1
|
Cieplak-Rotowska MK, Dadlez M, Niedzwiecka A. Exploring the CNOT1(800-999) HEAT Domain and Its Interactions with Tristetraprolin (TTP) as Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry. Biomolecules 2025; 15:403. [PMID: 40149939 PMCID: PMC11939966 DOI: 10.3390/biom15030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
CNOT1, a key scaffold in the CCR4-NOT complex, plays a critical role in mRNA decay, particularly in the regulation of inflammatory responses through its interaction with tristetraprolin. A fragment of the middle part of CNOT1 (residues 800-999) is an example of an α-helical HEAT-like repeat domain. The HEAT motif is an evolutionarily conserved motif present in scaffolding and transport proteins across a wide range of organisms. Using hydrogen/deuterium exchange mass spectrometry (HDX MS), a method that has not been widely explored in the context of HEAT repeats, we analysed the structural dynamics of wild-type CNOT1(800-999) and its two double point mutants (E893A/Y900A, E893Q/Y900H) to find the individual contributions of these CNOT1 residues to the molecular recognition of tristetraprolin (TTP). Our results show that the differences in the interactions of CNOT1(800-999) variants with the TTP peptide fragment are due to the absence of the critical residues resulting from point mutations and not due to the perturbation of the protein structure. Nevertheless, the HDX MS was able to detect slight local changes in structural dynamics induced by protein point mutations, which are usually neglected in studies of intermolecular interactions.
Collapse
Affiliation(s)
- Maja K. Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, PL-02089 Warsaw, Poland;
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106 Warsaw, Poland;
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
2
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
3
|
Witt KC, Dziulko A, An J, Pekovic F, Cheng AX, Liu GY, Lee OV, Turner DJ, Lari A, Gaidt MM, Chavez R, Fattinger SA, Abraham P, Dhaliwal H, Lee AY, Kotov DI, Coscoy L, Glaunsinger BA, Valkov E, Chuong EB, Vance RE. The SP140-RESIST pathway regulates interferon mRNA stability and antiviral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.28.610186. [PMID: 39974928 PMCID: PMC11838211 DOI: 10.1101/2024.08.28.610186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferons (IFN-Is) are essential for antiviral immunity but must be tightly regulated1-3. The conserved transcriptional repressor SP140 inhibits interferon beta (Ifnb1) expression via an unknown mechanism4,5. Here we report that SP140 does not directly repress Ifnb1 transcription. Instead, SP140 negatively regulates Ifnb1 mRNA stability by directly repressing the expression of a previously uncharacterized regulator we call RESIST (REgulated Stimulator of Interferon via Stabilization of Transcript, previously annotated as Annexin-2 Receptor). RESIST promotes Ifnb1 mRNA stability by counteracting Ifnb1 mRNA destabilization mediated by the Tristetraprolin (TTP) family of RNA-binding proteins and the CCR4-NOT deadenylase complex. SP140 localizes within nuclear bodies, punctate structures that play important roles in silencing DNA virus gene expression in the nucleus4. Consistent with this observation, we found that SP140 inhibits replication of the gammaherpesvirus MHV68. The antiviral activity of SP140 was independent of its ability to regulate Ifnb1. Our results establish dual antiviral and interferon regulatory functions for SP140. We propose that SP140 and RESIST participate in antiviral effector-triggered immunity6,7.
Collapse
Affiliation(s)
- Kristen C Witt
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Adam Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joohyun An
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Filip Pekovic
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Arthur Xiuyuan Cheng
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Grace Y Liu
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ophelia Vosshall Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - David J Turner
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Azra Lari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Moritz M Gaidt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Current address: Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roberto Chavez
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Preethy Abraham
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Britt A Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Eugene Valkov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Russell E Vance
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Sei YJ, Hoisington ZW, Soneja D, Gunasekaran S, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR-34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR-34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use.
Collapse
|
5
|
Dowdle ME, Lykke-Andersen J. Cytoplasmic mRNA decay and quality control machineries in eukaryotes. Nat Rev Genet 2025:10.1038/s41576-024-00810-1. [PMID: 39870755 DOI: 10.1038/s41576-024-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation. Recent advances in structural, single-molecule and genome-wide methods have provided new insights into the central machineries that carry out mRNA turnover, the mechanisms by which mRNAs are targeted for degradation and the general principles that govern mRNA stability at a global level. This improved understanding of mRNA degradation in the cytoplasm of eukaryotic cells is finding practical applications in the design of therapeutic mRNAs.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Pal S, Gordijenko I, Schmeing S, Biswas S, Akbulut Y, Gasper R, 't Hart P. Stapled Peptides as Inhibitors of mRNA Deadenylation. Angew Chem Int Ed Engl 2025; 64:e202413911. [PMID: 39319385 DOI: 10.1002/anie.202413911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails, reducing their stability and translational activity, which is mainly regulated by the CCR4-NOT complex. The subunit NOT9 binds various RNA binding proteins, that recruit mRNA in a sequence-specific manner to the CCR4-NOT complex to promote their deadenylation. These RNA binding proteins interact with NOT9 through a helical NOT9 binding motif, which we used as a starting point for development of the hydrocarbon stapled peptide NIP-2. The peptide (KD=60.4 nM) was able to inhibit RNA-binding (IC50=333 nM) as well as the deadenylation activity of the CCR4-NOT complex in vitro while being cell-permeable (cell-permeability EC50=2.44 μM). A co-crystal structure of NIP-2 bound to NOT9 allowed further optimization of the peptide through point mutation leading to NIP-2-H27A-N3 (KD=122 nM) with high cell permeability (cell-permeability EC50=0.34 μM). The optimized peptide was able to inhibit deadenylation of target mRNAs when used in HeLa cells at a concentration of 100 μM, demonstrating the feasibility of increasing mRNA stability.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Ilja Gordijenko
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Stefan Schmeing
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Somarghya Biswas
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Yasemin Akbulut
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Kulkarni S, Morrissey A, Sebastian A, Giardine B, Smith C, Akinniyi OT, Keller CA, Arnaoutov A, Albert I, Mahony S, Reese JC. Human CCR4-NOT globally regulates gene expression and is a novel silencer of retrotransposon activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612038. [PMID: 39314347 PMCID: PMC11419117 DOI: 10.1101/2024.09.10.612038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CCR4-NOT regulates multiple steps in gene regulation and has been well studied in budding yeast, but much less is known about the human complex. Auxin-induced degradation was used to rapidly deplete the scaffold subunit CNOT1, and CNOT4, to characterize the functions of human CCR4-NOT in gene regulation. Depleting CNOT1 increased RNA levels and caused a widespread decrease in RNA decay. In contrast, CNOT4 depletion only modestly changed steady-state RNA levels and, surprisingly, led to a global acceleration in mRNA decay. Further, depleting either subunit resulted in a global increase in RNA synthesis. In contrast to most of the genome, the transcription of KRAB-Zinc-Finger-protein (KZNFs) genes, especially those on chromosome 19, was repressed. KZNFs are transcriptional repressors of retrotransposable elements (rTEs), and consistent with the decreased KZNFs expression, rTEs, mainly Long Interspersed Nuclear Elements (LINEs), were activated. These data establish CCR4-NOT as a global regulator of gene expression and a novel silencer of rTEs.
Collapse
|
8
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Yamaguchi T, Ozawa R, Minato T, Hoshizaki M, Kammura Y, Okawara K, Khalil YA, Nakamura M, Yamaura K, Fukuda M, Imai Y, Kuba K. Haploinsufficiency of Cnot3 Aggravates Acid-Induced Acute Lung Injury Likely Through Transcriptional and Post-Transcriptional Upregulation of Pro-Inflammatory Genes. J Inflamm Res 2024; 17:5415-5425. [PMID: 39161681 PMCID: PMC11332416 DOI: 10.2147/jir.s468612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
Background Acute lung injury (ALI) is caused by a variety of illnesses, including aspiration pneumonia and sepsis. The CCR4-NOT complex is a large multimeric protein complex that degrades mRNA through poly(A) tail shortening, whereas it also contributes to regulation of transcription and translation. Cnot3 is a scaffold component of the CCR4-NOT complex and is essential for the integrity of the complex; loss of Cnot3 leads to depletion of whole complex. While the significance of cytokine mRNA degradation in limiting inflammation has been established, the roles of CCR4-NOT complex-mediated in ALI remain elusive. Methods The effects of Cnot3 haploinsufficiency in the pathology and cytokine expression were analyzed in the mouse lungs of acid aspiration-induced acute lung injury. The decay rate and transcription activity of cytokine mRNAs under Cnot3 heterozygous deletion were analyzed in lipopolysaccharide (LPS) -stimulated mouse embryonic fibroblasts (MEFs). Results Tamoxifen-induced heterozygous deletion of Cnot3 in adult mice (Cnot3 Hetz) did not show body weight loss or any apparent abnormality. Under acid aspiration-induced acute lung injury, Cnot3 Hetz mice exhibited increased pulmonary edema, worse lung pathologies and more severe inflammation compared with wild type mice. mRNA expression of pro-inflammatory genes Il1b and Nos2 were significantly upregulated in the lungs of Cnot3 Hetz mice. Consistently, mRNA expression of Il1b and Nos2 was upregulated in LPS-stimulated Cnot3 Hetz MEFs. Mechanistically, while heterozygous depletion of Cnot3 stabilized both Il1b and Nos2 mRNAs, the nascent pre-mRNA level of Il1b was upregulated in Cnot3 Hetz MEFs, implicating Cnot3-mediated transcriptional repression of Il1b expression in addition to destabilization of Il1b and Nos2 mRNAs. PU.1 (Spi1) was identified as a causative transcription factor to promote Il1b expression under Cnot3 haploinsufficient conditions. Conclusion CNOT3 plays a protective role in ALI by suppressing expression of pro-inflammatory genes Il1b and Nos2 through both post-transcriptional and transcriptional mechanisms, including mRNA stability control of Spi1.
Collapse
Affiliation(s)
- Tomokazu Yamaguchi
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Ryo Ozawa
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Takafumi Minato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Midori Hoshizaki
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yutaro Kammura
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuma Okawara
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yousef A Khalil
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masayuki Fukuda
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yumiko Imai
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Keiji Kuba
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
10
|
Weber R, Chang CT. Human DDX6 regulates translation and decay of inefficiently translated mRNAs. eLife 2024; 13:RP92426. [PMID: 38989862 PMCID: PMC11239181 DOI: 10.7554/elife.92426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute for Regenerative Medicine (IREM), University of ZurichZurichSwitzerland
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| |
Collapse
|
11
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
12
|
Shah K, He S, Turner DJ, Corbo J, Rebbani K, Dominguez D, Bateman JM, Cheloufi S, Igreja C, Valkov E, Murn J. Regulation by the RNA-binding protein Unkempt at its effector interface. Nat Commun 2024; 15:3159. [PMID: 38605040 PMCID: PMC11009413 DOI: 10.1038/s41467-024-47449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - David J Turner
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Khadija Rebbani
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, SE5 9RX, London, UK
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, D-72076, Tübingen, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA.
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Naito S, Tanaka H, Jiang JJ, Tarumi M, Hashimoto A, Tanaka Y, Murakami K, Kubota SI, Hojyo S, Hashimoto S, Murakami M. DDX6 is involved in the pathogenesis of inflammatory diseases via NF-κB activation. Biochem Biophys Res Commun 2024; 703:149666. [PMID: 38377944 DOI: 10.1016/j.bbrc.2024.149666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Seiichiro Naito
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Tarumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
14
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tang X, Lan X, Song X, Xu W, Zhang Y, Wang S, Xiao M, Yang Y, Zhang H, Wu S. Clinical characteristics and identification of novel CNOT1 variants in three unrelated Chinese families with Vissers-Bodmer Syndrome. Heliyon 2024; 10:e26743. [PMID: 38434094 PMCID: PMC10906421 DOI: 10.1016/j.heliyon.2024.e26743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Vissers-Bodmer Syndrome, an autosomal dominant disease, is a neurodevelopmental disorder characterized by global developmental delay, intellectual disability, hypotonia and autistic features with a highly variable phenotype. It is caused by variants in the CCR4-NOT transcription complex, subunit 1 gene (CNOT1). However, the pathophysiologic mechanism of the Vissers-Bodmer Syndrome remains unclear. Notably, this syndrome has not been previously reported in the Chinese. In this study, we utilized whole exome sequencing to identify three novel variants in the CNOT1 gene, encompassing one frameshift variant and two missense variants, in three Chinese patients mainly presenting with developmental delay, intellectual disability and/or autism. Interestingly, three patients exhibited novel manifestations including spina bifida occulta, horse-shoe kidney and café-au-lait spot. The frameshift variant, p.Gly172Alafs*5, occurring de novo, leading to a premature stop codon in the protein, was classified into pathogenic. Two missense variants c.3451A > G (p.Asn1151Asp) and c.557C > T (p.Ser186Phe) were predicted to be deleterious by multiple prediction algorithms with high conservation among a variety of species. Additionally, three-dimensional structure modeling and predicting indicated the substitution of the mutated amino acids would decrease the stability of CNOT1 protein. Given that CNOT1 is a relatively novel disease gene, we evaluated the gene-disease validity following ClinGen Standard Operating Procedure. The existing evidence substantiates a "Definitive" level of gene-disease relationship. The genetic findings provide a reliable basis for the genetic counseling of the family reproduction. Moreover, our results expand the genetic and phenotypic spectrum of CNOT1-related Vissers-Bodmer Syndrome.
Collapse
Affiliation(s)
- Xiaojun Tang
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Lan
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhen Song
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simei Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Xiao
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchen Yang
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Perooli FM, Wilkinson KA, Pring K, Hanley JG. An essential role for the RNA helicase DDX6 in NMDA receptor-dependent gene silencing and dendritic spine shrinkage. Sci Rep 2024; 14:3066. [PMID: 38321143 PMCID: PMC10847504 DOI: 10.1038/s41598-024-53484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.
Collapse
Affiliation(s)
- Fathima M Perooli
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kate Pring
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
17
|
Levdansky Y, Valkov E. Reconstitution of Human CCR4-NOT Complex from Purified Proteins and an Assay of Its Deadenylation Activity. Methods Mol Biol 2024; 2723:1-17. [PMID: 37824061 DOI: 10.1007/978-1-0716-3481-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We describe protocols to produce and reconstitute an active human CCR4-NOT complex. Individual recombinant subunits are expressed in E. coli or baculovirus-infected insect cells, purified using column chromatography, and reconstituted into a stable complex containing all eight core subunits. In addition, we describe the biochemical assay of deadenylation using the reconstituted complex.
Collapse
Affiliation(s)
- Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
18
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Collart MA, Audebert L, Bushell M. Roles of the CCR4-Not complex in translation and dynamics of co-translation events. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1827. [PMID: 38009591 PMCID: PMC10909573 DOI: 10.1002/wrna.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Martine A. Collart
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Léna Audebert
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Martin Bushell
- Cancer Research UK Beatson InstituteGlasgowUK
- School of Cancer Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
20
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
21
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
22
|
Shah K, He S, Turner DJ, Corbo J, Rebbani K, Bateman JM, Cheloufi S, Igreja C, Valkov E, Murn J. A paradigm for regulation at the effector interface with RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558714. [PMID: 37790431 PMCID: PMC10542489 DOI: 10.1101/2023.09.20.558714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - David J. Turner
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- These authors contributed equally
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, U.S.A
| | - Khadija Rebbani
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA 92521, U.S.A
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, D-72076 Tübingen, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Lead contact
| |
Collapse
|
23
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
24
|
Ang HX, Sutiman N, Deng XL, Liu A, Cerda-Smith CG, Hutchinson HM, Kim H, Bartelt LC, Chen Q, Barrera A, Lin J, Sheng Z, McDowell IC, Reddy TE, Nicchitta CV, Wood KC. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc Natl Acad Sci U S A 2023; 120:e2221448120. [PMID: 37695916 PMCID: PMC10515179 DOI: 10.1073/pnas.2221448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.
Collapse
Affiliation(s)
- Hazel X. Ang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Natalia Sutiman
- Duke-National University of Singapore Medical School,Singapore169857, Singapore
| | - Xinyue L. Deng
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Annie Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
- Department of Surgery, Duke University School of Medicine, Durham, NC22710
| | - Christian G. Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Holly Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Luke C. Bartelt
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC22710
| | - Alejandro Barrera
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Jiaxing Lin
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Zhecheng Sheng
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Ian C. McDowell
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Timothy E. Reddy
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | | | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| |
Collapse
|
25
|
Halbout M, Bury M, Hanet A, Gerin I, Graff J, Killian T, Gatto L, Vertommen D, Bommer GT. SUZ domain-containing proteins have multiple effects on nonsense-mediated decay target transcripts. J Biol Chem 2023; 299:105095. [PMID: 37507022 PMCID: PMC10470013 DOI: 10.1016/j.jbc.2023.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Collapse
Affiliation(s)
- Mathias Halbout
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Marina Bury
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Aoife Hanet
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Isabelle Gerin
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Julie Graff
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Theodore Killian
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Laurent Gatto
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
26
|
von Wintzingerode L, Ben-Zeev B, Cesario C, Chan KM, Depienne C, Elpeleg O, Iascone M, Kelley WV, Nassogne MC, Niceta M, Pezzani L, Rahner N, Revencu N, Bekheirnia MR, Santiago-Sim T, Tartaglia M, Thompson ML, Trivisano M, Hentschel J, Sticht H, Abou Jamra R, Oppermann H. De novo variants in CNOT9 cause a neurodevelopmental disorder with or without epilepsy. Genet Med 2023; 25:100859. [PMID: 37092538 DOI: 10.1016/j.gim.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE The study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9. METHODS Individuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics. RESULTS We report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His). CONCLUSION We propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.
Collapse
Affiliation(s)
| | - Bruria Ben-Zeev
- Pediatric Neurology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Maria Iascone
- Laboratory of Medical Genetics, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | - Marie-Cécile Nassogne
- Reference Centre for refractory Epilepsy, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lidia Pezzani
- Paediatric Department, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marina Trivisano
- Clinical and Experimental Neurology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
27
|
Abstract
Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, Missouri, USA;
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, Missouri, USA;
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
28
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
29
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
30
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
31
|
Zhang G, Luo H, Li X, Hu Z, Wang Q. The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism. Cells 2023; 12:572. [PMID: 36831239 PMCID: PMC9954528 DOI: 10.3390/cells12040572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In eukaryotes, mRNA metabolism requires a sophisticated signaling system. Recent studies have suggested that polyadenylate tail may play a vital role in such a system. The poly(A) tail used to be regarded as a common modification at the 3' end of mRNA, but it is now known to be more than just that. It appears to act as a platform or hub that can be understood in two ways. On the one hand, polyadenylation and deadenylation machinery constantly regulates its dynamic activity; on the other hand, it exhibits the ability to recruit RNA-binding proteins and then interact with diverse factors to send various signals to regulate mRNA metabolism. In this paper, we outline the main complexes that regulate the dynamic activities of poly(A) tails, explain how these complexes participate polyadenylation/deadenylation process and summarize the diverse signals this hub emit. We are trying to make a point that the poly(A) tail can metaphorically act as a "flagman" who is supervised by polyadenylation and deadenylation and sends out signals to regulate the orderly functioning of mRNA metabolism.
Collapse
Affiliation(s)
- Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
32
|
Mauxion F, Basquin J, Ozgur S, Rame M, Albrecht J, Schäfer I, Séraphin B, Conti E. The human CNOT1-CNOT10-CNOT11 complex forms a structural platform for protein-protein interactions. Cell Rep 2023; 42:111902. [PMID: 36586408 PMCID: PMC9902336 DOI: 10.1016/j.celrep.2022.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
The evolutionary conserved CCR4-NOT complex functions in the cytoplasm as the main mRNA deadenylase in both constitutive mRNA turnover and regulated mRNA decay pathways. The versatility of this complex is underpinned by its modular multi-subunit organization, with distinct structural modules actuating different functions. The structure and function of all modules are known, except for that of the N-terminal module. Using different structural approaches, we obtained high-resolution data revealing the architecture of the human N-terminal module composed of CNOT1, CNOT10, and CNOT11. The structure shows how two helical domains of CNOT1 sandwich CNOT10 and CNOT11, leaving the most conserved domain of CNOT11 protruding into solvent as an antenna. We discovered that GGNBP2, a protein identified as a tumor suppressor and spermatogenic factor, is a conserved interacting partner of the CNOT11 antenna domain. Structural and biochemical analyses thus pinpoint the N-terminal CNOT1-CNOT10-CNOT11 module as a conserved protein-protein interaction platform.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - Sevim Ozgur
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Marion Rame
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jana Albrecht
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Ingmar Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|
33
|
Raisch T, Valkov E. Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr Opin Struct Biol 2022; 77:102460. [PMID: 36116370 PMCID: PMC9771892 DOI: 10.1016/j.sbi.2022.102460] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
The conserved CCR4-NOT complex initiates the decay of mRNAs by catalyzing the shortening of their poly(A) tails in a process known as deadenylation. Recent studies have provided mechanistic insights into the action and regulation of this molecular machine. The two catalytic enzymatic subunits of the complex hydrolyze polyadenosine RNA. Notably, the non-catalytic subunits substantially enhance the complex's affinity and sequence selectivity for polyadenosine by directly contacting the RNA. An additional regulatory mechanism is the active recruitment of the CCR4-NOT to transcripts targeted for decay by RNA-binding proteins that recognize motifs or sequences residing predominantly in untranslated regions. This targeting and strict control of the mRNA deadenylation process emerges as a crucial nexus during post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
34
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
35
|
Wakiyama M, Takimoto K. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex. Genes Cells 2022; 27:579-585. [PMID: 35822830 DOI: 10.1111/gtc.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. MicroRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- RIKEN Systems and Structural Biology Center.,RIKEN Center for Life Science Technologies, Post-transcriptional Control Research Unit.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Nonnatural amino acid technology, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
36
|
Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res 2022; 50:6618-6638. [PMID: 35736234 PMCID: PMC9262622 DOI: 10.1093/nar/gkac519] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) bind to complementary target RNAs and regulate their gene expression post-transcriptionally. These non-coding regulatory RNAs become functional after loading into Argonaute (AGO) proteins to form the effector complexes. Humans have four AGO proteins, AGO1, AGO2, AGO3 and AGO4, which share a high sequence identity. Since most miRNAs are found across the four AGOs, it has been thought that they work redundantly, and AGO2 has been heavily studied as the exemplified human paralog. Nevertheless, an increasing number of studies have found that the other paralogs play unique roles in various biological processes and diseases. In the last decade, the structural study of the four AGOs has provided the field with solid structural bases. This review exploits the completed structural catalog to describe common features and differences in target specificity across the four AGOs.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- To whom correspondence should be addressed. Tel: +1 614 688 2188;
| |
Collapse
|
37
|
Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 2022; 13:3345. [PMID: 35688806 PMCID: PMC9187665 DOI: 10.1038/s41467-022-30976-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge to our understanding of translational control has been deconvolving the individual impact specific regulatory factors have on the complex dynamics of mRNA translation. MicroRNAs (miRNAs), for example, guide Argonaute and associated proteins to target mRNAs, where they direct gene silencing in multiple ways that are not well understood. To better deconvolve these dynamics, we have developed technology to directly visualize and quantify the impact of human Argonaute2 (Ago2) on the translation and subcellular localization of individual reporter mRNAs in living cells. We show that our combined translation and Ago2 tethering sensor reflects endogenous miRNA-mediated gene silencing. Using the sensor, we find that Ago2 association leads to progressive silencing of translation at individual mRNA. Silencing was occasionally interrupted by brief bursts of translational activity and took 3–4 times longer than a single round of translation, consistent with a gradual increase in the inhibition of translation initiation. At later time points, Ago2-tethered mRNAs cluster and coalesce with P-bodies, where a translationally silent state is maintained. These results provide a framework for exploring miRNA-mediated gene regulation in live cells at the single-molecule level. Furthermore, our tethering-based, single-molecule reporter system will likely have wide-ranging application in studying RNA-protein interactions. Guided by miRNA, Argonaute proteins silence mRNA in multiple ways that are not well understood. Here, the authors develop live-cell biosensors to image the impact tethered regulatory factors, such as Argonaute, have on single-mRNA translation dynamics.
Collapse
Affiliation(s)
- Charlotte A Cialek
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ning Zhao
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
38
|
Guénolé A, Velilla F, Chartier A, Rich A, Carvunis AR, Sardet C, Simonelig M, Sobhian B. RNF219 regulates CCR4-NOT function in mRNA translation and deadenylation. Sci Rep 2022; 12:9288. [PMID: 35660762 PMCID: PMC9166816 DOI: 10.1038/s41598-022-13309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional regulatory mechanisms play a role in many biological contexts through the control of mRNA degradation, translation and localization. Here, we show that the RING finger protein RNF219 co-purifies with the CCR4-NOT complex, the major mRNA deadenylase in eukaryotes, which mediates translational repression in both a deadenylase activity-dependent and -independent manner. Strikingly, RNF219 both inhibits the deadenylase activity of CCR4-NOT and enhances its capacity to repress translation of a target mRNA. We propose that the interaction of RNF219 with the CCR4-NOT complex directs the translational repressive activity of CCR4-NOT to a deadenylation-independent mechanism.
Collapse
Affiliation(s)
- Aude Guénolé
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.
| | - Fabien Velilla
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Aymeric Chartier
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - April Rich
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Martine Simonelig
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Bijan Sobhian
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France. .,Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France.
| |
Collapse
|
39
|
Turner DJ, Saveliev A, Salerno F, Matheson LS, Screen M, Lawson H, Wotherspoon D, Kranc KR, Turner M. A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138+ plasma cells. eLife 2022; 11:e72313. [PMID: 35451955 PMCID: PMC9106329 DOI: 10.7554/elife.72313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138 + cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m6A binding protein YTHDF2 as promoting the accumulation of CD138 + cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138 + cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.
Collapse
Affiliation(s)
- David J Turner
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI)FrederickUnited States
| | - Alexander Saveliev
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
| | - Fiamma Salerno
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
| | - Louise S Matheson
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
| | - Michael Screen
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
| | - Hannah Lawson
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Queen Mary University of LondonLondonUnited Kingdom
| | - David Wotherspoon
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Queen Mary University of LondonLondonUnited Kingdom
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Queen Mary University of LondonLondonUnited Kingdom
| | - Martin Turner
- Immunology Programme, The Babraham Institute,Babraham Research CampusCambridgeUnited Kingdom
| |
Collapse
|
40
|
Li D, Yang J, Huang X, Zhou H, Wang J. eIF4A2 targets developmental potency and histone H3.3 transcripts for translational control of stem cell pluripotency. SCIENCE ADVANCES 2022; 8:eabm0478. [PMID: 35353581 PMCID: PMC8967233 DOI: 10.1126/sciadv.abm0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Translational control has emerged as a fundamental regulatory layer of proteome complexity that governs cellular identity and functions. As initiation is the rate-limiting step of translation, we carried out an RNA interference screen for key translation initiation factors required to maintain embryonic stem cell (ESC) identity. We identified eukaryotic translation initiation factor 4A2 (eIF4A2) and defined its mechanistic action through ribosomal protein S26-independent and -dependent ribosomes in translation initiation activation of messenger RNAs (mRNAs) encoding pluripotency factors and the histone variant H3.3 with demonstrated roles in maintaining stem cell pluripotency. eIF4A2 also mediates translation initiation activation of Ddx6, which acts together with eIF4A2 to restrict the totipotent two-cell transcription program in ESCs through Zscan4 mRNA degradation and translation repression. Accordingly, knockdown of eIF4A2 disrupts ESC proteome, causing the loss of ESC identity. Collectively, we establish a translational paradigm of the protein synthesis of pluripotency transcription factors and epigenetic regulators imposed on their established roles in controlling pluripotency.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
41
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
42
|
Schwenk P, Hiltbrunner A. Phytochrome A Mediates the Disassembly of Processing Bodies in Far-Red Light. FRONTIERS IN PLANT SCIENCE 2022; 13:828529. [PMID: 35283917 PMCID: PMC8905148 DOI: 10.3389/fpls.2022.828529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Phytochromes are red- and far-red light receptors that control the growth and development of plants, enabling them to respond adequately to changing light conditions. It has been shown that halted mRNAs stored in RNA granules called processing bodies are released upon light perception and contribute to the adaptation to the light environment. However, the photophysiological background of this process is largely unknown. We found that light of different wavelengths can trigger the disassembly of processing bodies in a dose- and time-dependent manner. We show that phytochromes control this process in red- and far-red light and that cytoplasmic phytochrome A is sufficient and necessary for the far-red light-induced disassembly of processing bodies. This adds a novel, unexpected cytoplasmic function to the processes controlled by phytochrome A. Overall, our findings suggest a role of phytochromes in the control of translationally halted mRNAs that are stored in processing bodies. We expect our findings to facilitate understanding of how light and environmental cues control the assembly and disassembly of processing bodies, which could have broader implications for the regulation of non-membranous organelles in general.
Collapse
Affiliation(s)
- Philipp Schwenk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
44
|
Suzuki T, Hoshina M, Nishijima S, Hoshina N, Kikuguchi C, Tomohiro T, Fukao A, Fujiwara T, Yamamoto T. Regulation of CCR4-NOT complex deadenylase activity and cellular responses by MK2-dependent phosphorylation of CNOT2. RNA Biol 2022; 19:234-246. [PMID: 35129087 PMCID: PMC8820811 DOI: 10.1080/15476286.2021.2021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CCR4-NOT complex-mediated mRNA deadenylation serves critical functions in multiple biological processes, yet how this activity is regulated is not fully understood. Here, we show that osmotic stress induces MAPKAPK-2 (MK2)-mediated phosphorylation of CNOT2. Programmed cell death is greatly enhanced by osmotic stress in CNOT2-depleted cells, indicating that CNOT2 is responsible for stress resistance of cells. Although wild-type (WT) and non-phosphorylatable CNOT2 mutants reverse this sensitivity, a phosphomimetic form of CNOT2, in which serine at the phosphorylation site is replaced with glutamate, does not have this function. We also show that mRNAs have elongated poly(A) tails in CNOT2-depleted cells and that introduction of CNOT2 WT or a non-phosphorylatable mutant, but not phosphomimetic CNOT2, renders their poly(A) tail lengths comparable to those in control HeLa cells. Consistent with this, the CCR4-NOT complex containing phosphomimetic CNOT2 exhibits less deadenylase activity than that containing CNOT2 WT. These data suggest that CCR4-NOT complex deadenylase activity is regulated by post-translational modification, yielding dynamic control of mRNA deadenylation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Miyuki Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Naosuke Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Takumi Tomohiro
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | | | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
45
|
Kataruka S, Kinterova V, Horvat F, Kulmann MIR, Kanka J, Svoboda P. Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant. EMBO Rep 2022; 23:e53514. [PMID: 34866300 PMCID: PMC8811628 DOI: 10.15252/embr.202153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.
Collapse
Affiliation(s)
- Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
- Bioinformatics GroupFaculty of ScienceUniversity of ZagrebZagrebCroatia
| | | | - Jiri Kanka
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
46
|
Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 2022; 23:93-106. [PMID: 34594027 PMCID: PMC7614307 DOI: 10.1038/s41580-021-00417-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
In eukaryotes, poly(A) tails are present on almost every mRNA. Early experiments led to the hypothesis that poly(A) tails and the cytoplasmic polyadenylate-binding protein (PABPC) promote translation and prevent mRNA degradation, but the details remained unclear. More recent data suggest that the role of poly(A) tails is much more complex: poly(A)-binding protein can stimulate poly(A) tail removal (deadenylation) and the poly(A) tails of stable, highly translated mRNAs at steady state are much shorter than expected. Furthermore, the rate of translation elongation affects deadenylation. Consequently, the interplay between poly(A) tails, PABPC, translation and mRNA decay has a major role in gene regulation. In this Review, we discuss recent work that is revolutionizing our understanding of the roles of poly(A) tails in the cytoplasm. Specifically, we discuss the roles of poly(A) tails in translation and control of mRNA stability and how poly(A) tails are removed by exonucleases (deadenylases), including CCR4-NOT and PAN2-PAN3. We also discuss how deadenylation rate is determined, the integration of deadenylation with other cellular processes and the function of PABPC. We conclude with an outlook for the future of research in this field.
Collapse
|
47
|
Xia S, Ventura IM, Blaha A, Sgromo A, Han S, Izaurralde E, Long M. Rapid Gene Evolution in an Ancient Post-transcriptional and Translational Regulatory System Compensates for Meiotic X Chromosomal Inactivation. Mol Biol Evol 2022; 39:msab296. [PMID: 34626117 PMCID: PMC8763131 DOI: 10.1093/molbev/msab296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is conventionally assumed that conserved pathways evolve slowly with little participation of gene evolution. Nevertheless, it has been recently observed that young genes can take over fundamental functions in essential biological processes, for example, development and reproduction. It is unclear how newly duplicated genes are integrated into ancestral networks and reshape the conserved pathways of important functions. Here, we investigated origination and function of two autosomal genes that evolved recently in Drosophila: Poseidon and Zeus, which were created by RNA-based duplications from the X-linked CAF40, a subunit of the conserved CCR4-NOT deadenylase complex involved in posttranscriptional and translational regulation. Knockdown and knockout assays show that the two genes quickly evolved critically important functions in viability and male fertility. Moreover, our transcriptome analysis demonstrates that the three genes have a broad and distinct effect in the expression of hundreds of genes, with almost half of the differentially expressed genes being perturbed exclusively by one paralog, but not the others. Co-immunoprecipitation and tethering assays show that the CAF40 paralog Poseidon maintains the ability to interact with the CCR4-NOT deadenylase complex and might act in posttranscriptional mRNA regulation. The rapid gene evolution in the ancient posttranscriptional and translational regulatory system may be driven by evolution of sex chromosomes to compensate for the meiotic X chromosomal inactivation (MXCI) in Drosophila.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Andreas Blaha
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuaibo Han
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
49
|
Poetz F, Corbo J, Levdansky Y, Spiegelhalter A, Lindner D, Magg V, Lebedeva S, Schweiggert J, Schott J, Valkov E, Stoecklin G. RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation. Nat Commun 2021; 12:7175. [PMID: 34887419 PMCID: PMC8660800 DOI: 10.1038/s41467-021-27471-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Alexander Spiegelhalter
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Jörg Schweiggert
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA.
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
50
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|