1
|
Suter T, Friedman MJ, Tazearslan C, Merkurjev D, Ohgi K, Meluzzi D, Rosenfeld MG, Suh Y. Ligand-specific regulation of a binary enhancer code dictating cellular senescence. Proc Natl Acad Sci U S A 2025; 122:e2506321122. [PMID: 40493192 DOI: 10.1073/pnas.2506321122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 06/12/2025] Open
Abstract
Cellular senescence, a major contributor to aging and age-related pathologies, is characterized by irreversible proliferative arrest and a disease-linked, proinflammatory profile known as the Senescence Associated Secretory Phenotype (SASP). A critical unanswered question is whether these properties are regulated by specific enhancer subsets, potentially licensing strategies that selectively block deleterious SASP components. Here, we identify two functionally distinct and independently regulated enhancer programs underlying senescence that are controlled by different TGF-β family ligands. Whereas Activin A stimulates recruitment of nuclear factor IA/C (NFIA/C) and SMAD2/3 transcription factors to an enhancer network that induces proliferation arrest, TGF-β2 promotes SMAD2/3-mediated suppression of a p65-dependent enhancer cohort driving the SASP. We have also uncovered reciprocal SMAD2/3-super-enhancer-regulated feedback loops that govern expression of the TGF-β2 (TGFB2) and Activin A (INHBA) transcription units, both of which are significantly up-regulated in replicative senescence. The characteristic enhancer usage and transcriptional landscape of high-passage senescent cells are sensitive to rapamycin treatment, discontinuation of which results in robust but selective senescent enhancer activation and exacerbation of the SASP. Collectively, this study uncovers separable enhancer programs and their key constituent transcription factors that contribute to the canonical features of cellular senescence, potentially informing the development of SASP-targeted therapies.
Collapse
Affiliation(s)
- Thomas Suter
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Meyer J Friedman
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Daria Merkurjev
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kenny Ohgi
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dario Meluzzi
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Michael G Rosenfeld
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
2
|
Zhou A, Ye Q, Wei Y, Li WD. Association between epigenetic clock acceleration and malnutrition among adults in the United States: A cross-sectional study. JPEN J Parenter Enteral Nutr 2025. [PMID: 40420703 DOI: 10.1002/jpen.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND We investigated relationships between nutrition assessment tools (Controlling Nutritional Status [CONUT], Geriatric Nutritional Risk Index [GNRI], and Naples Prognostic Score [NPS]) and epigenetic clocks, evaluating malnutrition's impact on biological aging. METHODS Using National Health and Nutrition Examination Survey database (1999-2002), 2532 participants aged ≥50 years were assessed with three nutrition tools and analyzed against 12 epigenetic clocks using multiple linear regression models adjusted for confounding factors. RESULTS Malnutrition prevalence rates were 13.5% (CONUT), 4.2% (GNRI), and 46.8% (NPS). Compared with no-risk groups, moderate-to-severe malnutrition showed significant epigenetic age acceleration, particularly in NPS assessment. GrimAge2Mort demonstrated up to 4.19 years acceleration (in NPS model 3, P < 0.01), DunedinPoAm showed significant increase (in NPS model 3, β = 0.083, P < 0.01), and YangCell significantly decreased (in NPS model 3, β = -0.019, P < 0.01). These associations remained significant after adjusting for confounding factors. A clear dose-response relationship existed between malnutrition and epigenetic age acceleration. CONCLUSION This study provides first systematic evidence of significant associations between malnutrition and epigenetic age acceleration, particularly in moderate-to-severe malnutrition, leading to substantial biological aging acceleration. GrimAge2Mort, DunedinPoAm, and YangCell emerged as stable indicators for assessing nutrition-related biological aging. These findings provide new insights into malnutrition's impact on aging and offer important references for clinical nutrition intervention strategies.
Collapse
Affiliation(s)
- An Zhou
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qun Ye
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yonghui Wei
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Sun J, Gui Y, Yin H, Yan B, Chen Y, Belke D, Hill JA, Zhou S, Zheng XL. Roles of Brd4 in Vascular Smooth Muscle Cells: Implications for Aging and Vascular Dysfunction. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401376 DOI: 10.1161/atvbaha.124.322158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Growing evidence suggests that the epigenetic reader Brd4 (bromodomain-containing protein 4) is involved in aging and aging-related diseases. However, the specific mechanisms by which Brd4 influences vascular aging, especially senescence of vascular smooth muscle cells (SMCs), remain unexplored. METHODS Primary cell cultures were established using mouse aortic SMCs and treated with Brd4 inhibitor, ARV-825, or (+)-JQ1. Primary Brd4flox/flox mouse aortic SMCs were transduced with Ad-Cre virus to induce Brd4 knockout (KO). Senescence was assessed through SA-β-gal (senescence-associated β-galactosidase) staining. A mouse model of inducible SMC-specific Brd4 gene KO (SMC-Brd4-KO) was generated with the Cre-LoxP system. The control and SMC-Brd4-KO mice were evaluated for arterial contractility, blood pressure, arterial stiffness, and Ang II (angiotensin II)-induced vascular aging, as well as transcriptome profiling using RNA-sequencing analysis. RESULTS Brd4 inhibition with ARV-825, (+)-JQ1, or Brd4 knockdown through Ad-Cre virus in Brd4flox/flox SMCs led to cellular senescence. Induced SMC-Brd4-KO in adult mice prevented neointima formation. SMC-Brd4-KO mice exhibited increased aortic stiffness and blood pressure with enhanced arterial contractility ex vivo. In addition, Brd4 expression was downregulated in aortic tissues of aged mice and senescent human aortic SMCs. Furthermore, SMC-Brd4-KO mice displayed more prominent histopathologic features of vascular aging in response to Ang II infusion. Aortic tissues from SMC-Brd4-KO mice showed a more robust contractile response to Ang II and phenylephrine, accompanied by multiple genetic changes, including alterations in cytoskeleton genes. Transcriptomes of Brd4 KO aortas displayed gene signatures of dampened autophagy, intriguingly associated with a downregulation of microtubule genes, including Tuba4a (α-tubulin). Experiments in vitro with Brd4 KO SMCs demonstrated the potential role of impaired autophagy and depleted α-tubulin in mediating induction of senescence in SMCs. CONCLUSIONS Brd4 depletion in SMCs induces senescence, prevents neointima formation, and exacerbates vascular aging, highlighting its crucial roles in vascular functions and diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (J.S., S.Z.)
| | - Yu Gui
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (H.Y.)
| | - Binjie Yan
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| | - Yongxiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada. (Y.C., D.B.)
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada. (Y.C., D.B.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas (J.A.H.)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (J.S., S.Z.)
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| |
Collapse
|
4
|
Rampal RK, Grosicki S, Chraniuk D, Abruzzese E, Bose P, Gerds AT, Vannucchi AM, Palandri F, Lee SE, Gupta V, Lucchesi A, Oh ST, Kuykendall AT, Patriarca A, Álvarez-Larrán A, Mesa R, Kiladjian JJ, Talpaz M, Scandura JM, Lavie D, Harris M, Kays SK, Li Q, Boxhammer R, Brown B, Jegg AM, Harrison CN, Mascarenhas J. Pelabresib plus ruxolitinib for JAK inhibitor-naive myelofibrosis: a randomized phase 3 trial. Nat Med 2025; 31:1531-1538. [PMID: 40065169 PMCID: PMC12092244 DOI: 10.1038/s41591-025-03572-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/05/2025] [Indexed: 05/22/2025]
Abstract
Janus kinase (JAK) inhibitors provide limited depth and durability of response in myelofibrosis. We evaluated pelabresib-a bromodomain and extraterminal domain (BET) inhibitor-plus ruxolitinib (a JAK inhibitor) compared with placebo plus ruxolitinib as first-line therapy. In this phase 3 study (MANIFEST-2), JAK inhibitor-naive patients with myelofibrosis were randomized 1:1 to pelabresib 125 mg once daily (QD; 50-175 mg QD permitted) for 14 days followed by a 7-day break (21-day cycle), or to placebo in combination with ruxolitinib 10 or 15 mg twice daily (BID; 5 mg QD-25 mg BID permitted). Primary endpoint was reduction in spleen volume of ≥35% from baseline at week 24. Key secondary endpoints were absolute change in total symptom score (TSS) and TSS50 response (≥50% reduction in TSS from baseline at week 24). The primary endpoint was met in 65.9% of patients randomized to pelabresib-ruxolitinib (n = 214) versus 35.2% to placebo-ruxolitinib (n = 216) (difference, 30.4%; 95% confidence interval (CI), 21.6, 39.3; P < 0.001). Absolute change in TSS was -15.99 versus -14.05 (difference, -1.94; 95% CI, -3.92, 0.04; P = 0.0545) and TSS50 was achieved in 52.3% versus 46.3% (difference, 6.0%; 95 CI, -3.5, 15.5) with pelabresib-ruxolitinib versus placebo-ruxolitinib. Exploratory analyses of proinflammatory cytokine amounts and bone marrow morphology showed greater improvement with the combination. Thrombocytopenia and anemia were the most common treatment-emergent adverse events, occurring in 52.8% (13.2% grade ≥3) versus 37.4% (6.1% grade ≥3) and 44.8% (23.1% grade ≥3) versus 55.1% (36.5% grade ≥3), respectively. Pelabresib in combination with ruxolitinib is well tolerated, improves signs of underlying myelofibrosis pathobiology and provides substantial clinical benefit over standard-of-care JAK inhibitor monotherapy. ClinicalTrials.gov identifier: NCT04603495 .
Collapse
Affiliation(s)
- Raajit K Rampal
- Department of Medicine, Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Dominik Chraniuk
- Hematology Ward, Wojewodzki Szpital Zespolony im. L. Rydygiera, Torun, Poland
| | - Elisabetta Abruzzese
- Department of Hematology, S Eugenio Hospital, Tor Vergata University, Rome, Italy
| | - Prithviraj Bose
- Leukemia Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aaron T Gerds
- Cleveland Clinic Taussig Cancer Institute, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, University of Florence and Careggi Hospital, Florence, Italy
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia 'Seràgnoli', Bologna, Italy
| | - Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Stephen T Oh
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Andrea Patriarca
- Hematology Unit, AOU Maggiore della Carità and University of Eastern Piedmont, Novara, Italy
| | - Alberto Álvarez-Larrán
- Hematology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Mesa
- Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC, USA
| | | | - Moshe Talpaz
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Joseph M Scandura
- Division of Hematology and Oncology, The Richard T. Silver, M.D. Myeloproliferative Neoplasms Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lavie
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Morgan Harris
- Constellation Pharmaceuticals, a Novartis Company, Boston, MA, USA
| | | | - Qing Li
- MorphoSys US Inc., a Novartis Company, Boston, MA, USA
| | | | - Barbara Brown
- Constellation Pharmaceuticals, a Novartis Company, Boston, MA, USA
| | | | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Doskey LC, Scholtz CR, Vail NR, Khanal S, Lee AL, Kandanur SGS, Hoell ZJ, Huehls AM, Issa MR, Kostallari E, Cao S, Reid JM, Shah VH, Malhi H, Pomerantz WCK. Efficacy and Toxicity Analysis of Selective BET Bromodomain Inhibitors in Models of Inflammatory Liver Disease. J Med Chem 2025; 68:8091-8105. [PMID: 40227166 DOI: 10.1021/acs.jmedchem.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BET bromodomain inhibitors demonstrate significant promise as anti-inflammatory agents. However, clinical data demonstrated that nonselective BET bromodomain inhibitors led to significant dose-limiting toxicity in clinical settings. Here, we use three orally bioavailable inhibitors, 1-3, that are either BRD4-D1 selective or pan-D1-biased + BRD4-D2, for assessing their cellular and in vivo efficacy and safety profile compared to known BET inhibitors in two inflammatory disease models. Our results show that pan-D1-biased + BRD4-D2 inhibitor, 3, is as efficacious as pan-BET inhibitor, I-BET151, in reducing inflammation in both models, whereas pan-D2 inhibitors are less effective. BRD4-D1 selective inhibitors are also efficacious; however, inhibitors with improved cellular engagement will be necessary to better assess their effects. Finally, BRD4-D1 selective inhibitors are better tolerated in a preclinical thrombocytopenia model than 3, while gastrointestinal toxicity may be a BRD4-driven effect. These results highlight the importance of assessing specific BET bromodomain functions due to their diverse roles in disease models.
Collapse
Affiliation(s)
- Luke C Doskey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Cole R Scholtz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nora R Vail
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Amani L Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Amelia M Huehls
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Mohamed R Issa
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Joel M Reid
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Zheng C, Zhang L, Sun Y, Ma Y, Zhang Y. Alveolar epithelial cell dysfunction and epithelial-mesenchymal transition in pulmonary fibrosis pathogenesis. Front Mol Biosci 2025; 12:1564176. [PMID: 40343260 PMCID: PMC12058482 DOI: 10.3389/fmolb.2025.1564176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Pulmonary fibrosis (PF) is a progressive and lethal interstitial lung disease characterized by aberrant scar formation and destruction of alveolar architecture. Dysfunctional alveolar epithelial cells (AECs) play a central role in initiating PF, where chronic injury triggers apoptosis and disrupts epithelial homeostasis, leading to epithelial-mesenchymal transition (EMT). This dynamic reprogramming process causes AECs to shed epithelial markers and adopt a mesenchymal phenotype, fueling fibroblast activation and pathological extracellular matrix (ECM) deposition. This review systematically explores the multi-layered mechanisms driving AECs dysfunction and EMT, focusing on core signaling axes such as transforming growth factor-β (TGF-β)/Smad, WNT/β-catenin, NF-κB-BRD4, and nuclear factor erythroid 2-related factor 2 (Nrf2), which regulate EMT and fibroblast-ECM interactions. It also highlights emerging regulators, including metabolic reprogramming, exosomal miRNA trafficking, and immune-epithelial interactions. Furthermore, understanding these mechanisms is essential for developing targeted therapeutic strategies to modulate these pathways and halt or reverse fibrosis progression, offering critical insights into potential clinical treatments for PF.
Collapse
Affiliation(s)
- Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
7
|
Tanwar VS, Reddy MA, Dey S, Malek V, Lanting L, Chen Z, Ganguly R, Natarajan R. Palmitic acid alters enhancers/super-enhancers near inflammatory and efferocytosis-associated genes in human monocytes. J Lipid Res 2025; 66:100774. [PMID: 40068774 PMCID: PMC12002881 DOI: 10.1016/j.jlr.2025.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Free fatty acids like palmitic acid (PA) are elevated in obesity and diabetes and dysregulate monocyte and macrophage functions, contributing to enhanced inflammation in these cardiometabolic diseases. Epigenetic mechanisms regulating enhancer functions play key roles in inflammatory gene expression, but their role in PA-induced monocyte/macrophage dysfunction is unknown. We found that PA treatment altered the epigenetic landscape of enhancers and super-enhancers (SEs) in human monocytes. Integration with RNA-seq data revealed that PA-induced enhancers/SEs correlated with PA-increased expression of inflammatory and immune response genes, while PA-inhibited enhancers correlated with downregulation of phagocytosis and efferocytosis genes. These genes were similarly regulated in macrophages from mouse models of diabetes and accelerated atherosclerosis, human atherosclerosis, and infectious agents. PA-regulated enhancers/SEs harbored SNPs associated with diabetes, obesity, and body mass index indicating disease relevance. We verified increased chromatin interactions between PA-regulated enhancers/SEs and inflammatory gene promoters and reduced interactions at efferocytosis genes. PA-induced gene expression was reduced by inhibitors of BRD4, and NF-κB. PA treatment inhibited phagocytosis and efferocytosis in human macrophages. Together, our findings demonstrate that PA-induced enhancer dynamics at key monocyte/macrophage enhancers/SEs regulate inflammatory and immune genes and responses. Targeting these PA-regulated epigenetic changes could provide novel therapeutic opportunities for cardiometabolic disorders.
Collapse
Affiliation(s)
- Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Suchismita Dey
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Xu X, Brasier AR. SMARCA4 regulates inducible BRD4 genomic redistribution coupling intrinsic immunity and plasticity in epithelial injury-repair. Nucleic Acids Res 2025; 53:gkaf211. [PMID: 40131774 PMCID: PMC11934928 DOI: 10.1093/nar/gkaf211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Coordinated expression of differentiation and innate pathways is essential for successful mucosal injury-repair. Previously, we discovered that the core SWI/SNF complex ATPase, SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4)/Brg1, maintains tumor protein 63 + basal progenitor cells in an epithelial-committed state. In response to viral injury, SMARCA4 complexes BRD4 to activate innate inflammation and promote mesenchymal transition/plasticity. To investigate how innate inflammation couples with plasticity, Cleavage Under Targets and Release Using Nuclease of BRD4 binding was applied to wild type and SMARCA4 knockdown (KD) in mock- or respiratory syncytial virus (RSV)-infected basal cells. In mock-infected cells, BRD4 binds 4017 high-confidence peaks within gene bodies controlling mesenchymal transition pathways. By contrast, RSV replication repositions 2339 BRD4 peaks to open chromatin regions upstream of the genes controlling inducible cytokine, cell adherence, and antiviral programs. Also, we note RSV redistributes BRD4 into super enhancers regulating immune response-associated long noncoding (lnc)RNAs. In SMARCA4 KD cells, BRD4 distribution is reduced on 739 peaks after RSV infection. The boundaries of nucleosome-free regions are reduced by SMARCA4 KD, suggesting its role in maintaining open chromatin of super enhancers. Specifically, SMARCA4-BRD4 enhancer controls lncRNAs important in interferon response factor 1 autoregulation. These data indicate how SWI/SNF ATPases couple BRD4 to lncRNA expression controlling cell state and intrinsic immunity in epithelial injury-repair.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
9
|
Koutsi M, Pouliou M, Chatzopoulos D, Champezou L, Zagkas K, Vasilogianni M, Kouroukli A, Agelopoulos M. An evolutionarily conserved constellation of functional cis-elements programs the virus-responsive fate of the human (epi)genome. Nucleic Acids Res 2025; 53:gkaf207. [PMID: 40131776 PMCID: PMC11934927 DOI: 10.1093/nar/gkaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Human health depends on perplexing defensive cellular responses against microbial pathogens like Viruses. Despite the major effort undertaken, the (epi)genomic mechanisms that human cells utilize to tailor defensive gene expression programs against microbial attacks have remained inadequately understood, mainly due to a significant lack of recording of the in vivo functional cis-regulatory modules (CRMs) of the human genome. Here, we introduce the virus-responsive fate of the human (epi)genome as characterized in naïve and infected cells by functional genomics, computational biology, DNA evolution, and DNA Grammar and Syntax investigations. We discovered that multitudes of novel functional virus-responsive CRMs (vrCRMs) compose typical enhancers (tEs), super-enhancers (SEs), repetitive-DNA enhancers (rDEs), and stand-alone functional genomic stretches that grant human cells regulatory underpinnings for layering basal immunity and eliminating illogical/harmful defensive responses under homeostasis, yet stimulating virus-responsive genes and transposable elements (TEs) upon infection. Moreover, extensive epigenomic reprogramming of previously unknown SE landscapes marks the transition from naïve to antiviral human cell states and involves the functions of the antimicrobial transcription factors (TFs), including interferon response factor 3 (IRF3) and nuclear factor-κB (NF-κB), as well as coactivators and transcriptional apparatus, along with intensive modifications/alterations in histone marks and chromatin accessibility. Considering the polyphyletic evolutionary fingerprints of the composite DNA sequences of the vrCRMs assessed by TFs-STARR-seq, ranging from the animal to microbial kingdoms, the conserved features of antimicrobial TFs and chromatin complexes, and their pluripotent stimulus-induced activation, these findings shed light on how mammalian (epi)genomes evolved their functions to interpret the exogenous stress inflicted and program defensive transcriptional responses against microbial agents. Crucially, many known human short variants, e.g. single-nucleotide polymorphisms (SNPs), insertions, deletions etc., and quantitative trait loci (QTLs) linked to autoimmune diseases, such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), Crohn's disease (CD) etc., were mapped within or vastly proximal (±2.5 kb) to the novel in vivo functional SEs and vrCRMs discovered, thus underscoring the impact of their (mal)functions on human physiology and disease development. Hence, we delved into the virus-responsive fate of the human (epi)genome and illuminated its architecture, function, evolutionary origins, and its significance for cellular homeostasis. These results allow us to chart the "Human hyper-Atlas of virus-infection", an integrated "molecular in silico" encyclopedia situated in the UCSC Genome Browser that benefits our mechanistic understanding of human infectious/(auto)immune diseases development and can facilitate the generation of in vivo preclinical animal models, drug design, and evolution of therapeutic applications.
Collapse
Affiliation(s)
- Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Dimitris Chatzopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Konstantinos Zagkas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marili Vasilogianni
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Alexandra G Kouroukli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
10
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
11
|
Zhang H, Lu L, Yi C, Jiang T, Lu Y, Yang X, Zhong K, Zhou J, Li J, Xie G, Chen Z, Jiang Z, Asadikaram G, Peng Y, Zhou D, Wang H. BRD4 regulates m 6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression. Acta Pharm Sin B 2025; 15:1552-1570. [PMID: 40370540 PMCID: PMC12069253 DOI: 10.1016/j.apsb.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 05/16/2025] Open
Abstract
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
Collapse
Affiliation(s)
- Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Lu
- Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Cheng Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Yunqing Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zongpei Jiang
- Department of Nephrology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman 7616914115, Iran
| | - Yanxi Peng
- School of Public Health, Xiangnan University, Chenzhou 423000, China
| | - Dan Zhou
- Department of Breast Surgery, the First People's Hospital of Foshan, Foshan 528100, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Chen M, Cui H, Zhang X, Ma S, Guo J, Liu Z, Gu D, Fan Y. Super-Enhancer Protects Cells From Toxicity of C9orf72 Poly(proline-arginine) by Inducing the Expression of KPNA2/KPNB1. Cell Biochem Funct 2025; 43:e70053. [PMID: 39891383 DOI: 10.1002/cbf.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Hexanucleotide repeat expansions in C9orf72 are the most common genetic mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Dipeptide repeat (DPR) proteins, such as poly(proline-arginine) (polyPR) generated from G4C2 repeat expansions, have been shown to be highly toxic. In this study, PR20 was labeled with fluorescein isothiocyanate (FITC) to track its cellular localization. Several cell lines demonstrated survival under PR20 treatment by sequestering PR20 in the cytoplasm. Treatment with JQ-1 or Ivermectin (Iver) translocated PR20 into the nucleus, leading to cell death. Mechanistically, KPNA2/KPNB1 interacted with PR20 in the cytoplasm and hindered PR20 from entering the cell nucleus. Genetic silencing of KPNA2/KPNB1 converted PR20-resistant cells into PR20-sensitive cells. Treatment with JQ1 significantly reduced the protein levels of KPNA2/KPNB1, allowing PR20 to enter the nucleus. Overexpression of KPNA2 or KPNB1 effectively blocked cell death induced by co-treatment with JQ-1 and PR20. Our results indicate that super-enhancers shield cells from PR20 toxicity by upregulating the expression of KPNA2/KPNB1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| | - Henglu Cui
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Xiaoyu Zhang
- Department of Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuyan Ma
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinjing Guo
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Donghua Gu
- The Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Schuetze KB, Stratton MS, Bagchi RA, Hobby ARH, Felisbino MB, Rubino M, Toni LS, Reges C, Cavasin MA, McMahan RH, Alexanian M, Vagnozzi RJ, McKinsey TA. BRD4 inhibition rewires cardiac macrophages toward a protective phenotype marked by low MHC class II expression. Am J Physiol Heart Circ Physiol 2025; 328:H294-H309. [PMID: 39716819 DOI: 10.1152/ajpheart.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Bromodomain and extraterminal domain (BET) proteins, including BRD4, bind acetylated chromatin and coactivate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined. Here, we demonstrate that BRD4 knockdown reduced expression of genes encoding CC chemokines in cardiac fibroblasts, suggesting a role for this epigenetic reader in controlling fibroblast-immune cell cross talk. Consistent with this, JQ1 dramatically suppressed recruitment of monocytes to the heart in response to stress. Normal mouse hearts were found to have approximately equivalent numbers of major histocompatibility complex (MHC-II)high and MHC-IIlow resident macrophages, whereas MHC-IIlow macrophages predominated following JQ1 treatment. Single-cell RNA-seq data confirmed that JQ1 treatment or BRD4 knockout in CX3CR1+ cells reduced MHC-II gene expression in cardiac macrophages, and studies with cultured macrophages further illustrated a cell autonomous role for BET proteins in controlling the MHC-II axis. Bulk RNA-seq analysis demonstrated that JQ1 blocked pro-inflammatory macrophage gene expression through a mechanism that likely involves repression of NF-κB signaling. JQ1 treatment reduced cardiac infarct size in mice subjected to ischemia/reperfusion. Our findings illustrate that BET inhibition affords a powerful pharmacological approach to manipulate monocyte-derived and resident macrophages in the heart. Such an approach has the potential to enhance the reparative phenotype of macrophages to promote wound healing and limit infarct expansion following myocardial ischemia.NEW & NOTEWORTHY BRD4 inhibition blocks stress-induced recruitment of pro-inflammatory monocytes to the heart. BRD4 inhibition reprograms resident cardiac macrophages toward a reparative phenotype marked by reduced NF-κB signaling and diminished MHC-II expression. BRD4 inhibition reduces infarct size in an acute model of ischemia/reperfusion injury in mice.
Collapse
Affiliation(s)
- Katherine B Schuetze
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander R H Hobby
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marina B Felisbino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lee S Toni
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caroline Reges
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, California, United States
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, California, United States
- Department of Pediatrics, University of California, San Francisco, California, United States
| | - Ronald J Vagnozzi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
14
|
Wang M, Huang Z, Zhu Y, Li X, Sun H, Fan Q. The Bromodomain and Extraterminal Protein Inhibitor Apabetalone Ameliorates Kidney Injury in Diabetes by Regulating Cholesterol Accumulation and Modulating the Gut Microbiota. Kidney Int Rep 2025; 10:522-534. [PMID: 39990894 PMCID: PMC11843129 DOI: 10.1016/j.ekir.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction A US Food and Drug Administration-approved new bromodomain (BRD) and extraterminal (BET) bromine domain antagonist called apabetalone, which targets BRD4, has been shown to increase prebeta-1 high-density lipoprotein (HDL) particles, enhance apolipoprotein A-I in both humans and animals, and restore angiogenesis in experimental diabetes. Its action is not however fully known mechanistically. The objective of our research was to investigate the impact of apabetalone on renal damage linked to diabetic kidney disease (DKD). Methods This research employed both pharmacological and genetic methods to examine the impact of apabetalone on db/db (BKS. Cg-leprdb/leprdb) mice and human tubular epithelial cells (HK-2). Results Here, significant reductions in blood creatinine, urea nitrogen, and urinary albumin-to-creatinine ratio (UACR) levels, serum triglycerides (TGs) and serum total cholesterol (TC), as well as ectopic lipid droplet formation in renal tissue, were seen in the db/db mice following apabetalone therapy. Analysis of the gut microbiota revealed changes in its composition. Significantly, the proportion of Firmicutes to Bacteroidetes decreased, as well as Deferribacterota, indicating a positive influence on lipid metabolism. Untargeted metabolomic analysis indicated that the ABC transporter signaling pathway, implicated in cholesterol metabolism, was enriched. Moreover, peroxisome proliferator-activated receptor gamma (PPARγ)/liver X receptor (LXR)/adenosine triphosphate-binding cassette transporter A1 (ABCA1) protein, and mRNA level, as well as fibrosis-related marker proteins, fibronectin and collagen I were all improved by apabetalone. Conclusion Therefore, we suggest that apabetalone showed significant antihyperlipidemic and antifibrotic effects, closely associated with alterations in the gut microbiota and cholesterol metabolism. The results of this investigation provide fresh perspectives on the processes that underlie apabetalone's effects in db/db mice.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yonghong Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - QiuLing Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Gao R, Liu M, Yang H, Shen Y, Xia N. Epigenetic regulation in coronary artery disease: from mechanisms to emerging therapies. Front Mol Biosci 2025; 12:1548355. [PMID: 39959304 PMCID: PMC11825346 DOI: 10.3389/fmolb.2025.1548355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the primary cause of coronary artery disease (CAD), remains a leading global cause of mortality. It is characterized by the accumulation of cholesterol-rich plaques and inflammation, which narrow the coronary arteries and increase the risk of rupture. To elucidate this complex biological process and improve therapeutic strategies, CAD has been extensively explored from an epigenetic perspective over the past two decades. Epigenetics is a field investigating heritable alterations in gene expression without DNA sequence changes, such as DNA methylation, histone modifications, and non-coding RNAs. Increasing evidence has indicated that the development of CAD is significantly influenced by epigenetic changes. Meanwhile, the impact of epigenetics in CAD is now transitioning from pathophysiology to therapeutics. Focusing on the key epigenetic enzymes and their target genes will help to facilitate the diagnosis and treatment of CAD. This review synthesizes novel epigenetic insights into CAD, addressing the pathological processes, key molecular mechanisms, and potential biomarkers. Furthermore, we discuss emerging therapeutic strategies targeting epigenetic pathways. By focusing on pivotal enzymes and their associated genes, this work aims to advance CAD diagnostics and interventions.
Collapse
Affiliation(s)
- Rui Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyi Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Ji Y, Li B, Lin R, Yuan J, Han Y, Du Y, Zhao Y. Super-enhancers in tumors: unraveling recent advances in their role in Oncogenesis and the emergence of targeted therapies. J Transl Med 2025; 23:98. [PMID: 39838405 PMCID: PMC11753147 DOI: 10.1186/s12967-025-06098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Super enhancers are a unique class of enhancers that possess a distinct structure and mechanism, which enable them to exhibit stronger gene transcription regulatory function than classical enhancers, thereby regulating cellular activities. In tumor samples, super enhancers have been identified as crucial players in the development and progression of tumor cells, opening up new avenues for cancer research and treatment. This review provides a concise overview of various models regarding super enhancer assembly and activation, examining the mechanisms through which tumor cells acquire or activate these enhancers and regulate carcinogenic transcription programs. Furthermore, we discuss the current landscape and challenges in developing cancer therapeutic drugs that target super enhancers.
Collapse
Affiliation(s)
- Yumeng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baixue Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongjin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
17
|
He Y, Cai Y, Cao Y, Wang Y, Wang J, Ding H. Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases. Biomedicines 2025; 13:117. [PMID: 39857701 PMCID: PMC11762524 DOI: 10.3390/biomedicines13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of death worldwide, and new therapeutic strategies are urgently needed. In recent years, enhancer RNAs (eRNAs) have gradually attracted attention because they offer new directions for the treatment of CVDs. Super-enhancer RNAs (seRNAs) are a subset of non-coding RNAs that are transcribed from regions of the genome known as super enhancers, which are large clusters of enhancers with a high density of transcription factors and cofactors. These regions play a pivotal role in regulating genes involved in cell identity and disease progression. This article reviews the characteristics of seRNAs, their expression patterns, and regulatory mechanisms in the cardiovascular system. We also explore their role in the occurrence and development of CVDs, as well as their potential as diagnostic biomarkers and therapeutic targets. Currently, therapies targeting seRNAs are a research hotspot. The development of specific inhibitors or activators is expected to facilitate precise interventions for CVDs. In addition, the use of gene editing techniques to modify relevant eRNA introduces new possibilities for disease treatment. This review aims to provide a comprehensive overview of seRNAs in CVDs and discusses their potential as a novel class of therapeutic targets.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuwei Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanyan Cao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
19
|
Hu J, Li G, He X, Gao X, Pan D, Dong X, Huang W, Qiu F, Chen LF, Hu X. Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice. Commun Biol 2024; 7:1708. [PMID: 39733044 DOI: 10.1038/s42003-024-07437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage. Upon 4-week HFD, myeloid-lineage-specific Brd4 deletion (Brd4-CKO) mice showed reduced colonic inflammation and macrophage infiltration with decreased expression of Ccr2 and Ccr5. Mechanistically, Brd4 was recruited by NF-κB to the enhancer regions of Ccr2 and Ccr5, promoting enhancer RNA expression, which facilitated Ccr2/Ccr5 expression and macrophage migration. Furthermore, decreased infiltration of Ccr2/Ccr5-positive colonic macrophages in Brd4-CKO mice altered gut microbiota composition and reduced intestinal permeability, thereby lowering metabolic endotoxemia. Finally, Brd4-CKO mice subjected to a 4-week LPS infusion exhibited restored susceptibility to HFD-induced obesity and insulin resistance. This study identifies Brd4 as a critical initiator of colonic macrophage-mediated inflammation and metabolic endotoxemia upon HFD, suggesting Brd4 as a potential target for mitigating HFD-induced inflammation, obesity, and its metabolic complications.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxin He
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuming Gao
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China.
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
20
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Thaw K, Harrison CN, Sriskandarajah P. JAK Inhibitors for Myelofibrosis: Strengths and Limitations. Curr Hematol Malig Rep 2024; 19:264-275. [PMID: 39400853 PMCID: PMC11567979 DOI: 10.1007/s11899-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW The landscape of myelofibrosis (MF) has changed since the discovery of the JAK2 V617F mutation and subsequent development of JAK inhibitors (JAKis). However, treatment with JAKis remain a challenge. In this review we critically analyze the strengths and limitations of currently available JAK inhibitors. RECENT FINDINGS In MF patients, JAK inhibitors have been associated with reduced symptom burden and spleen size, as well as improved survival. However, durability of response and development of treatment resistance remain an issue. Recently, there has been increased efforts to optimize treatment with the development of highly selective JAK inhibitors, as well as use of combination agents to counter disease resistance through targeting aberrant signaling pathways. Treatment of MF patients with JAKi therapy can be challenging but the development of more potent and selective JAK inhibitors, as well as combination therapies, represent exciting treatment advances in this field.
Collapse
Affiliation(s)
- K Thaw
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - C N Harrison
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - P Sriskandarajah
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
22
|
Wu L, Jiang S, Zhou X, Li W, Ke J, Liu Z, Ren L, Lu Q, Li F, Tang C, Zhu L. Endothelial KDM5B Regulated by Piezo1 Contributes to Disturbed Flow Induced Atherosclerotic Plaque Formation. J Cell Mol Med 2024; 28:e70237. [PMID: 39643939 PMCID: PMC11624123 DOI: 10.1111/jcmm.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
Epigenetic modifications play an important role in disturbed flow (d-flow) induced atherosclerotic plaque formation. By analysing a scRNA-seq dataset of the left carotid artery (LCA) under d-flow conditions, we found that Jarid1b (KDM5B) was upregulated primarily in a subcluster of endothelial cells in response to d-flow stimulation. We therefore investigated the mechanism of KDM5B expression and the role of KDM5B in endothelial cell. Intriguingly, activation of Piezo1, a major endothelial mechanosensor, was found to promote KDM5B expression, which was reversed by Piezo1 inhibition in HUVECs. Downstream of Piezo1, ETS1 expression and c-JUN phosphorylation were enhanced by d-flow or Piezo1 activation, leading to an increase in KDM5B expression. Furthermore, knockdown of either KDM5B or Piezo1 was found to prevent d-flow induced H3K4me3 demethylation, which was supported by the pharmacological inhibition of Piezo1 in HUVECs. RNA sequencing on shKdm5b HUVECs implied that KDM5B is associated with endothelial inflammation and atherosclerosis. Using partial carotid ligation surgery on Kdm5bf/f Cdh5cre mice with mAAV-PCSK9D377Y infected, we showed that endothelial KDM5B deficiency reduced atherosclerotic lesions in hypercholesterolemic mice. Our findings indicate that endothelial KDM5B expression induced by d-flow via the Piezo1 pathway promotes atherosclerotic plaque formation, providing targets for the prevention or therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- Lili Wu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Shanshan Jiang
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Xiao Zhou
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Wei Li
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Jiaqi Ke
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Ziting Liu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Lijie Ren
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Qiongyu Lu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Fengchan Li
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Chaojun Tang
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
- Collaborative Innovation Center of Hematology of Jiangsu ProvinceSoochow UniversityJiangsu ProvinceChina
- Suzhou Key Laboratory of Thrombosis and Vascular BiologySuzhouChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Zhu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
- Collaborative Innovation Center of Hematology of Jiangsu ProvinceSoochow UniversityJiangsu ProvinceChina
- Suzhou Key Laboratory of Thrombosis and Vascular BiologySuzhouChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
23
|
Zhang J, Wang Q, Liu J, Duan Y, Liu Z, Zhang Z, Li C. Active enhancers: recent research advances and insights into disease. Biol Direct 2024; 19:112. [PMID: 39533395 PMCID: PMC11556110 DOI: 10.1186/s13062-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Precise regulation of gene expression is crucial to development. Enhancers, the core of gene regulation, determine the spatiotemporal pattern of gene transcription. Since many disease-associated mutations are characterized in enhancers, the research on enhancer will provide clues to precise medicine. Rapid advances in high-throughput sequencing technology facilitate the characterization of enhancers at genome wide, but understanding the functional mechanisms of enhancers remains challenging. Herein, we provide a panorama of enhancer characteristics, including epigenetic modifications, enhancer transcripts, and enhancer-promoter interaction patterns. Furthermore, we outline the applications of high-throughput sequencing technology and functional genomics methods in enhancer research. Finally, we discuss the role of enhancers in human disease and their potential as targets for disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
24
|
Zhang Z, Gao J, Wang J, Mi Z, Li H, Dai Z, Pan Y, Dong J, Chen S, Lu S, Tan X, Chen H. Mechanism of Zhishi Xiebai Guizhi decoction to treat atherosclerosis: Insights into experiments, network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118466. [PMID: 38885915 DOI: 10.1016/j.jep.2024.118466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhishi Xiebai Guizhi Decoction (ZSXBGZD) is a traditional herbal manuscript used to treat cardiovascular disease, including atherosclerosis and coronary heart disease. The decoction has demonstrated its capability to protect arteries and resist atherosclerosis. Its mechanisms for anti-atherosclerosis effect, nevertheless, remain unknown. AIMS OF THE STUDY The goal of the present study is to explore the effectiveness of ZSXBGZD acting on atherosclerosis and its key components based on experimental verification and network pharmacology analysis. MATERIALS AND METHODS The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and databases were used to identify chemical components in ZSXBGZD. Network pharmacological analysis and molecular docking were implemented in order to reveal the possible therapeutic targets of ZSXBGZD. To form the model of atherosclerosis, we gave Apolipoprotein E knocked out mice a high-fat diet. H&E staining was performed to observe the effects of ZSXBGZD on atherosclerosis. Immunofluorescence and Western blot were used to investigate whether ZSXBGZD could affect autophagy, apoptosis, AGE-RAGE signaling pathway and other related mechanisms. RESULTS In total, 30 core compounds were screened through intersecting UPLC-Q-TOF-MS and the databases. The anti-atherosclerotic effect of ZSXBGZD might relate to the AGE-RAGE signaling pathway via network pharmacology analysis. ZSXBGZD could inhibit apoptosis, activate autophagy and ease inflammation by modifying AGE-RAGE signaling pathway to reduce the area of atherosclerotic plaque. CONCLUSION ZSXBGZD could treat atherosclerosis by regulating autophagy and apoptosis via adjusting the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Zhuojun Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jin Gao
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junpeng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zishuo Mi
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyang Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhicen Dai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Pan
- School of Public Administration, Hohai University, Nanjing, 210000, China
| | - Jiming Dong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sihan Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu Lu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Xiaodong Tan
- Department of Cardiovascular, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China.
| | - Hao Chen
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
25
|
Damiano G, Rinaldi R, Raucci A, Molinari C, Sforza A, Pirola S, Paneni F, Genovese S, Pompilio G, Vinci MC. Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies. Mol Med 2024; 30:161. [PMID: 39333854 PMCID: PMC11428340 DOI: 10.1186/s10020-024-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Collapse
Affiliation(s)
- Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Angela Raucci
- Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Chiara Molinari
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Genovese
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
| |
Collapse
|
26
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
27
|
Wang M, Huang Z, Li X, He P, Sun H, Peng Y, Fan Q. Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis. Pharmacol Res 2024; 207:107306. [PMID: 39002871 DOI: 10.1016/j.phrs.2024.107306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Many inflammatory disorders, including diabetic kidney disease (DKD), are associated with pyroptosis, a type of inflammation-regulated cell death. The purpose of this work was to ascertain the effects of apabetalone, which targets BRD4, a specific inhibitor of the bromodomain (BRD) and extra-terminal (BET) proteins that target bromodomain 2, on kidney injury in DKD. This study utilized pharmacological and genetic approaches to investigate the effects of apabetalone on pyroptosis in db/db mice and human tubular epithelial cells (HK-2). BRD4 levels were elevated in HK-2 cells exposed to high glucose and in db/db mice. Modulating BRD4 levels led to changes in the generation of inflammatory cytokines and cell pyroptosis linked to NLRP3 inflammasome in HK-2 cells and db/db mice. Likewise, these cellular processes were mitigated by apabetalone through inhibition BRD4. Apabetalone or BRD4 siRNA suppressed PLK1 expression in HK-2 cells under high glucose by P300-dependent H3K27 acetylation on the PLK1 gene promoter, as demonstrated through chromatin immunoprecipitation and immunoprecipitation assays. To summarize, apabetalone relieves renal proptosis and fibrosis in DKD. BRD4 regulates the P300/H3K27ac/PLK1 axis, leading to the activation of the NLRP3 inflammasome and subsequent cell pyroptosis, inflammation, and fibrosis. These results may provide new perspectives on DKD treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yali Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - QiuLing Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
29
|
Song S, Yuan J, Fang G, Li Y, Ding S, Wang Y, Wang Q. BRD4 as a therapeutic target for atrial fibrosis and atrial fibrillation. Eur J Pharmacol 2024; 977:176714. [PMID: 38849043 DOI: 10.1016/j.ejphar.2024.176714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE This study aimed to elucidate the molecular mechanisms by which BRD4 play a role in atrial fibrillation (AF). METHODS AND RESULTS We used a discovery-driven approach to detect BRD4 expression in the atria of patients with AF and in various murine models of atrial fibrosis. We used a BRD4 inhibitor (JQ1) and atrial fibroblast (aFB)-specific BRD4-knockout mice to elucidate the role of BRD4 in AF. We further examined the underlying mechanisms using RNA-seq and ChIP-seq analyses in vitro, to identify key downstream targets of BRD4. We found that BRD4 expression is significantly increased in patients with AF, with accompanying atrial fibrosis and aFB differentiation. We showed that JQ1 treatment and shRNA-based molecular silencing of BRD4 blocked ANG-II-induced extracellular matrix production and cell-cycle progression in aFBs. BRD4-related RNA-seq and ChIP-seq analyses in aFBs demonstrated enrichment of a subset of promoters related to the expression of profibrotic and proliferation-related genes. The pharmacological inhibition of BRD4 in vivo or in aFB-specific BRD4-knockout in mice limited ANG-II-induced atrial fibrosis, atrial enlargement, and AF susceptibility. CONCLUSION Our findings suggest that BRD4 plays a key role in pathological AF, at least partially by activating aFB proliferation and ECM synthesis. This study provides mechanistic insights into the development of BRD4 inhibitors as targeted antiarrhythmic therapies.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jiali Yuan
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Shiao Ding
- Department of Cardiovascular Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
30
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
31
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Yang JH, Jeon J, Yang S. BRD2-specific inhibitor, BBC0403, inhibits the progression of osteoarthritis pathogenesis in osteoarthritis-induced C57BL/6 male mice. Br J Pharmacol 2024; 181:2528-2544. [PMID: 38600628 DOI: 10.1111/bph.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 μM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute Harvard Medical School (HMS), Boston, Massachusetts, USA
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
32
|
Aziz M, Jandeleit-Dahm KA, Khan AW. Interplay between epigenetic mechanisms and transcription factors in atherosclerosis. Atherosclerosis 2024; 395:117615. [PMID: 38917706 DOI: 10.1016/j.atherosclerosis.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CVD), including coronary heart disease and stroke, comprise the number one cause of mortality worldwide. A major contributor to CVD is atherosclerosis, which is a low-grade inflammatory disease of vasculature that involves a pathological build-up of plaque within the arterial walls. Studies have shown that regulation of gene expression via transcription factors and epigenetic mechanisms play a fundamental role in transcriptomic changes linked to the development of atherosclerosis. Chromatin remodeling is a reversible phenomenon and studies have supported the clinical application of chromatin-modifying agents for the prevention and treatment of CVD. In addition, pre-clinical studies have identified multiple transcription factors as potential therapeutic targets in combating atherosclerotic CVD. Although interaction between transcription factors and epigenetic mechanisms facilitate gene regulation, a limited number of studies appreciate this crosstalk in the context of CVD. Here, we reviewed this gene regulatory mechanism underappreciated in atherosclerosis, which will highlight the mechanisms underlying novel therapeutics targeting epigenetic modifiers and transcription factors in atherosclerosis.
Collapse
Affiliation(s)
- Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karin Am Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| | - Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
33
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
34
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
35
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
36
|
Negi V, Lee J, Mandi V, Danvers J, Liu R, Perez-Garcia EM, Li F, Jagannathan R, Yang P, Filingeri D, Kumar A, Ma K, Moulik M, Yechoor VK. Bromodomain Protein Inhibition Protects β-Cells from Cytokine-Induced Death and Dysfunction via Antagonism of NF-κB Pathway. Cells 2024; 13:1108. [PMID: 38994961 PMCID: PMC11240345 DOI: 10.3390/cells13131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokine-induced β-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect β-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on β-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected β-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced β-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in β-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for β-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting β-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving β-cell functional mass in T1D.
Collapse
Affiliation(s)
- Vinny Negi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Varun Mandi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Joseph Danvers
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Eliana M. Perez-Garcia
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Feng Li
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Rajaganapati Jagannathan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Ping Yang
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Domenic Filingeri
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Amit Kumar
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| |
Collapse
|
37
|
Bracken RC, Davison LM, Buehler DP, Fulton ME, Carson EE, Sheng Q, Stolze LK, Guillermier C, Steinhauser ML, Brown JD. Transcriptional synergy in human aortic endothelial cells is vulnerable to combination p300/CBP and BET bromodomain inhibition. iScience 2024; 27:110011. [PMID: 38868181 PMCID: PMC11167439 DOI: 10.1016/j.isci.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Combinatorial signaling by proinflammatory cytokines synergizes to exacerbate toxicity to cells and tissue injury during acute infections. To explore synergism at the gene-regulatory level, we investigated the dynamics of transcription and chromatin signaling in response to dual cytokines by integrating nascent RNA imaging mass spectrometry, RNA sequencing, amplification-independent mRNA quantification, assay for transposase-accessible chromatin using sequencing (ATAC-seq), and transcription factor profiling. Costimulation with interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) synergistically induced a small subset of genes, including the chemokines CXCL9, -10, and -11. Gene induction coincided with increased chromatin accessibility at non-coding regions enriched for p65 and STAT1 binding sites. To discover coactivator dependencies, we conducted a targeted chemogenomic screen of transcriptional inhibitors followed by modeling of inhibitor dose-response curves. These results identified high efficacy of either p300/CREB-binding protein (CBP) or bromodomain and extra-terminal (BET) bromodomain inhibitors to disrupt induction of synergy genes. Combination p300/CBP and BET bromodomain inhibition at half-maximal inhibitory concentrations (subIC50) synergistically abrogated IFNγ/TNFα-induced chemokine gene and protein levels.
Collapse
Affiliation(s)
- Ronan C. Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsay M. Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis P. Buehler
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maci E. Fulton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily E. Carson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 3723, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 3723, USA
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging, Cambridge MA 02115, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
38
|
Zhang J, Wang Q, Qi S, Duan Y, Liu Z, Liu J, Zhang Z, Li C. An oncogenic enhancer promotes melanoma progression via regulating ETV4 expression. J Transl Med 2024; 22:547. [PMID: 38849954 PMCID: PMC11157841 DOI: 10.1186/s12967-024-05356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Enhancers are important gene regulatory elements that promote the expression of critical genes in development and disease. Aberrant enhancer can modulate cancer risk and activate oncogenes that lead to the occurrence of various cancers. However, the underlying mechanism of most enhancers in cancer remains unclear. Here, we aim to explore the function and mechanism of a crucial enhancer in melanoma. METHODS Multi-omics data were applied to identify an enhancer (enh17) involved in melanoma progression. To evaluate the function of enh17, CRISPR/Cas9 technology were applied to knockout enh17 in melanoma cell line A375. RNA-seq, ChIP-seq and Hi-C data analysis integrated with luciferase reporter assay were performed to identify the potential target gene of enh17. Functional experiments were conducted to further validate the function of the target gene ETV4. Multi-omics data integrated with CUT&Tag sequencing were performed to validate the binding profile of the inferred transcription factor STAT3. RESULTS An enhancer, named enh17 here, was found to be aberrantly activated and involved in melanoma progression. CRISPR/Cas9-mediated deletion of enh17 inhibited cell proliferation, migration, and tumor growth of melanoma both in vitro and in vivo. Mechanistically, we identified ETV4 as a target gene regulated by enh17, and functional experiments further support ETV4 as a target gene that is involved in cancer-associated phenotypes. In addition, STAT3 acts as a transcription factor binding with enh17 to regulate the transcription of ETV4. CONCLUSIONS Our findings revealed that enh17 plays an oncogenic role and promotes tumor progression in melanoma, and its transcriptional regulatory mechanisms were fully elucidated, which may open a promising window for melanoma prevention and treatment.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
39
|
Song XW, He WX, Su T, Li CJ, Jiang LL, Huang SQ, Li SH, Guo ZF, Zhang BL. Abnormal expression of PRKAG2-AS1 in endothelial cells induced inflammation and apoptosis by reducing PRKAG2 expression. Noncoding RNA Res 2024; 9:536-546. [PMID: 38511052 PMCID: PMC10950609 DOI: 10.1016/j.ncrna.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a cis-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Xia He
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ting Su
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Jin Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-Li Jiang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Song-Qun Huang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bi-Li Zhang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
40
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
41
|
Gautam P, Sinha SK. The Blueprint of Logical Decisions in a NF-κB Signaling System. ACS OMEGA 2024; 9:22625-22634. [PMID: 38826544 PMCID: PMC11137707 DOI: 10.1021/acsomega.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Nearly identical cells can exhibit substantially different responses to the same stimulus that causes phenotype diversity. Such interplay between phenotype diversity and the architecture of regulatory circuits is crucial since it determines the state of a biological cell. Here, we theoretically analyze how the circuit blueprints of NF-κB in cellular environments are formed and their role in determining the cells' metabolic state. The NF-κB is a collective name for a developmental conserved family of five different transcription factors that can form homodimers or heterodimers and often promote DNA looping to reprogram the inflammatory gene response. The NF-κB controls many biological functions, including cellular differentiation, proliferation, migration, and survival. Our model shows that nuclear localization of NF-κB differentially promotes logic operations such as AND, NAND, NOR, and OR in its regulatory network. Through the quantitative thermodynamic model of transcriptional regulation and systematic variation of promoter-enhancer interaction modes, we can account for the origin of various logic gates as formed in the NF-κB system. We further show that the interconversion or switching of logic gates yielded under systematic variations of the stimuli activity and DNA looping parameters. Such computation occurs in regulatory and signaling pathways in individual cells at a molecular scale, which one can exploit to design a biomolecular computer.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
42
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
43
|
Zhao F, Wang Y, Zuo H, Ru Y, Wang Y. Cyclin-Dependent kinase 9 (CDK9) inhibitor Atuveciclib ameliorates Imiquimod-Induced Psoriasis-Like dermatitis in mice by inhibiting various inflammation factors via STAT3 signaling pathway. Int Immunopharmacol 2024; 129:111652. [PMID: 38335657 DOI: 10.1016/j.intimp.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Psoriasis is a chronic, autoimmune skin disease characterized by the deregulated secretion of inflammatory factors in multiple organs. The aberrant activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway mediated by cyclin-dependent kinase 9 (CDK9) is vital for the pathology of psoriasis, leading to the accumulation of inflammatory factors and the progression of skin damage. In this study, we explored the effect of CDK9 inhibition on attenuating the secretion of inflammatory factors and alleviating skin damage in psoriasis models both in vitro and in vivo. Results showed that Atuveciclib, a highly selective CDK9 inhibitor, significantly relieved skin lesions in Imiquimod (IMQ)-induced mice models by lowering the expression of CDK9 and p-RNA Pol II Ser2. Meanwhile, Atuveciclib significantly inhibited STAT3 phosphorylation in mice skin and reduced the levels of key inflammatory cytokines in mice skin, plasma and spleen. In addition to suppressing the secretion of inflammatory cytokines, Atuveciclib ablated the activation of STAT3 induced by tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ). Overall, our findings indicated that the overexpression and hyperfunction of CDK9 promote the progression of psoriasis. Moreover, Atuveciclib interfered with the abnormal STAT3 signaling pathway through the inhibition of CDK9, which ultimately ameliorated psoriatic-like skin inflammation. These suggested that CDK9 inhibition is a potential strategy for batting psoriasis.
Collapse
Affiliation(s)
- Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yujie Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Haojie Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yiming Ru
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
44
|
Li J, Zhu J, Gray O, Sobreira DR, Wu D, Huang RT, Miao B, Sakabe NJ, Krause MD, Kaikkonen MU, Romanoski CE, Nobrega MA, Fang Y. Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells. J Cell Biol 2024; 223:e202211125. [PMID: 38231044 PMCID: PMC10794123 DOI: 10.1083/jcb.202211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Olivia Gray
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Débora R. Sobreira
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Bernadette Miao
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Matthew D. Krause
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Minna U. Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Li Y, Shen Z, Ratia K, Zhao J, Huang F, Dubrovyskyii O, Indukuri D, Fu J, Lozano Ramos O, Thatcher GRJ, Xiong R. Structure-Guided Design and Synthesis of Pyridinone-Based Selective Bromodomain and Extra-Terminal Domain (BET)-First Bromodomain (BD1) Inhibitors. J Med Chem 2024; 67:2712-2731. [PMID: 38295759 DOI: 10.1021/acs.jmedchem.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Yangfeng Li
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Kiira Ratia
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Fei Huang
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Oleksii Dubrovyskyii
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Divakar Indukuri
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jiqiang Fu
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Omar Lozano Ramos
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Rui Xiong
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
46
|
Izumiya Y, Algalil A, Espera JM, Miura H, Izumiya C, Inagaki T, Kumar A. Kaposi's sarcoma-associated herpesvirus terminal repeat regulates inducible lytic gene promoters. J Virol 2024; 98:e0138623. [PMID: 38240593 PMCID: PMC10878276 DOI: 10.1128/jvi.01386-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Adhraa Algalil
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Midwestern University College of Dental Medicine, Glendale, Arizona, USA
| | - Jonna M. Espera
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
47
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
48
|
Gu J, Chen J, Yin Q, Dong M, Zhang Y, Chen M, Chen X, Min J, He X, Tan Y, Zheng L, Jiang H, Wang B, Li X, Chen H. lncRNA JPX-Enriched Chromatin Microenvironment Mediates Vascular Smooth Muscle Cell Senescence and Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:156-176. [PMID: 37942612 DOI: 10.1161/atvbaha.122.319250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.
Collapse
Affiliation(s)
- Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiajing Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China (J.C.)
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (H.C.), Nanjing Medical University, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, China (H.C.)
| |
Collapse
|
49
|
Penkov D, Beloglazova I, Parfyonova Y. Endothelial-specific Enhancer as a Cis Element of PLAUR Regulation by TNF-alpha, IL-1beta, and VEGF. Curr Pharm Des 2024; 30:1630-1640. [PMID: 38715331 DOI: 10.2174/0113816128296376240424072322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/03/2024] [Indexed: 01/23/2025]
Abstract
The expression of human PLAUR gene, which encodes the urokinase plasminogen activator receptor (uPAR), is cell- and process-specific and elevated in inflammation, cancer and senescence. Its tight regulation is achieved by regulatory elements in the gene locus, such as the promoter and several enhancers. The promoter activity is not specific to a particular cell type and has been described earlier. The proximal enhancer is endothelial-specific and responsible for the PLAUR expression pattern in endothelial cells. In this study we described the enhancer activity and its cis-regulatory elements based on the published data. We showed a possible connection of the enhancer activity with known cellular phenotypes.
Collapse
Affiliation(s)
- Dmitry Penkov
- Laboratory of Angiogenesis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Beloglazova
- Laboratory of Angiogenesis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yelena Parfyonova
- Laboratory of Angiogenesis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
50
|
Tzani A, Haemmig S, Cheng HS, Perez-Cremades D, Augusto Heuschkel M, Jamaiyar A, Singh S, Aikawa M, Yu P, Wang T, Ye S, Feinberg MW, Plutzky J. FAM222A, Part of the BET-Regulated Basal Endothelial Transcriptome, Is a Novel Determinant of Endothelial Biology and Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:143-155. [PMID: 37942611 PMCID: PMC10840377 DOI: 10.1161/atvbaha.123.319909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.
Collapse
Affiliation(s)
- Aspasia Tzani
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Stefan Haemmig
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Henry S. Cheng
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Daniel Perez-Cremades
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Marina Augusto Heuschkel
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Anurag Jamaiyar
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sasha Singh
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Paul Yu
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sun Ye
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Mark W. Feinberg
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|