC ζ to occludin and its successive phosphorylation is prevented by L-R5, which leads to TJ disruption and enhanced epithelial permeability. Although L-R5 did not show any in vitro cytotoxicity, a proteomics study revealed that L-R5 interferes with other regulatory pathways, e.g., apoptosis and immune response. We suggest that structural modification of the peptide may increase the specificity TJ protein-peptide interaction. Microscale thermophoresis (MST) showed robust results for protein bindings. The competitivity of L-R5 peptide for the binding of occludin-PKC zeta was shown. Tight junctions proteins expression was decreased due to L-R5 peptide. Multiple other mechanisms can be explored to use L-R5 for other therapies.
Collapse
Affiliation(s)
- Joël Brunner
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Domitille Schvartz
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Gouiller
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland,Corresponding author.
| |
Collapse
|
7
|
Wegmann S, Meister C, Renz C, Yakoub G, Wollscheid HP, Takahashi DT, Mikicic I, Beli P, Ulrich HD. Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 2022; 82:1589-1602.e5. [PMID: 35263628 PMCID: PMC9098123 DOI: 10.1016/j.molcel.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Collapse
Affiliation(s)
- Sabrina Wegmann
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - George Yakoub
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Diane T Takahashi
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 10413 Illkirch, Strasbourg, France
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
9
|
Smith CE, Tsai YC, Liang YH, Khago D, Mariano J, Li J, Tarasov SG, Gergel E, Tsai B, Villaneuva M, Clapp ME, Magidson V, Chari R, Byrd RA, Ji X, Weissman AM. A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation. PLoS Biol 2021; 19:e3001474. [PMID: 34879065 PMCID: PMC8699718 DOI: 10.1371/journal.pbio.3001474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/23/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.
Collapse
Affiliation(s)
- Christopher E. Smith
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yu-He Liang
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Domarin Khago
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jennifer Mariano
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Sergey G. Tarasov
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Emma Gergel
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Borong Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Matthew Villaneuva
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - R. Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Xinhua Ji
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| |
Collapse
|
10
|
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 2021; 12:6173. [PMID: 34702852 PMCID: PMC8548400 DOI: 10.1038/s41467-021-26427-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sachitanand M Mali
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roni Morag
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Sumeet K Singh
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zhanyu Ding
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sharleen Day
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Ashraf Brik
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
11
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
13
|
Bayer EA, Stecky RC, Neal L, Katsamba PS, Ahlsen G, Balaji V, Hoppe T, Shapiro L, Oren-Suissa M, Hobert O. Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior. eLife 2020; 9:59614. [PMID: 33021200 PMCID: PMC7538159 DOI: 10.7554/elife.59614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may have implications for the control of sexual differentiation in other animals as well.
Collapse
Affiliation(s)
- Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Rebecca C Stecky
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Lauren Neal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Phinikoula S Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Vishnu Balaji
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Meital Oren-Suissa
- Weizmann Institute of Science, Department of Neurobiology, Rehovot, Israel
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
14
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
15
|
Renz C, Albanèse V, Tröster V, Albert TK, Santt O, Jacobs SC, Khmelinskii A, Léon S, Ulrich HD. Ubc13-Mms2 cooperates with a family of RING E3 proteins in budding yeast membrane protein sorting. J Cell Sci 2020; 133:jcs.244566. [PMID: 32265276 DOI: 10.1242/jcs.244566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Polyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling. In budding yeast, the only E3 proteins known to cooperate with Ubc13-Mms2 so far is a nuclear RING finger protein, Rad5, involved in the replication of damaged DNA. Here, we report a contribution of Ubc13-Mms2 to the sorting of membrane proteins to the yeast vacuole via the multivesicular body (MVB) pathway. In this context, Ubc13-Mms2 cooperates with Pib1, a FYVE-RING finger protein associated with internal membranes. Moreover, we identified a family of membrane-associated FYVE-(type)-RING finger proteins as cognate E3 proteins for Ubc13-Mms2 in several species, and genetic analysis indicates that the contribution of Ubc13-Mms2 to membrane trafficking in budding yeast goes beyond its cooperation with Pib1. Thus, our results widely implicate Ubc13-Mms2 as an Rsp5-independent source of K63-linked polyubiquitin chains in the regulation of membrane protein sorting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Vera Tröster
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Thomas K Albert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany
| | - Olivier Santt
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Susan C Jacobs
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Anton Khmelinskii
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
16
|
Dittmar G, Winklhofer KF. Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification. Front Chem 2020; 7:915. [PMID: 31998699 PMCID: PMC6966713 DOI: 10.3389/fchem.2019.00915] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023] Open
Abstract
Ubiquitination of proteins is a sophisticated post-translational modification implicated in the regulation of an ever-growing abundance of cellular processes. Recent insights into different layers of complexity have shaped the concept of the ubiquitin code. Key players in determining this code are the number of ubiquitin moieties attached to a substrate, the architecture of polyubiquitin chains, and post-translational modifications of ubiquitin itself. Ubiquitination can induce conformational changes of substrates and alter their interactive profile, resulting in the formation of signaling complexes. Here we focus on a distinct type of ubiquitination that is characterized by an inter-ubiquitin linkage through the N-terminal methionine, called M1-linked or linear ubiquitination. Formation, recognition, and disassembly of linear ubiquitin chains are highly specific processes that are implicated in immune signaling, cell death regulation and protein quality control. Consistent with their role in influencing signaling events, linear ubiquitin chains are formed in a transient and spatially regulated manner, making their detection and quantification challenging.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Proteomics of Cellular Signalling, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Mendes ML, Fougeras MR, Dittmar G. Analysis of ubiquitin signaling and chain topology cross-talk. J Proteomics 2020; 215:103634. [PMID: 31918034 DOI: 10.1016/j.jprot.2020.103634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/13/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is a powerful post-translational modification implicated in many cellular processes. Although ubiquitination is associated with protein degradation, depending on the topology of polyubiquitin chains, protein ubiquitination is connected to non-degradative events in DNA damage response, cell cycle control, immune response, trafficking, intracellular localization, and vesicle fusion events. It has been shown that a ubiquitin chain can contain two or more topologies at the same time. These branched chains add another level of complexity to ubiquitin signaling, increasing its versatility and specificity. Mass spectrometry-based proteomics has been playing an important role in the identification of all types of ubiquitin chains and linkages. This review aims to provide an overview of ubiquitin chain topology and associated signaling pathways and discusses the MS-based proteomic methodologies used to determine such topologies. SIGNIFICANCE: Ubiquitination plays important roles in many cellular processes. Proteins can be monoubiquitinated or polyubiquitinated forming non-branched or branched chains in a high number of possible combinations, each associated with different cellular processes. The detection and the topology of ubiquitin chains is thus of extreme importance in order to explain such processes. Advances in mass spectrometry based proteomics allowed for the discovery and topology mapping of many ubiquitin chains. This review revisits the state of the art in ubiquitin chain identification by mass spectrometry and gives an insight on the implication of such chains in many cellular processes.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Miriam R Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
18
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
19
|
Li Z, Hong LL, Gu BB, Sun YT, Wang J, Liu JT, Lin HW. Natural Products from Sponges. SYMBIOTIC MICROBIOMES OF CORAL REEFS SPONGES AND CORALS 2019. [PMCID: PMC7122408 DOI: 10.1007/978-94-024-1612-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sponge is one of the oldest multicellular invertebrates in the world. Marine sponges represent one of the extant metazoans of 700–800 million years. They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and Discodemia have been identified to be the richest source of biologically active compounds. So far, 15,000 species have been described, and among them, more than 6000 species are found in marine and freshwater systems throughout tropical, temperate, and polar regions. More than 5000 different compounds have been isolated and structurally characterized to date, contributing to about 30% of all marine natural products. The chemical diversity of sponge products is high with compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which integrate a wide range of biological activities, including antibacterial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is an open debate whether all natural products isolated from sponges are produced by sponges or are in fact derived from microorganisms that are inhaled though filter-feeding or that live within the sponges. Apart from their origin and chemoecological functions, sponge-derived metabolites are also of considerable interest in drug development. Therefore, development of recombinant microorganisms engineered for efficient production of sponge-derived products is a promising strategy that deserves further attention in future investigations in order to address the limitations regarding sustainable supply of marine drugs.
Collapse
Affiliation(s)
- Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Kleino A, Silverman N. Regulation of the Drosophila Imd pathway by signaling amyloids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:16-23. [PMID: 30857831 PMCID: PMC6474834 DOI: 10.1016/j.ibmb.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-κB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.
Collapse
Affiliation(s)
- Anni Kleino
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000, Aarhus C, Denmark
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
21
|
Diverse fate of ubiquitin chain moieties: The proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc Natl Acad Sci U S A 2019; 116:7805-7812. [PMID: 30867293 DOI: 10.1073/pnas.1822148116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the enigmas in the ubiquitin (Ub) field is the requirement for a poly-Ub chain as a proteasomal targeting signal. The canonical chain appears to be longer than the distance between the two Ub-binding proteasomal receptors. Furthermore, genetic manipulation has shown that one receptor subunit is sufficient, which suggests that a single Ub can serve as a degradation signal. To shed light on this mystery, we chemically synthesized tetra-Ub, di-Ub (K48-based), and mono-Ub adducts of HA-α-globin, where the distal or proximal Ub moieties were tagged differentially with either Myc or Flag. When incubated in a crude cell extract, the distal Ub moiety in the tetra-Ub adduct was mostly removed by deubiquitinating enzymes (DUBs) and reconjugated to other substrates in the extract. In contrast, the proximal moiety was most likely degraded with the substrate. The efficacy of degradation was proportionate to the chain length; while tetra-Ub globin was an efficient substrate, with mono-Ub globin, we observed rapid removal of the Ub moiety with almost no degradation of the free globin. Taken together, these findings suggest that the proximal moieties are necessary for securing the association of the substrate with the proteasome along the proteolytic process, whereas the distal moieties are important in protecting the proximal moieties from premature deubiquitination. Interestingly, when the same experiment was carried out using purified 26S proteasome, mono- and tetra-Ub globin were similarly degraded, highlighting the roles of the entire repertoire of cellular DUBs in regulating the degradation of proteasomal substrates.
Collapse
|
22
|
Mashahreh B, Reiss Y, Wiener R, Ravid T. Assays for dissecting the in vitro enzymatic activity of yeast Ubc7. Methods Enzymol 2019; 619:71-95. [PMID: 30910030 DOI: 10.1016/bs.mie.2018.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ubiquitin (Ub)-mediated protein degradation is a key cellular defense mechanism that detects and eliminates defective proteins. A major intracellular site of protein quality control degradation is the endoplasmic reticulum (ER), hence the term ER-associated degradation, or endoplasmic reticulum-associated degradation (ERAD). Yeast ERAD is composed of three Ub-protein conjugation complexes, named according to their E3 Ub-protein ligase components, Hrd1, Doa10, and the Asi complex, which resides at the nuclear envelope (NE). These ER/NE membrane-associated RING-type E3 ligases recognize and ubiquitylate defective proteins in cooperation with the E2 conjugating enzyme Ubc7 and the obligatory Ubc7 cofactor Cue1. Interaction of Ubc7 with the RING domains of its cognate E3 Ub-protein ligases stimulates the formation of isopeptide (amide) Ub-Ub linkages. Each isopeptide bond is formed by transfer of an Ubc7-linked activated Ub to a lysine side chain of an acceptor Ub. Multiple Ub transfer reactions form a poly-Ub chain that targets the conjugated protein for degradation by the proteasome. To study the mechanism of Ub-Ub bond formation, this reaction is reconstituted in a cell-free system consisting of recombinant E1, Ub, Ubc7, its cofactor Cue1, and the RING domain of either Doa10 or Hrd1. Here we provide detailed protocols for the purification of the required recombinant proteins and for the reactions that produce an Ub-Ub bond, specifically, the formation of an Ubc7~Ub thiolester (Ub charging) and subsequent formation of the isopeptide Ub-Ub linkage (Ub transfer). These protocols also provide a useful guideline for similar in vitro ubiquitylation reactions intended to explore the mechanism of other Ub-conjugation systems.
Collapse
Affiliation(s)
- Bayan Mashahreh
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Reiss
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Tommer Ravid
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
CUEDC1 is a primary target of ERα essential for the growth of breast cancer cells. Cancer Lett 2018; 436:87-95. [DOI: 10.1016/j.canlet.2018.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/31/2023]
|
24
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
25
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
26
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
27
|
Weber A, Cohen I, Popp O, Dittmar G, Reiss Y, Sommer T, Ravid T, Jarosch E. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase. Mol Cell 2016; 63:827-39. [PMID: 27570077 DOI: 10.1016/j.molcel.2016.07.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system.
Collapse
Affiliation(s)
- Annika Weber
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Itamar Cohen
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Oliver Popp
- Mass Spectrometric Core Facility, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometric Core Facility, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Yuval Reiss
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Thomas Sommer
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany; Institute of Biology, Humboldt University Berlin, 10099 Berlin, Germany.
| | - Tommer Ravid
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Ernst Jarosch
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
28
|
von Delbrück M, Kniss A, Rogov VV, Pluska L, Bagola K, Löhr F, Güntert P, Sommer T, Dötsch V. The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation. Mol Cell 2016; 62:918-928. [PMID: 27264873 DOI: 10.1016/j.molcel.2016.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Ubiquitin conjugation is an essential process modulating protein function in eukaryotic cells. Surprisingly, little is known about how the progressive assembly of ubiquitin chains is managed by the responsible enzymes. Only recently has ubiquitin binding activity emerged as an important factor in chain formation. The Ubc7 activator Cue1 carries a ubiquitin binding CUE domain that substantially stimulates K48-linked polyubiquitination mediated by Ubc7. Our results from NMR-based analysis and in vitro ubiquitination reactions point out that two parameters accelerate ubiquitin chain assembly: the increasing number of CUE binding sites and the position of CUE binding within a growing chain. In particular, interactions with a ubiquitin moiety adjacent to the acceptor ubiquitin facilitate chain elongation. These data indicate a mechanism for ubiquitin binding in which Cue1 positions Ubc7 and the distal acceptor ubiquitin for rapid polyubiquitination. Disrupting this mechanism results in dysfunction of the ERAD pathway by a delayed turnover of substrates.
Collapse
Affiliation(s)
- Maximilian von Delbrück
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Lukas Pluska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany.
| |
Collapse
|
29
|
The linkage specificity determination of Ube2g2-gp78 mediated polyubiquitination. Biochem Biophys Res Commun 2016; 473:1139-1143. [PMID: 27067047 DOI: 10.1016/j.bbrc.2016.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Polyubiquitin chain linkage specificity or topology is essential for its role in diverse cellular processes. Previous studies pay more attentions to the linkage specificity of the first ubiquitin moieties, whereas, little is known about the editing mechanism of linkage specificity in longer polyubiquitin chains. gp78 and its cognate E2-Ube2g2 catalyze lysine48 (K48)-linked polyubiquitin chains to promote the degradation of targeted proteins. Here, we show that the linkage specificity of the entire polyubiquitin chain is determined by the conjugation manner of the first ubiquitin molecule but not the following ones. Further study discovered that the gp78 CUE domain works as a proofreading machine during the growth of K48-linked polyubiquitin chains to ensure the linkage specificity. Together, our studies uncover a novel mechanism underlying the linkage specificity determination of longer polyubiquitin chains.
Collapse
|
30
|
Pfeiffer A, Stephanowitz H, Krause E, Volkwein C, Hirsch C, Jarosch E, Sommer T. A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins. J Biol Chem 2016; 291:12195-207. [PMID: 27053108 DOI: 10.1074/jbc.m115.703256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 11/06/2022] Open
Abstract
A quality control system in the endoplasmic reticulum (ER) efficiently discriminates polypeptides that are in the process of productive folding from conformers that are trapped in an aberrant state. Only the latter are transported into the cytoplasm and degraded in a process termed ER-associated protein degradation (ERAD). In the ER, an enzymatic cascade generates a specific N-glycan structure of seven mannosyl and two N-acetylglucosamine residues (Man7GlcNAc2) on misfolded glycoproteins to facilitate their disposal. We show that a complex encompassing the yeast lectin-like protein Htm1 and the oxidoreductase Pdi1 converts Man8GlcNAc2 on glycoproteins into the Man7GlcNAc2 signal. In vitro the Htm1-Pdi1 complex processes both unfolded and native proteins albeit with a preference for the former. In vivo, elevated expression of HTM1 causes glycan trimming on misfolded and folded proteins, but only degradation of the non-native species is accelerated. Thus, modification with a Man7GlcNAc2 structure does not inevitably commit a protein for ER-associated protein degradation. The function of Htm1 in ERAD relies on its association with Pdi1, which appears to regulate the access to substrates. Our data support a model in which the balanced activities of Pdi1 and Htm1 are crucial determinants for the efficient removal of misfolded secretory glycoproteins.
Collapse
Affiliation(s)
| | - Heike Stephanowitz
- the Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany and
| | - Eberhard Krause
- the Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany and
| | | | | | - Ernst Jarosch
- From the Max-Delbrück-Center for Molecular Medicine and
| | - Thomas Sommer
- From the Max-Delbrück-Center for Molecular Medicine and Humboldt University, Faculty of Life Science, Institute of Biology, 10099 Berlin, Germany
| |
Collapse
|
31
|
Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics 2015; 16:273-87. [PMID: 26460060 DOI: 10.1002/pmic.201500290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Protein ubiquitination is a powerful modulator of cellular functions. Classically linked to the degradation of proteins, it also plays a role in intracellular localization, DNA damage response, vesicle fusion events, and the immune and transcriptional responses. Ubiquitin is versatile and can code for several distinct signals, either by adding a single ubiquitin or forming a chain of ubiquitins on the target protein. The enzymatic cascade associated with the cellular process determines the nature of the modification. Numerous efforts have been made for the identification of ubiquitin acceptor sites in the target proteins using genetic, biochemical or MS-based proteomic methods, such as affinity-based enrichment of ubiquitinated proteins, and antibody-based enrichment of modified peptides. Modern instrumentation enables quantitative MS strategies to identify and characterize hundreds of ubiquitin substrates in a single analysis making it the dominant method for ubiquitin site detection. Characterization of the interubiquitin connectivity in ubiquitin polymers has also moved into focus, with the field of targeted proteomics techniques proving invaluable for identifying and quantifying linkage types found in such polyubiquitin chains. This review seeks to provide an overview of the many MS-based proteomics techniques available for exploring this dynamic field.
Collapse
Affiliation(s)
- Patrick Beaudette
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Oliver Popp
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
32
|
Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev 2015; 24:138-59. [PMID: 26247845 DOI: 10.1016/j.arr.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.
Collapse
|
33
|
A Survey of Marine Natural Compounds and Their Derivatives with Anti-cancer Activity Reported in 2012. Molecules 2015; 20:7097-142. [PMID: 25903364 PMCID: PMC6272635 DOI: 10.3390/molecules20047097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
Although considerable effort and progress has been made in the search for new anticancer drugs and treatments in the last several decades, cancer remains a major public health problem and one of the major causes of death worldwide. Many sources, including plants, animals, and minerals, are of interest in cancer research because of the possibility of identifying novel molecular therapeutics. Moreover, structure-activity-relationship (SAR) investigations have become a common way to develop naturally derived or semi-synthetic molecular analogues with improved efficacy and decreased toxicity. In 2012, approximately 138 molecules from marine sources, including isolated compounds and their associated analogues, were shown to be promising anticancer drugs. Among these, 62% are novel compounds. In this report, we review the marine compounds identified in 2012 that may serve as novel anticancer drugs.
Collapse
|
34
|
Dittmar G, Selbach M. SILAC for biomarker discovery. Proteomics Clin Appl 2015; 9:301-6. [PMID: 25504673 DOI: 10.1002/prca.201400112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
SILAC has been employed in MS-based proteomics for nearly a decade. This method is based on cells in culture metabolically incorporating isotope-coded essential amino acids and allows the quantification of global protein populations to identify characteristic changes. Variations of this technique developed over the years allow the application of SILAC not only to cell culture derived samples but also to tissues and human specimens, making this powerful technique amenable to clinically relevant samples. In this review, we provide an overview of different SILAC-derived methods and their use in the identification and development of biomarkers.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
35
|
Distinct activation of an E2 ubiquitin-conjugating enzyme by its cognate E3 ligases. Proc Natl Acad Sci U S A 2015; 112:E625-32. [PMID: 25646477 DOI: 10.1073/pnas.1415621112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A significant portion of ubiquitin (Ub)-dependent cellular protein quality control takes place at the endoplasmic reticulum (ER) in a process termed "ER-associated degradation" (ERAD). Yeast ERAD employs two integral ER membrane E3 Ub ligases: Hrd1 (also termed "Der3") and Doa10, which recognize a distinct set of substrates. However, both E3s bind to and activate a common E2-conjugating enzyme, Ubc7. Here we describe a novel feature of the ERAD system that entails differential activation of Ubc7 by its cognate E3s. We found that residues within helix α2 of Ubc7 that interact with donor Ub were essential for polyUb conjugation. Mutagenesis of these residues inhibited the in vitro activity of Ubc7 by preventing the conjugation of donor Ub to the acceptor. Unexpectedly, Ub chain formation by mutant Ubc7 was restored selectively by the Hrd1 RING domain but not by the Doa10 RING domain. In agreement with the in vitro data, Ubc7 α2 helix mutations selectively impaired the in vivo degradation of Doa10 substrates but had no apparent effect on the degradation of Hrd1 substrates. To our knowledge, this is the first example of distinct activation requirements of a single E2 by two E3s. We propose a model in which the RING domain activates Ub transfer by stabilizing a transition state determined by noncovalent interactions between the α2 helix of Ubc7 and Ub and that this transition state may be stabilized further by some E3 ligases, such as Hrd1, through additional interactions outside the RING domain.
Collapse
|
36
|
Mehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R, Aebi M, Jarosch E, Sommer T. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell 2014; 26:185-94. [PMID: 25428985 PMCID: PMC4294667 DOI: 10.1091/mbc.e14-07-1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central ubiquitin ligase involved in endoplasmic reticulum (ER)–associated protein degradation is the HRD-ligase. The ER-luminal subunit Hrd3 cooperates with the cochaperone Scj1 in clearing misfolded proteins from the ER. Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.
Collapse
Affiliation(s)
- Martin Mehnert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Maren Berger
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
37
|
gp78 elongates of polyubiquitin chains from the distal end through the cooperation of its G2BR and CUE domains. Sci Rep 2014; 4:7138. [PMID: 25409783 PMCID: PMC4238023 DOI: 10.1038/srep07138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023] Open
Abstract
The modification of proteins with polyubiquitin chains alters their stability, localization and activity, thus regulating various aspects of cellular functions in eukaryotic cells. The ER quality control protein E3 gp78 catalyzes Lys48-linked polyubiquitin-chain- assembly on the Ube2g2 active site and is capable of transferring preassembled ubiquitin chains to its substrates. However, the underlying mechanism of polyubiquitin- chain-assembly remains elusive. Here, we demonstrate that the active site-linked ubiquitin chain is extended from the distal end by the cooperative actions of the G2BR and CUE domains of gp78. The G2BR domain is involved in ubiquitin chain synthesis by binding to the donor Ube2g2~Ub and promoting ubiquitin transfer from the E2 in cis. The CUE domain shows preferential binding to the ubiquitin chain compared to monoubiquitin and helps to position the distal ubiquitin in the correct orientation to attack the Ube2g2~Ub thioester bond. Our studies reveal that two interactions, one between the donor Ube2g2~Ub and the gp78 G2BR domain and another between the Ube2g2-linked ubiquitin chain and the gp78 CUE domain, cooperatively drive polyubiquitin-chain-assembly on the Ube2g2 active site.
Collapse
|
38
|
Mansour W, Nakasone MA, von Delbrück M, Yu Z, Krutauz D, Reis N, Kleifeld O, Sommer T, Fushman D, Glickman MH. Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6. J Biol Chem 2014; 290:4688-4704. [PMID: 25389291 DOI: 10.1074/jbc.m114.568295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein homeostasis is largely dependent on proteolysis by the ubiquitin-proteasome system. Diverse polyubiquitin modifications are reported to target cellular proteins to the proteasome. At the proteasome, deubiquitination is an essential preprocessing event that contributes to degradation efficiency. We characterized the specificities of two proteasome-associated deubiquitinases (DUBs), Rpn11 and Ubp6, and explored their impact on overall proteasome DUB activity. This was accomplished by constructing a panel of well defined ubiquitin (Ub) conjugates, including homogeneous linkages of varying lengths as well as a heterogeneously modified target. Rpn11 and Ubp6 processed Lys(11) and Lys(63) linkages with comparable efficiencies that increased with chain length. In contrast, processing of Lys(48) linkages by proteasome was inversely correlated to chain length. Fluorescently labeled tetra-Ub chains revealed endo-chain preference for Ubp6 acting on Lys(48) and random action for Rpn11. Proteasomes were more efficient at deconjugating identical substrates than their constituent DUBs by roughly 2 orders of magnitude. Incorporation into proteasomes significantly enhanced enzymatic efficiency of Rpn11, due in part to alleviation of the autoinhibitory role of its C terminus. The broad specificity of Rpn11 could explain how proteasomes were more effective at disassembling a heterogeneously modified conjugate compared with homogeneous Lys(48)-linked chains. The reduced ability to disassemble homogeneous Lys(48)-linked chains longer than 4 Ub units may prolong residency time on the proteasome.
Collapse
Affiliation(s)
- Wissam Mansour
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Mark A Nakasone
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel,; the Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742
| | - Maximilian von Delbrück
- the Max-Delbrück-Zentrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and
| | - Zanlin Yu
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daria Krutauz
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Noa Reis
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Oded Kleifeld
- the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Thomas Sommer
- the Max-Delbrück-Zentrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and
| | - David Fushman
- the Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742
| | - Michael H Glickman
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel,.
| |
Collapse
|
39
|
Zattas D, Hochstrasser M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit Rev Biochem Mol Biol 2014; 50:1-17. [PMID: 25231236 DOI: 10.3109/10409238.2014.959889] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here, we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane.
Collapse
Affiliation(s)
- Dimitrios Zattas
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, CT , USA
| | | |
Collapse
|
40
|
Moreno-Gonzalo O, Villarroya-Beltri C, Sánchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol 2014; 5:383. [PMID: 25157254 PMCID: PMC4128227 DOI: 10.3389/fimmu.2014.00383] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/28/2014] [Indexed: 11/26/2022] Open
Abstract
Exosomes mediate intercellular communication and participate in many cell processes such as cancer progression, immune activation or evasion, and the spread of infection. Exosomes are small vesicles secreted to the extracellular environment through the release of intraluminal vesicles contained in multivesicular bodies (MVBs) upon the fusion of these MVBs with the plasma membrane. The composition of exosomes is not random, suggesting that the incorporation of cargo into them is a regulated process. However, the mechanisms that control the sorting of protein cargo into exosomes are currently elusive. Here, we review the post-translational modifications detected in exosomal proteins, and discuss their possible role in their specific sorting into exosomes.
Collapse
Affiliation(s)
- Olga Moreno-Gonzalo
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| | - Carolina Villarroya-Beltri
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
41
|
Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 2014; 3:824-47. [PMID: 25100021 PMCID: PMC4197631 DOI: 10.3390/cells3030824] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/05/2022] Open
Abstract
Quality control of protein folding inside the endoplasmic reticulum (ER) includes chaperone-mediated assistance in folding and the selective targeting of terminally misfolded species to a pathway called ER-associated protein degradation, or simply ERAD. Once selected for ERAD, substrates will be transported (back) into the cytosol, a step called retrotranslocation. Although still ill defined, retrotranslocation likely involves a protein conducting channel that is in part formed by specific membrane-embedded E3 ubiquitin ligases. Early during retrotranslocation, reversible self-ubiquitination of these ligases is thought to aid in initiation of substrate transfer across the membrane. Once being at least partially exposed to the cytosol, substrates will become ubiquitinated on the cytosolic side of the ER membrane by the same E3 ubiquitin ligases. Ubiquitin on substrates was originally thought to be a permanent modification that (1) promotes late steps of retrotranslocation by recruiting the energy-providing ATPase Cdc48p/p97 via binding to its associated adaptor proteins and that (2) serves to target substrates to the proteasome. Recently it became evident, however, that the poly-ubiquitin chains (PUCs) on ERAD substrates are often subject to extensive remodeling, or processing, at several stages during ERAD. This review recapitulates the current knowledge and recent findings about PUC processing on ERAD substrates and ubiquitination of ERAD machinery components and discusses their functional consequences.
Collapse
|
42
|
Budhidarmo R, Day CL. The ubiquitin-associated domain of cellular inhibitor of apoptosis proteins facilitates ubiquitylation. J Biol Chem 2014; 289:25721-36. [PMID: 25065467 DOI: 10.1074/jbc.m113.545475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cellular inhibitor of apoptosis (cIAP) proteins are essential RING E3 ubiquitin ligases that regulate apoptosis and inflammatory responses. cIAPs contain a ubiquitin-associated (UBA) domain that binds ubiquitin and is implicated in the regulation of cell survival and proteasomal degradation. Here we show that mutation of the MGF and LL motifs in the UBA domain of cIAP1 caused unfolding and increased cIAP1 multimonoubiquitylation. By developing a UBA mutant that disrupted ubiquitin binding but not the structure of the UBA domain, we found that the UBA domain enhances cIAP1 and cIAP2 ubiquitylation. We demonstrate that the UBA domain binds to the UbcH5b∼Ub conjugate, and this promotes RING domain-dependent monoubiquitylation. This study establishes ubiquitin-binding modules, such as the UBA domain, as important regulatory modules that can fine tune the activity of E3 ligases.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- From the Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- From the Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
43
|
Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 2014; 158:549-63. [PMID: 25042851 DOI: 10.1016/j.cell.2014.05.048] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Selective ubiquitin-dependent autophagy plays a pivotal role in the elimination of protein aggregates, assemblies, or organelles and counteracts the cytotoxicity of proteins linked to neurodegenerative diseases. Following substrate ubiquitylation, the cargo is delivered to autophagosomes involving adaptors like human p62 that bind ubiquitin and the autophagosomal ubiquitin-like protein Atg8/LC3; however, whether similar pathways exist in lower eukaryotes remained unclear. Here, we identify by a screen in yeast a new class of ubiquitin-Atg8 adaptors termed CUET proteins, comprising the ubiquitin-binding CUE-domain protein Cue5 from yeast and its human homolog Tollip. Cue5 collaborates with Rsp5 ubiquitin ligase, and the corresponding yeast mutants accumulate aggregation-prone proteins and are vulnerable to polyQ protein expression. Similarly, Tollip depletion causes cytotoxicity toward polyQ proteins, whereas Tollip overexpression clears human cells from Huntington's disease-linked polyQ proteins by autophagy. We thus propose that CUET proteins play a critical and ancient role in autophagic clearance of cytotoxic protein aggregates.
Collapse
|
44
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
45
|
Nguyen L, Plafker KS, Starnes A, Cook M, Klevit RE, Plafker SM. The ubiquitin-conjugating enzyme, UbcM2, is restricted to monoubiquitylation by a two-fold mechanism that involves backside residues of E2 and Lys48 of ubiquitin. Biochemistry 2014; 53:4004-14. [PMID: 24901938 PMCID: PMC4072368 DOI: 10.1021/bi500072v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Proteins
can be modified on lysines (K) with a single ubiquitin
(Ub) or with polymers of Ub (polyUb). These different configurations
and their respective topologies are primary factors for determining
whether substrates are targeted to the proteasome for degradation
or directed to nonproteolytic outcomes. We report here on the intrinsic
ubiquitylation properties
of UbcM2 (UBE2E3/UbcH9), a conserved Ub-conjugating enzyme linked
to cell proliferation, development, and the cellular antioxidant defense
system. Using a fully recombinant ubiquitylation assay,
we show that UbcM2 is severely limited in its ability to synthesize
polyUb chains with wild-type Ub. Restriction to monoubiquitylation
is governed by multiple residues on the backside of the enzyme, far
removed from its active site, and by lysine 48 of Ub. UbcM2 with mutated
backside residues can synthesize K63-linked polyUb chains and to a
lesser extent K6- and K48-linked chains. Additionally, we identified
a single residue on the backside of the enzyme that promotes monoubiquitylation.
Together, these findings reveal that a combination of noncatalytic
residues within the Ubc catalytic core domain of UbcM2 as well as
a lysine(s) within Ub can relegate a Ub-conjugating enzyme to monoubiquitylate
its cognate targets despite having the latent capacity to construct
polyUb chains. The two-fold mechanism for restricting activity to
monoubiquitylation provides
added insurance that UbcM2 will not build polyUb chains on its substrates,
even under conditions of high local Ub concentrations.
Collapse
Affiliation(s)
- Linda Nguyen
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma 73104, United States
| | | | | | | | | | | |
Collapse
|
46
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
47
|
Liu Y, Li J. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:162. [PMID: 24817869 PMCID: PMC4012192 DOI: 10.3389/fpls.2014.00162] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/07/2014] [Indexed: 05/19/2023]
Abstract
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally misfolded ones via a unique multiple-step degradation process known as ER-associated degradation (ERAD). Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.
Collapse
Affiliation(s)
| | - Jianming Li
- *Correspondence: Jianming Li, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4085 Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048, USA e-mail:
| |
Collapse
|
48
|
Metzger MB, Liang YH, Das R, Mariano J, Li S, Li J, Kostova Z, Byrd RA, Ji X, Weissman AM. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol Cell 2013; 50:516-27. [PMID: 23665230 DOI: 10.1016/j.molcel.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/14/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
Abstract
Cue1p is an integral component of yeast endoplasmic reticulum (ER)-associated degradation (ERAD) ubiquitin ligase (E3) complexes. It tethers the ERAD ubiquitin-conjugating enzyme (E2), Ubc7p, to the ER and prevents its degradation, and also activates Ubc7p via unknown mechanisms. We have now determined the crystal structure of the Ubc7p-binding region (U7BR) of Cue1p with Ubc7p. The U7BR is a unique E2-binding domain that includes three α-helices that interact extensively with the "backside" of Ubc7p. Residues essential for E2 binding are also required for activation of Ubc7p and for ERAD. We establish that the U7BR stimulates both RING-independent and RING-dependent ubiquitin transfer from Ubc7p. Moreover, the U7BR enhances ubiquitin-activating enzyme (E1)-mediated charging of Ubc7p with ubiquitin. This demonstrates that an essential component of E3 complexes can simultaneously bind to E2 and enhance its loading with ubiquitin. These findings provide mechanistic insights into how ubiquitination can be stimulated.
Collapse
Affiliation(s)
- Meredith B Metzger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|