1
|
Gutierrez-Morton E, Wang Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. CELL INSIGHT 2024; 3:100199. [PMID: 39399482 PMCID: PMC11467568 DOI: 10.1016/j.cellin.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
As a type of protein post-translational modification, SUMOylation is the process that attaches a small ubiquitin-like modifier (SUMO) to lysine residues of protein substrates. Not only do SUMO and ubiquitin exhibit structure similarity, but the enzymatic cascades for SUMOylation and ubiquitination are also similar. It is well established that protein ubiquitination triggers proteasomal degradation, but the function of SUMOylation remains poorly understood compared to ubiquitination. Recent studies reveal the role of SUMOylation in regulating protein localization, stability, and interaction networks. SUMO can be covalently attached to substrates either as an individual monomer (monoSUMOylation) or as a polymeric SUMO chain (polySUMOylation). Strikingly, mono- and polySUMOylation likely play distinct roles in protein subcellular localization and the assembly/disassembly of biomolecular condensates, which are membraneless cellular compartments with concentrated biomolecules. In this review, we summarize the recent advances in the understanding of the function and regulation of SUMOylation, which could reveal potential therapeutic targets in disease pathogenesis.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
2
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Antoniani F, Cimino M, Mediani L, Vinet J, Verde EM, Secco V, Yamoah A, Tripathi P, Aronica E, Cicardi ME, Trotti D, Sterneckert J, Goswami A, Carra S. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023; 9:248. [PMID: 37454169 DOI: 10.1038/s41420-023-01547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
Collapse
Affiliation(s)
- Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Enza M Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maria E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 10032, New York, NY, USA.
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, 10032, New York, NY, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Sun H, Chen Y, Yan K, Shao Y, Zhang QC, Lin Y, Xi Q. Recruitment of TRIM33 to cell-context specific PML nuclear bodies regulates nodal signaling in mESCs. EMBO J 2023; 42:e112058. [PMID: 36524443 PMCID: PMC9890237 DOI: 10.15252/embj.2022112058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
TRIM33 is a chromatin reader required for mammalian mesendoderm differentiation after activation of Nodal signaling, while its role in mESCs is still elusive. Here, we report that TRIM33 co-localizes with promyelocytic leukemia nuclear bodies (PML-NBs) specifically in mESCs, to mediate Nodal signaling-directed transcription of Lefty1/2. We show that TRIM33 puncta formation in mESCs depends on PML and on specific assembly of PML-NBs. Moreover, TRIM33 and PML co-regulate Lefty1/2 expression in mESCs, with both PML protein and formation of mESCs-specific PML-NBs being required for TRIM33 recruitment to these loci, and PML-NBs directly associating with the Lefty1/2 loci. Finally, a TurboID proximity-labeling experiment confirmed that TRIM33 is highly enriched only in mESCs-specific PML-NBs. Thus, our study supports a model in which TRIM33 condensates regulate Nodal signaling-directed transcription in mESCs and shows that PML-NBs can recruit distinct sets of client proteins in a cell-context-dependent manner.
Collapse
Affiliation(s)
- Hongyao Sun
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
| | - Yutong Chen
- IDG/McGovern Institute for Brain Research, School of Life SciencesTsinghua UniversityBeijingChina
| | - Kun Yan
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yanqiu Shao
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qiangfeng C Zhang
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yi Lin
- IDG/McGovern Institute for Brain ResearchTsinghua‐Peking Joint Centre for Life SciencesBeijingChina
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Vagiona AC, Mier P, Petrakis S, Andrade-Navarro MA. Analysis of Huntington's Disease Modifiers Using the Hyperbolic Mapping of the Protein Interaction Network. Int J Mol Sci 2022; 23:5853. [PMID: 35628660 PMCID: PMC9144261 DOI: 10.3390/ijms23105853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Huntington's disease (HD) is caused by the production of a mutant huntingtin (HTT) with an abnormally long poly-glutamine (polyQ) tract, forming aggregates and inclusions in neurons. Previous work by us and others has shown that an increase or decrease in polyQ-triggered aggregates can be passive simply due to the interaction of proteins with the aggregates. To search for proteins with active (functional) effects, which might be more effective in finding therapies and mechanisms of HD, we selected among the proteins that interact with HTT a total of 49 pairs of proteins that, while being paralogous to each other (and thus expected to have similar passive interaction with HTT), are located in different regions of the protein interaction network (suggesting participation in different pathways or complexes). Three of these 49 pairs contained members with opposite effects on HD, according to the literature. The negative members of the three pairs, MID1, IKBKG, and IKBKB, interact with PPP2CA and TUBB, which are known negative factors in HD, as well as with HSP90AA1 and RPS3. The positive members of the three pairs interact with HSPA9. Our results provide potential HD modifiers of functional relevance and reveal the dynamic aspect of paralog evolution within the interaction network.
Collapse
Affiliation(s)
- Aimilia-Christina Vagiona
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| |
Collapse
|
6
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
7
|
Lv B, Pan Y, Hou D, Chen P, Zhang J, Chu Y, Li M, Zeng Y, Yang D, Liu J. RNF4 silencing induces cell growth arrest and DNA damage by promoting nuclear targeting of p62 in hepatocellular carcinoma. Oncogene 2022; 41:2275-2286. [PMID: 35236966 DOI: 10.1038/s41388-022-02247-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the largest causes of cancer-related deaths worldwide owing to the limitation of effective treatment options. The ubiquitin-proteasome system has been rapidly recognized as a frequent target of deregulation leading to cancers. Enhanced DNA damage response (DDR) promotes HCC growth and prevents chemosensitivity, and ubiquitin E3 ligases are key modulators in DDR. Therefore, a better understanding of how E3 ligases regulate cell growth and DNA damage may provide novel insights in understanding the oncogenic mechanism and improving the efficacy of DNA damage therapeutic agents. Here, we performed a high-content RNAi screening targeting 52 DDR-related E3 ligases in HCC and found that ring finger protein 4 (RNF4) was essential for HCC growth. RNF4 was highly expressed in HCC tissues, and the expression levels of RNF4 were associated with poor outcomes. RNF4 silencing significantly suppressed the cell growth, and subsequently induced G2/M arrest and apoptosis of HCC cells in vitro; RNF4 silencing also demonstrated the tumor-suppressive efficacy on HCC in vivo. Moreover, RNF4 silencing increased DNA damage, and rendered HCC cells more sensitive to DNA damage drugs and radiation. We found RNF4 functionally interacts with p62, and mechanistic analyses indicated that RNF4 silencing triggered the nuclear enrichment of p62. Moreover, the p62 nuclear targeting was required for increased DNA damage and growth suppression mediated by RNF4 silencing. Thus, our findings suggest RNF4 is essential for HCC proliferation via preventing nuclear translocation of p62. RNF4 silencing promotes DNA damage and may serve as a novel strategy to suppress cell growth and increase the sensitivity of DNA damage therapeutic agents in HCC.
Collapse
Affiliation(s)
- Bin Lv
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Daisen Hou
- Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Ping Chen
- Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Mingqi Li
- Center of Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China. .,Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China. .,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.
| |
Collapse
|
8
|
McPhee MJ, Salsman J, Foster J, Thompson J, Mathavarajah S, Dellaire G, Ridgway ND. Running 'LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Front Cell Dev Biol 2022; 10:837406. [PMID: 35178392 PMCID: PMC8846306 DOI: 10.3389/fcell.2022.837406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The nucleus harbours numerous protein subdomains and condensates that regulate chromatin organization, gene expression and genomic stress. A novel nuclear subdomain that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet (nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer and associated regulatory and lipid biosynthetic enzymes. While structurally resembling cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at regions of the inner nuclear membrane that become enriched in promyelocytic leukemia (PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies (NB) as they lack key proteins and modifications associated with these NBs. PML is a key regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-translational modification of transcription factors. Therefore, the subfraction of nLDs that form LAPS could regulate lipid stress responses through their recruitment and retention of the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as well as global lipid regulation. In this review we have summarized the current understanding of nLD and LAPS biogenesis in different cell types, their structure and composition relative to other PML-associated cellular structures, and their role in coordinating a nuclear response to cellular overload of fatty acids.
Collapse
Affiliation(s)
- Michael J McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jason Foster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Thompson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Du C, Chen X, Su Q, Lu W, Wang Q, Yuan H, Zhang Z, Wang X, Wu H, Qi Y. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci 2021; 22:10618. [PMID: 34638970 PMCID: PMC8509021 DOI: 10.3390/ijms221910618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease caused by many factors, including atherosclerosis, congenital heart disease, heart failure, and ischemic cardiomyopathy. CVD has been regarded as one of the most common diseases and has a severe impact on the life quality of patients. The main features of CVD include high morbidity and mortality, which seriously threaten human health. SUMO proteins covalently conjugate lysine residues with a large number of substrate proteins, and SUMOylation regulates the function of target proteins and participates in cellular activities. Under certain pathological conditions, SUMOylation of proteins related to cardiovascular development and function are greatly changed. Numerous studies have suggested that SUMOylation of substrates plays critical roles in normal cardiovascular development and function. We reviewed the research progress of SUMOylation in cardiovascular development and function, and the regulation of protein SUMOylation may be applied as a potential therapeutic strategy for CVD treatment.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 246011, China;
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| |
Collapse
|
10
|
Keiten-Schmitz J, Röder L, Hornstein E, Müller-McNicoll M, Müller S. SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates? Front Mol Biosci 2021; 8:673038. [PMID: 34026847 PMCID: PMC8138125 DOI: 10.3389/fmolb.2021.673038] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Linda Röder
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michaela Müller-McNicoll
- Faculty of Biosciences, Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Müller
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Zhang Y, Shao AW, Tang J, Geng Y. PML-II recruits ataxin-3 to PML-NBs and inhibits its deubiquitinating activity. Biochem Biophys Res Commun 2021; 554:186-192. [PMID: 33798946 DOI: 10.1016/j.bbrc.2021.03.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are dynamic and multiprotein complexes implicated in a variety of important biochemical events. Due to alternative mRNA splicing, PML has at least six nuclear isoforms that share a common N-terminus but differ in their C-terminal regions. However, the unique role of each PML isoform is not clear. Here, we report the characterization of the deubiquitinase ataxin-3 as a specific binding partner of PML isoform II (PML-II). Ataxin-3 was identified as a potential binding protein of PML-II in a yeast-hybrid screen employing the unique C-terminal region of PML-II as bait. Ataxin-3 only binds to the C-terminal region of PML-II and not that of other PML isoforms. The interaction between ataxin-3 and PML-II was confirmed by co-immunoprecipition assays, and immunofluorescent microscopy revealed that PML-II and ataxin-3 were co-localized in PML-NBs. In addition, PML-II not only interacts with ataxin-3 with a normal range of poly-Q repeats (13Q), but also with a pathological form of ataxin-3 with extended poly-Q repeats (79Q). Importantly, the deubiquitinase activity of ataxin-3 was inhibited by PML-II. Our results suggest that PML-II may be a negative regulator of ataxin-3.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - An-Wen Shao
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yunyun Geng
- Hebei University of Chinese Medicine, And Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
12
|
Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance. Biomolecules 2021; 11:biom11010054. [PMID: 33406777 PMCID: PMC7824755 DOI: 10.3390/biom11010054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Protein homeostasis, or proteostasis, is crucial for the functioning of a cell, as proteins that are mislocalized, present in excessive amounts, or aberrant due to misfolding or other type of damage can be harmful. Proteostasis includes attaining the correct protein structure, localization, and the formation of higher order complexes, and well as the appropriate protein concentrations. Consequences of proteostasis imbalance are evident in a range of neurodegenerative diseases characterized by protein misfolding and aggregation, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. To protect the cell from the accumulation of aberrant proteins, a network of protein quality control (PQC) pathways identifies the substrates and direct them towards refolding or elimination via regulated protein degradation. The main pathway for degradation of misfolded proteins is the ubiquitin-proteasome system. PQC pathways have been first described in the cytoplasm and the endoplasmic reticulum, however, accumulating evidence indicates that the nucleus is an important PQC compartment for ubiquitination and proteasomal degradation of not only nuclear, but also cytoplasmic proteins. In this review, we summarize the nuclear ubiquitin-proteasome pathways involved in proteostasis maintenance in yeast, focusing on inner nuclear membrane-associated degradation (INMAD) and San1-mediated protein quality control.
Collapse
|
13
|
Hotz PW, Wiesnet M, Tascher G, Braun T, Müller S, Mendler L. Profiling the Murine SUMO Proteome in Response to Cardiac Ischemia and Reperfusion Injury. Molecules 2020; 25:E5571. [PMID: 33260959 PMCID: PMC7731038 DOI: 10.3390/molecules25235571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
SUMOylation is a reversible posttranslational modification pathway catalyzing the conjugation of small ubiquitin-related modifier (SUMO) proteins to lysine residues of distinct target proteins. SUMOylation modifies a wide variety of cellular regulators thereby affecting a multitude of key processes in a highly dynamic manner. The SUMOylation pathway displays a hallmark in cellular stress-adaption, such as heat or redox stress. It has been proposed that enhanced cellular SUMOylation protects the brain during ischemia, however, little is known about the specific regulation of the SUMO system and the potential target proteins during cardiac ischemia and reperfusion injury (I/R). By applying left anterior descending (LAD) coronary artery ligation and reperfusion in mice, we detect dynamic changes in the overall cellular SUMOylation pattern correlating with decreased SUMO deconjugase activity during I/R injury. Further, unbiased system-wide quantitative SUMO-proteomics identified a sub-group of SUMO targets exhibiting significant alterations in response to cardiac I/R. Notably, transcription factors that control hypoxia- and angiogenesis-related gene expression programs, exhibit altered SUMOylation during ischemic stress adaptation. Moreover, several components of the ubiquitin proteasome system undergo dynamic changes in SUMO conjugation during cardiac I/R suggesting an involvement of SUMO signaling in protein quality control and proteostasis in the ischemic heart. Altogether, our study reveals regulated candidate SUMO target proteins in the mouse heart, which might be important in coping with hypoxic/proteotoxic stress during cardiac I/R injury.
Collapse
Affiliation(s)
- Paul W. Hotz
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Marion Wiesnet
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; (M.W.); (T.B.)
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; (M.W.); (T.B.)
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Luca Mendler
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| |
Collapse
|
14
|
Keiten-Schmitz J, Wagner K, Piller T, Kaulich M, Alberti S, Müller S. The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Mol Cell 2020; 79:54-67.e7. [PMID: 32521226 DOI: 10.1016/j.molcel.2020.05.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023]
Abstract
Exposure of cells to heat or oxidative stress causes misfolding of proteins. To avoid toxic protein aggregation, cells have evolved nuclear and cytosolic protein quality control (PQC) systems. In response to proteotoxic stress, cells also limit protein synthesis by triggering transient storage of mRNAs and RNA-binding proteins (RBPs) in cytosolic stress granules (SGs). We demonstrate that the SUMO-targeted ubiquitin ligase (StUbL) pathway, which is part of the nuclear proteostasis network, regulates SG dynamics. We provide evidence that inactivation of SUMO deconjugases under proteotoxic stress initiates SUMO-primed, RNF4-dependent ubiquitylation of RBPs that typically condense into SGs. Impairment of SUMO-primed ubiquitylation drastically delays SG resolution upon stress release. Importantly, the StUbL system regulates compartmentalization of an amyotrophic lateral sclerosis (ALS)-associated FUS mutant in SGs. We propose that the StUbL system functions as surveillance pathway for aggregation-prone RBPs in the nucleus, thereby linking the nuclear and cytosolic axis of proteotoxic stress response.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Simon Alberti
- CMCB/BIOTEC, Technical University Dresden, Dresden, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
15
|
Jin J. Interplay between ubiquitylation and SUMOylation: Empowered by phase separation. J Biol Chem 2020; 294:15235-15236. [PMID: 31628197 DOI: 10.1074/jbc.h119.011037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin and the ∼20 human ubiquitin-like proteins regulate numerous aspects of cell biology via interlinked mechanisms that have not been fully elucidated. Sha et al. now explore the interplay between ubiquitylation and SUMOylation, finding that inhibition of ubiquitylation enhances SUMOylation of hundreds of newly synthesized proteins and that the resultant pools are stored in phase-separated protein condensates called PML nuclear bodies. These unexpected outcomes identify a new role for SUMOylation and raise new questions about cell behavior under normal and stress conditions.
Collapse
Affiliation(s)
- Jianping Jin
- Life Science Institute, Zhejiang University, 866 Yuhangtang Rd., HangZhou, Zhejiang Province 310058, China
| |
Collapse
|
16
|
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol 2020; 140:2466-2477. [PMID: 32360601 DOI: 10.1016/j.jid.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples. In patients, RNF4 protein and mRNA levels correlate with poor prognosis and with resistance to MAPK inhibitors. Remarkably, RNF4 tumorigenic properties, including therapy resistance, require the translation initiation factor initiation elongation factor alpha (eIF2α). RNF4 binds, ubiquitinates, and stabilizes the phosphorylated eIF2α (p-eIF2α) but not activating transcription factor 4 or C/EBP homologous protein that mediates the eIF2α-dependent integrated stress response. In accordance, p-eIF2α levels were significantly elevated in high-RNF4 patient-derived melanomas. Thus, RNF4 and p-eIF2α establish a positive feed-forward loop connecting oncogenic translation and ubiquitin-dependent protein stabilization in melanoma.
Collapse
Affiliation(s)
- Emily Avitan-Hersh
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Avital Oknin Vaisman
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yamen Abu Ahmad
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA; Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Saeed Sheikh Khalil
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Feiler
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Harriet Kluger
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chaim Kahana
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Kevin Brown
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA
| | - Ze'ev A Ronai
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
17
|
The Viral SUMO–Targeted Ubiquitin Ligase ICP0 is Phosphorylated and Activated by Host Kinase Chk2. J Mol Biol 2020; 432:1952-1977. [DOI: 10.1016/j.jmb.2020.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
|
18
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Wagner K, Kunz K, Piller T, Tascher G, Hölper S, Stehmeier P, Keiten-Schmitz J, Schick M, Keller U, Müller S. The SUMO Isopeptidase SENP6 Functions as a Rheostat of Chromatin Residency in Genome Maintenance and Chromosome Dynamics. Cell Rep 2019; 29:480-494.e5. [PMID: 31597105 DOI: 10.1016/j.celrep.2019.08.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/21/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
Signaling by the ubiquitin-related SUMO pathway relies on coordinated conjugation and deconjugation events. SUMO-specific deconjugating enzymes counterbalance SUMOylation, but comprehensive insight into their substrate specificity and regulation is missing. By characterizing SENP6, we define an N-terminal multi-SIM domain as a critical determinant in targeting SENP6 to SUMO chains. Proteomic profiling reveals a network of SENP6 functions at the crossroads of chromatin organization and DNA damage response (DDR). SENP6 acts as a SUMO eraser at telomeric and centromeric chromatin domains and determines the SUMOylation status and chromatin association of the cohesin complex. Importantly, SENP6 is part of the hPSO4/PRP19 complex that drives ATR-Chk1 activation. SENP6 deficiency impairs chromatin association of the ATR cofactor ATRIP, thereby compromising the activation of Chk1 signaling in response to aphidicolin-induced replicative stress and sensitizing cells to DNA damage. We propose a general role of SENP6 in orchestrating chromatin dynamics and genome stability networks by balancing chromatin residency of protein complexes.
Collapse
Affiliation(s)
- Kristina Wagner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kathrin Kunz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Per Stehmeier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jan Keiten-Schmitz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Markus Schick
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ulrich Keller
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
20
|
Marinello M, Werner A, Giannone M, Tahiri K, Alves S, Tesson C, den Dunnen W, Seeler JS, Brice A, Sittler A. SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models. Dis Model Mech 2019; 12:dmm.036145. [PMID: 30559154 PMCID: PMC6361149 DOI: 10.1242/dmm.036145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023] Open
Abstract
Perturbation of protein homeostasis and aggregation of misfolded proteins is a major cause of many human diseases. A hallmark of the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7) is the intranuclear accumulation of mutant, misfolded ataxin-7 (polyQ-ATXN7). Here, we show that endogenous ATXN7 is modified by SUMO proteins, thus also suggesting a physiological role for this modification under conditions of proteotoxic stress caused by the accumulation of polyQ-ATXN7. Co-immunoprecipitation experiments, immunofluorescence microscopy and proximity ligation assays confirmed the colocalization and interaction of polyQ-ATXN7 with SUMO2 in cells. Moreover, upon inhibition of the proteasome, both endogenous SUMO2/3 and the RNF4 ubiquitin ligase surround large polyQ-ATXN7 intranuclear inclusions. Overexpression of RNF4 and/or SUMO2 significantly decreased levels of polyQ-ATXN7 and, upon proteasomal inhibition, led to a marked increase in the polyubiquitination of polyQ-ATXN7. This provides a mechanism for the clearance of polyQ-ATXN7 from affected cells that involves the recruitment of RNF4 by SUMO2/3-modified polyQ-ATXN7, thus leading to its ubiquitination and proteasomal degradation. In a SCA7 knock-in mouse model, we similarly observed colocalization of SUMO2/3 with polyQ-ATXN7 inclusions in the cerebellum and retina. Furthermore, we detected accumulation of SUMO2/3 high-molecular-mass species in the cerebellum of SCA7 knock-in mice, compared with their wild-type littermates, and changes in SUMO-related transcripts. Immunohistochemical analysis showed the accumulation of SUMO proteins and RNF4 in the cerebellum of SCA7 patients. Taken together, our results show that the SUMO pathway contributes to the clearance of aggregated ATXN7 and suggest that its deregulation might be associated with SCA7 disease progression.
Collapse
Affiliation(s)
- Martina Marinello
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Neurogenetics Group, 75013 Paris, France
| | - Andreas Werner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Mariagiovanna Giannone
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Neurogenetics Group, 75013 Paris, France
| | - Khadija Tahiri
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Sandro Alves
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Christelle Tesson
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Neurogenetics Group, 75013 Paris, France
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U.993, Department of Cell Biology and Infection, Institut Pasteur, F-75015 Paris, France
| | - Alexis Brice
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France.,AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital, F-75013 Paris, France
| | - Annie Sittler
- Sorbonne Universités, UPMC, Univ Paris 06 UMRS 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013 Paris, France
| |
Collapse
|
21
|
Stankova T, Piepkorn L, Bayer TA, Jahn O, Tirard M. SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. Aging Cell 2018; 17:e12760. [PMID: 29633471 PMCID: PMC6052395 DOI: 10.1111/acel.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
A proper equilibrium of post-translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6 -HA-SUMO1 knock-in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1-conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age-related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.
Collapse
Affiliation(s)
- Trayana Stankova
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Lars Piepkorn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry; Department of Psychiatry and Psychotherapy; University Medical Center Göttingen (UMG); Göttingen Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
22
|
Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Lévy N. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2018; 9:1294-1313. [PMID: 28674081 PMCID: PMC5582415 DOI: 10.15252/emmm.201607315] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A‐type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF‐1 and SRSF‐5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF‐1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Claire Navarro
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Danielle Depetris
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Marie-Geneviève Mattei
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, AFM, Evry, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France .,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| |
Collapse
|
23
|
Elimination of a signal sequence-uncleaved form of defective HLA protein through BAG6. Sci Rep 2017; 7:14545. [PMID: 29109525 PMCID: PMC5674028 DOI: 10.1038/s41598-017-14975-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
A portion of newly synthesized transmembrane domain proteins tend to fail to assemble correctly in the lumen of the endoplasmic reticulum, thus resulting in the production of a signal sequence-uncleaved form of the defective species. Although the efficient degradation of these mistargeted polypeptides is crucial, the molecular mechanism of their elimination pathway has not been adequately characterized. In this study, we focused on one such cryptic portion of a defective transmembrane domain protein, HLA-A, and show that a part of HLA-A is produced as a signal sequence-uncleaved labile species that is immediately targeted to the degradation pathway. We found that both BAG6 and proteasomes are indispensable for elimination of mislocalized HLA-A species. Furthermore, defective HLA-A is subjected to BAG6-dependent solubilization in the cytoplasm. These observations suggest that BAG6 acts as a critical factor for proteasome-mediated degradation of mislocalized HLA-A with a non-cleaved signal sequence at its N-terminus.
Collapse
|
24
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
Affiliation(s)
- Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:389-408. [DOI: 10.1007/978-3-319-50044-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
|
27
|
Abstract
Yeast and fungal prions are infectious proteins, most being self-propagating amyloids of normally soluble proteins. Their effects range from a very mild detriment to lethal, with specific effects dependent on the prion protein and the specific prion variant ("prion strain"). The prion amyloids of Sup35p, Ure2p, and Rnq1p are in-register, parallel, folded β-sheets, an architecture that naturally suggests a mechanism by which a protein can template its conformation, just as DNA or RNA templates its sequence. Prion propagation is critically affected by an array of chaperone systems, most notably the Hsp104/Hsp70/Hsp40 combination, which is responsible for generating new prion seeds from old filaments. The Btn2/Cur1 antiprion system cures most [URE3] prions that develop, and the Ssb antiprion system blocks [PSI+] generation.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830
| |
Collapse
|
28
|
Abstract
SUMOylation is a ubiquitin-related transient posttranslational modification pathway catalyzing the conjugation of small ubiquitin-like modifier (SUMO) proteins (SUMO1, SUMO2, and SUMO3) to lysine residues of proteins. SUMOylation targets a wide variety of cellular regulators and thereby affects a multitude of different cellular processes. SUMO/sentrin-specific proteases are able to remove SUMOs from targets, contributing to a tight control of SUMOylated proteins. Genetic and cell biological experiments indicate a critical role of balanced SUMOylation/deSUMOylation for proper cardiac development, metabolism, and stress adaptation. Here, we review the current knowledge about SUMOylation/deSUMOylation in the heart and provide an integrated picture of cardiac functions of the SUMO system under physiologic or pathologic conditions. We also describe potential therapeutic approaches targeting the SUMO machinery to combat heart disease.
Collapse
Affiliation(s)
- Luca Mendler
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Braun
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| | - Stefan Müller
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
29
|
Jones RD, Gardner RG. Protein quality control in the nucleus. Curr Opin Cell Biol 2016; 40:81-89. [PMID: 27015023 DOI: 10.1016/j.ceb.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 12/29/2022]
Abstract
The nucleus is the repository for the eukaryotic cell's genetic blueprint, which must be protected from harm to ensure survival. Multiple quality control (QC) pathways operate in the nucleus to maintain the integrity of the DNA, the fidelity of the DNA code during replication, its transcription into mRNA, and the functional structure of the proteins that are required for DNA maintenance, mRNA transcription, and other important nuclear processes. Although we understand a great deal about DNA and RNA QC mechanisms, we know far less about nuclear protein quality control (PQC) mechanisms despite that fact that many human diseases are causally linked to protein misfolding in the nucleus. In this review, we discuss what is known about nuclear PQC and we highlight new questions that have emerged from recent developments in nuclear PQC studies.
Collapse
Affiliation(s)
- Ramon D Jones
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Nie CJ, Li YH, Zhang XH, Wang ZP, Jiang W, Zhang Y, Yin WN, Zhang Y, Shi HJ, Liu Y, Zheng CY, Zhang J, Zhang GL, Zheng B, Wen JK. SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation. Exp Cell Res 2016; 342:20-31. [PMID: 26945917 DOI: 10.1016/j.yexcr.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue due to its major implications for the prevention of pathological vascular conditions. The objective of this work was to assess the function of small ubiquitin-like modifier (SUMO)ylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in cultured cells and in animal models with balloon injury. We found that under basal conditions, binding of non-SUMOylated KLF4 to p300 activated p21 (p21(WAF1/CIP1))transcription, leading to VSMC growth arrest. PDGF-BB promoted the interaction between Ubc9 and KLF4 and the SUMOylation of KLF4, which in turn recruited transcriptional corepressors to the p21 promoter. The reduction in p21 enhanced VSMC proliferation. Additionally, the SUMOylated KLF4 did not affect the expression of KLF4, thereby forming a positive feedback loop enhancing cell proliferation. These results demonstrated that SUMOylated KLF4 plays an important role in cell proliferation by reversing the transactivation action of KLF4 on p21 induced with PDGF-BB.
Collapse
Affiliation(s)
- Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China; Hebei Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Zhi-Peng Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Zhang
- Department of Urinary Surgery, Second Hospital of Hebei Medical University, Pingan Road, Shijiazhuang 050000, China
| | - Hui-Jing Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
31
|
Wickner RB, Kelly AC. Prions are affected by evolution at two levels. Cell Mol Life Sci 2016; 73:1131-44. [PMID: 26713322 PMCID: PMC4762734 DOI: 10.1007/s00018-015-2109-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 225, 8 Center Drive MSC 0830, Bethesda, MD, 20892-0830, USA.
| | - Amy C Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 225, 8 Center Drive MSC 0830, Bethesda, MD, 20892-0830, USA.
- NCAUR, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA.
| |
Collapse
|
32
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
33
|
Andrilenas KK, Penvose A, Siggers T. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes. Brief Funct Genomics 2014; 14:17-29. [PMID: 25431149 DOI: 10.1093/bfgp/elu046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)-DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein-DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes.
Collapse
|