1
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Romero-Zamora D, Rogers S, Low RRJ, Page SG, Lane BJE, Kosaka S, Robinson AB, French L, Lamm N, Ishikawa F, Hayashi MT, Cesare AJ. A CPC-shelterin-BTR axis regulates mitotic telomere deprotection. Nat Commun 2025; 16:2277. [PMID: 40097392 PMCID: PMC11914695 DOI: 10.1038/s41467-025-57456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeres prevent ATM activation by sequestering chromosome termini within telomere loops (t-loops). Mitotic arrest promotes telomere linearity and a localized ATM-dependent telomere DNA damage response (DDR) through an unknown mechanism. Using unbiased interactomics, biochemical screening, molecular biology, and super-resolution imaging, we found that mitotic arrest-dependent (MAD) telomere deprotection requires the combined activities of the Chromosome passenger complex (CPC) on shelterin, and the BLM-TOP3A-RMI1/2 (BTR) complex on t-loops. During mitotic arrest, the CPC component Aurora Kinase B (AURKB) phosphorylated both the TRF1 hinge and TRF2 basic domains. Phosphorylation of the TRF1 hinge domain enhances CPC and TRF1 interaction through the CPC Survivin subunit. Meanwhile, phosphorylation of the TRF2 basic domain promotes telomere linearity, activates a telomere DDR dependent on BTR-mediated double Holliday junction dissolution, and leads to mitotic death. We identify that the TRF2 basic domain functions in mitosis-specific telomere protection and reveal a regulatory role for TRF1 in controlling a physiological ATM-dependent telomere DDR. The data demonstrate that MAD telomere deprotection is a sophisticated active mechanism that exposes telomere ends to signal mitotic stress.
Collapse
Affiliation(s)
- Diana Romero-Zamora
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Samuel Rogers
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Ronnie Ren Jie Low
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Scott G Page
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Blake J E Lane
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Shunya Kosaka
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Andrew B Robinson
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Lucy French
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Noa Lamm
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Fuyuki Ishikawa
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
| | - Makoto T Hayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025; 26:1290-1314. [PMID: 39870965 PMCID: PMC11894219 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
4
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Jiang H, Zhang T, Kaur H, Shi T, Krishnan A, Kwon Y, Sung P, Greenberg RA. BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response. Mol Cell 2024; 84:1684-1698.e9. [PMID: 38593805 PMCID: PMC11069441 DOI: 10.1016/j.molcel.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.
Collapse
Affiliation(s)
- Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tao Shi
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Aravind Krishnan
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
7
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
8
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Ascencao CFR, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka M. A TOPBP1 Allele Causing Male Infertility Uncouples XY Silencing Dynamics From Sex Body Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543071. [PMID: 37398453 PMCID: PMC10312512 DOI: 10.1101/2023.05.31.543071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
|
10
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Xin D, Gai X, Ma Y, Li Z, Li Q, Yu X. Pre-rRNA Facilitates TopBP1-Mediated DNA Double-Strand Break Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206931. [PMID: 37582658 PMCID: PMC10558638 DOI: 10.1002/advs.202206931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/28/2023] [Indexed: 08/17/2023]
Abstract
In response to genotoxic stress-induced DNA damage, TopBP1 mediates ATR activation for signaling transduction and DNA damage repair. However, the detailed molecular mechanism remains elusive. Here, using unbiased protein affinity purification and RNA sequencing, it is found that TopBP1 is associated with pre-ribosomal RNA (pre-rRNA). Pre-rRNA co-localized with TopBP1 at DNA double-strand breaks (DSBs). Similar to pre-rRNA, ribosomal proteins also colocalize with TopBP1 at DSBs. The recruitment of TopBP1 to DSBs is suppressed when cells are transiently treated with RNA polymerase I inhibitor (Pol I-i) to suppress pre-rRNA biogenesis but not protein translation. Moreover, the BRCT4-5 of TopBP1 recognizes pre-rRNA and forms liquid-liquid phase separation (LLPS) with pre-rRNA, which may be the molecular basis of DSB-induced foci of TopBP1. Finally, Pol I-i treatment impairs TopBP1-associated cell cycle checkpoint activation and homologous recombination repair. Collectively, this study reveals that pre-rRNA plays a key role in the TopBP1-dependent DNA damage response.
Collapse
Affiliation(s)
- Di Xin
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochen Gai
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Yidi Ma
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Zexing Li
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Qilin Li
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochun Yu
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| |
Collapse
|
12
|
Nieminuszczy J, Martin PR, Broderick R, Krwawicz J, Kanellou A, Mocanu C, Bousgouni V, Smith C, Wen KK, Woodward B, Bakal C, Shackley F, Aguilera A, Stewart G, Vyas Y, Niedzwiedz W. Actin nucleators safeguard replication forks by limiting nascent strand degradation. Nucleic Acids Res 2023; 51:6337-6354. [PMID: 37224534 PMCID: PMC10325910 DOI: 10.1093/nar/gkad369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that β-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing β-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing β-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.
Collapse
Affiliation(s)
- Jadwiga Nieminuszczy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Peter R Martin
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ronan Broderick
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joanna Krwawicz
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Alexandra Kanellou
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Camelia Mocanu
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Vicky Bousgouni
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Charlotte Smith
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Kuo-Kuang Wen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Beth L Woodward
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Chris Bakal
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Fiona Shackley
- Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Grant S Stewart
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yatin M Vyas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Wojciech Niedzwiedz
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
13
|
Nieminuszczy J, Martin PR, Broderick R, Krwawicz J, Kanellou A, Mocanu C, Bousgouni V, Smith C, Wen KK, Woodward BL, Bakal C, Shackley F, Aguilera A, Stewart GS, Vyas YM, Niedzwiedz W. Actin nucleators safeguard replication forks by limiting nascent strand degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523639. [PMID: 36711944 PMCID: PMC9882250 DOI: 10.1101/2023.01.12.523639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e., Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that β-actin interacts with RPA directly in vitro , and in vivo a hyper-depolymerizing β-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing β-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.
Collapse
Affiliation(s)
| | - Peter R. Martin
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ronan Broderick
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Joanna Krwawicz
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Camelia Mocanu
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vicky Bousgouni
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Charlotte Smith
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kuo-Kuang Wen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, PennState College of Medicine, PennState Health Children’s Hospital, Hershey, Pennsylvania 17033, USA
| | - Beth L. Woodward
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Chris Bakal
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Fiona Shackley
- Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Andres Aguilera
- Centro Andaluz de Biologia Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Grant S. Stewart
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yatin M. Vyas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, PennState College of Medicine, PennState Health Children’s Hospital, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
14
|
Montales K, Ruis K, Lindsay H, Michael WM. MRN-dependent and independent pathways for recruitment of TOPBP1 to DNA double-strand breaks. PLoS One 2022; 17:e0271905. [PMID: 35917319 PMCID: PMC9345342 DOI: 10.1371/journal.pone.0271905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Ataxia Telangiectasia mutated and RAD3-related (ATR) kinase is activated by DNA replication stress and also by various forms of DNA damage, including DNA double-strand breaks (DSBs). Recruitment to sites of damage is insufficient for ATR activation as one of two known ATR activators, either topoisomerase II-binding protein (TOPBP1) or Ewing’s tumor-associated antigen 1, must also be present for signaling to initiate. Here, we employ our recently established DSB-mediated ATR activation in Xenopus egg extract (DMAX) system to examine how TOPBP1 is recruited to DSBs, so that it may activate ATR. We report that TOPBP1 is only transiently present at DSBs, with a half-life of less than 10 minutes. We also examined the relationship between TOPBP1 and the MRE11-RAD50-NBS1 (MRN), CtBP interacting protein (CtIP), and Ataxia Telangiectasia mutated (ATM) network of proteins. Loss of MRN prevents CtIP recruitment to DSBs, and partially inhibits TOPBP1 recruitment. Loss of CtIP has no impact on either MRN or TOPBP1 recruitment. Loss of ATM kinase activity prevents CtIP recruitment and enhances MRN and TOPBP1 recruitment. These findings demonstrate that there are MRN-dependent and independent pathways that recruit TOPBP1 to DSBs for ATR activation. Lastly, we find that both the 9-1-1 complex and MDC1 are dispensable for TOPBP1 recruitment to DSBs.
Collapse
Affiliation(s)
- Katrina Montales
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Kenna Ruis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Howard Lindsay
- Faculty of Health and Medicine, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - W. Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Mol Cell 2022; 82:2571-2587.e9. [PMID: 35597237 DOI: 10.1016/j.molcel.2022.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Collapse
|
16
|
Ruis K, Huynh O, Montales K, Barr NA, Michael WM. Delineation of a minimal topoisomerase II binding protein 1 (TOPBP1) for regulated activation of ATR at DNA double-strand breaks. J Biol Chem 2022; 298:101992. [PMID: 35490781 PMCID: PMC9257406 DOI: 10.1016/j.jbc.2022.101992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Topoisomerase II Binding Protein 1 (TOPBP1) is an important activator of the DNA damage response kinase Ataxia Telangiectasia and Rad3-related (ATR), although the mechanism by which this activation occurs is not yet known. TOPBP1 contains nine copies of the BRCA1 C-terminal repeat (BRCT) motif, which allows protein–protein and protein–DNA interactions. TOPBP1 also contains an ATR activation domain (AAD), which physically interacts with ATR and its partner ATR-interacting protein (ATRIP) in a manner that stimulates ATR kinase activity. It is unclear which of TOPBP1’s nine BRCT domains participate in the reaction, as well as the individual roles played by these relevant BRCT domains. To address this knowledge gap, here, we delineated a minimal TOPBP1 that can activate ATR at DNA double-strand breaks in a regulated manner. We named this minimal TOPBP1 “Junior” and we show that Junior is composed of just three regions: BRCT0-2, the AAD, and BRCT7&8. We further defined the individual functions of these three regions by showing that BRCT0-2 is required for recruitment to DNA double-strand breaks and is dispensable thereafter, and that BRCT7&8 is dispensable for recruitment but essential to allow the AAD to multimerize and activate ATR. The delineation of TOPBP1 Junior creates a leaner, simplified, and better understood TOPBP1 and provides insight into the mechanism of ATR activation.
Collapse
Affiliation(s)
- Kenna Ruis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Oanh Huynh
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Katrina Montales
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Nina A Barr
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - W Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089.
| |
Collapse
|
17
|
Balbo Pogliano C, Ceppi I, Giovannini S, Petroulaki V, Palmer N, Uliana F, Gatti M, Kasaciunaite K, Freire R, Seidel R, Altmeyer M, Cejka P, Matos J. The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. SCIENCE ADVANCES 2022; 8:eabk0221. [PMID: 35119917 PMCID: PMC8816346 DOI: 10.1126/sciadv.abk0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.
Collapse
Affiliation(s)
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Sara Giovannini
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vasiliki Petroulaki
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nathan Palmer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias–FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
18
|
Day M, Oliver AW, Pearl LH. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair (Amst) 2021; 108:103232. [PMID: 34678589 PMCID: PMC8651625 DOI: 10.1016/j.dnarep.2021.103232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
19
|
Prabhakar AT, James CD, Das D, Otoa R, Day M, Burgner J, Fontan CT, Wang X, Glass SH, Wieland A, Donaldson MM, Bristol ML, Li R, Oliver AW, Pearl LH, Smith BO, Morgan IM. CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio 2021; 12:e0116321. [PMID: 34544280 PMCID: PMC8546539 DOI: 10.1128/mbio.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Burgner
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Sarah H. Glass
- VCU School of Dentistry, Department of Oral Diagnostic Sciences, Richmond, Virginia, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary M. Donaldson
- School of Veterinary Medicine, University of Glasgow, Bearsden, United Kingdom
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Renfeng Li
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Anthony W. Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
20
|
Shastri VM, Subramanian V, Schmidt KH. A novel cell-cycle-regulated interaction of the Bloom syndrome helicase BLM with Mcm6 controls replication-linked processes. Nucleic Acids Res 2021; 49:8699-8713. [PMID: 34370039 PMCID: PMC8421143 DOI: 10.1093/nar/gkab663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Bloom syndrome DNA helicase BLM contributes to chromosome stability through its roles in double-strand break repair by homologous recombination and DNA replication fork restart during the replication stress response. Loss of BLM activity leads to Bloom syndrome, which is characterized by extraordinary cancer risk and small stature. Here, we have analyzed the composition of the BLM complex during unperturbed S-phase and identified a direct physical interaction with the Mcm6 subunit of the minichromosome maintenance (MCM) complex. Using distinct binding sites, BLM interacts with the N-terminal domain of Mcm6 in G1 phase and switches to the C-terminal Cdt1-binding domain of Mcm6 in S-phase, with a third site playing a role for Mcm6 binding after DNA damage. Disruption of Mcm6-binding to BLM in S-phase leads to supra-normal DNA replication speed in unperturbed cells, and the helicase activity of BLM is required for this increased replication speed. Upon disruption of BLM/Mcm6 interaction, repair of replication-dependent DNA double-strand breaks is delayed and cells become hypersensitive to DNA damage and replication stress. Our findings reveal that BLM not only plays a role in the response to DNA damage and replication stress, but that its physical interaction with Mcm6 is required in unperturbed cells, most notably in S-phase as a negative regulator of replication speed.
Collapse
Affiliation(s)
- Vivek M Shastri
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Veena Subramanian
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Sanchez A, Reginato G, Cejka P. Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates. Curr Opin Genet Dev 2021; 71:39-47. [PMID: 34293660 DOI: 10.1016/j.gde.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
DNA breaks may arise accidentally in vegetative cells or in a programmed manner in meiosis. The usage of a DNA template makes homologous recombination potentially error-free, however, recombination is not always accurate. Cells possess a remarkable capacity to tailor processing of recombination intermediates to fulfill a particular need. Vegetatively growing cells aim to maintain genome stability and therefore repair accidental breaks largely accurately, using sister chromatids as templates, into mostly non-crossovers products. Recombination in meiotic cells is instead more likely to employ homologous chromosomes as templates and result in crossovers to allow proper chromosome segregation and promote genetic diversity. Here we review models explaining the processing of recombination intermediates in vegetative and meiotic cells and its regulation, with a focus on MLH1-MLH3-dependent crossing-over during meiotic recombination.
Collapse
Affiliation(s)
- Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
22
|
Ma S, Cao C, Che S, Wang Y, Su D, Liu S, Gong W, Liu L, Sun J, Zhao J, Wang Q, Song N, Ge T, Guo Q, Tian S, Chen CD, Zhang T, Wang J, Ding X, Yang F, Ying G, Yang J, Zhang K, Zhu Y, Yao Z, Yang N, Shi L. PHF8-promoted TOPBP1 demethylation drives ATR activation and preserves genome stability. SCIENCE ADVANCES 2021; 7:7/19/eabf7684. [PMID: 33952527 PMCID: PMC8099190 DOI: 10.1126/sciadv.abf7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
The checkpoint kinase ATR [ATM (ataxia-telangiectasia mutated) and rad3-related] is a master regulator of DNA damage response. Yet, how ATR activity is regulated remains to be investigated. We report here that histone demethylase PHF8 (plant homeodomain finger protein 8) plays a key role in ATR activation and replication stress response. Mechanistically, PHF8 interacts with and demethylates TOPBP1 (DNA topoisomerase 2-binding protein 1), an essential allosteric activator of ATR, under unperturbed conditions, but replication stress results in PHF8 phosphorylation and dissociation from TOPBP1. Consequently, hypomethylated TOPBP1 facilitates RAD9 (RADiation sensitive 9) binding and chromatin loading of the TOPBP1-RAD9 complex to fully activate ATR and thus safeguard the genome and protect cells against replication stress. Our study uncovers a demethylation and phosphorylation code that controls the assembly of TOPBP1-scaffolded protein complex, and provides molecular insight into non-histone methylation switch in ATR activation.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Liu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wenchen Gong
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China
| | - Jiao Zhao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Qian Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Nan Song
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Tong Ge
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Qiushi Guo
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Zhang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ju Wang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xiang Ding
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoguang Ying
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China.
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353 Tianjin, China.
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
23
|
Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. EMBO J 2021; 40:e104566. [PMID: 33764556 DOI: 10.15252/embj.2020104566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stephanie C Vega
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Robert Gnügge
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Kaur E, Agrawal R, Sengupta S. Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front Genet 2021; 12:634789. [PMID: 33777104 PMCID: PMC7994599 DOI: 10.3389/fgene.2021.634789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage repair response is an important biological process involved in maintaining the fidelity of the genome in eukaryotes and prokaryotes. Several proteins that play a key role in this process have been identified. Alterations in these key proteins have been linked to different diseases including cancer. BLM is a 3′−5′ ATP-dependent RecQ DNA helicase that is one of the most essential genome stabilizers involved in the regulation of DNA replication, recombination, and both homologous and non-homologous pathways of double-strand break repair. BLM structure and functions are known to be conserved across many species like yeast, Drosophila, mouse, and human. Genetic mutations in the BLM gene cause a rare, autosomal recessive disorder, Bloom syndrome (BS). BS is a monogenic disease characterized by genomic instability, premature aging, predisposition to cancer, immunodeficiency, and pulmonary diseases. Hence, these characteristics point toward BLM being a tumor suppressor. However, in addition to mutations, BLM gene undergoes various types of alterations including increase in the copy number, transcript, and protein levels in multiple types of cancers. These results, along with the fact that the lack of wild-type BLM in these cancers has been associated with increased sensitivity to chemotherapeutic drugs, indicate that BLM also has a pro-oncogenic function. While a plethora of studies have reported the effect of BLM gene mutations in various model organisms, there is a dearth in the studies undertaken to investigate the effect of its oncogenic alterations. We propose to rationalize and integrate the dual functions of BLM both as a tumor suppressor and maybe as a proto-oncogene, and enlist the plausible mechanisms of its deregulation in cancers.
Collapse
Affiliation(s)
- Ekjot Kaur
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Ritu Agrawal
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Sagar Sengupta
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| |
Collapse
|
25
|
Shorrocks AMK, Jones SE, Tsukada K, Morrow CA, Belblidia Z, Shen J, Vendrell I, Fischer R, Kessler BM, Blackford AN. The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nat Commun 2021; 12:585. [PMID: 33500419 PMCID: PMC7838300 DOI: 10.1038/s41467-020-20818-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.
Collapse
Affiliation(s)
- Ann-Marie K Shorrocks
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Samuel E Jones
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Kaima Tsukada
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Carl A Morrow
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zoulikha Belblidia
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Johanna Shen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Iolanda Vendrell
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew N Blackford
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
26
|
Structure-function analysis of TOPBP1's role in ATR signaling using the DSB-mediated ATR activation in Xenopus egg extracts (DMAX) system. Sci Rep 2021; 11:467. [PMID: 33432091 PMCID: PMC7801695 DOI: 10.1038/s41598-020-80626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
The protein kinase ATR is activated at sites of DNA double-strand breaks where it plays important roles in promoting DNA end resection and regulating cell cycle progression. TOPBP1 is a multi BRCT repeat containing protein that activates ATR at DSBs. Here we have developed an experimental tool, the DMAX system, to study the biochemical mechanism for TOPBP1-mediated ATR signalling. DMAX combines simple, linear dsDNA molecules with Xenopus egg extracts and results in a physiologically relevant, DSB-induced activation of ATR. We find that DNAs of 5000 nucleotides, at femtomolar concentration, potently activate ATR in this system. By combining immunodepletion and add-back of TOPBP1 point mutants we use DMAX to determine which of TOPBP1’s nine BRCT domains are required for recruitment of TOPBP1 to DSBs and which domains are needed for ATR-mediated phosphorylation of CHK1. We find that BRCT1 and BRCT7 are important for recruitment and that BRCT5 functions downstream of recruitment to promote ATR-mediated phosphorylation of CHK1. We also show that BRCT7 plays a second role, independent of recruitment, in promoting ATR signalling. These findings supply a new research tool for, and new insights into, ATR biology.
Collapse
|
27
|
Feng H, Lu J, Song X, Thongkum A, Zhang F, Lou L, Reizes O, Almasan A, Gong Z. CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication. Nucleic Acids Res 2020; 48:10940-10952. [PMID: 33010150 PMCID: PMC7641741 DOI: 10.1093/nar/gkaa756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/12/2022] Open
Abstract
ATR functions as a master regulator of the DNA-damage response. ATR activation requires the ATR activator, topoisomerase IIβ-binding protein 1 (TopBP1). However, the underlying mechanism of TopBP1 regulation and how its regulation affects DNA replication remain unknown. Here, we report a specific interaction between TopBP1 and the histone demethylase PHF8. The TopBP1/PHF8 interaction is mediated by the BRCT 7+8 domain of TopBP1 and phosphorylation of PHF8 at Ser854. This interaction is cell-cycle regulated and phosphorylation-dependent. PHF8 is phosphorylated by CK2, which regulates binding of PHF8 to TopBP1. Importantly, PHF8 regulates TopBP1 protein level by preventing its ubiquitination and degradation mediated by the E3 ligase UBR5. Interestingly, PHF8pS854 is likely to contribute to regulation of TopBP1 stability and DNA replication checkpoint. Further, both TopBP1 and PHF8 are required for efficient replication fork restart. Together, these data identify PHF8 as a TopBP1-binding protein and provide mechanistic insight into how PHF8 regulates TopBP1 stability to maintain DNA replication.
Collapse
Affiliation(s)
- Haihua Feng
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Jingchen Lu
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaotian Song
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Angkana Thongkum
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lihong Lou
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Bagge J, Oestergaard VH, Lisby M. Functions of TopBP1 in preserving genome integrity during mitosis. Semin Cell Dev Biol 2020; 113:57-64. [PMID: 32912640 DOI: 10.1016/j.semcdb.2020.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.
Collapse
Affiliation(s)
- Jonas Bagge
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
29
|
Blackford AN, Stucki M. How Cells Respond to DNA Breaks in Mitosis. Trends Biochem Sci 2020; 45:321-331. [PMID: 32001093 DOI: 10.1016/j.tibs.2019.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to chromosomal instability if they are not repaired correctly. DSBs are especially dangerous in mitosis when cells go through the complex process of equal chromosome segregation into daughter cells. When cells encounter DSBs in interphase, they are able to arrest the cell cycle until the breaks are repaired before entering mitosis. However, when DSBs occur during mitosis, cells no longer arrest but prioritize completion of cell division over repair of DNA damage. This review focuses on recent progress in our understanding of the mechanisms that allow mitotic cells to postpone DSB repair without accumulating massive chromosomal instability. Additionally, we review possible physiological consequences of failed DSB responses in mitosis.
Collapse
Affiliation(s)
- Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
30
|
Mooser C, Symeonidou IE, Leimbacher PA, Ribeiro A, Shorrocks AMK, Jungmichel S, Larsen SC, Knechtle K, Jasrotia A, Zurbriggen D, Jeanrenaud A, Leikauf C, Fink D, Nielsen ML, Blackford AN, Stucki M. Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation. Nat Commun 2020; 11:123. [PMID: 31913317 PMCID: PMC6949271 DOI: 10.1038/s41467-019-13981-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
Induction of DNA double-strand breaks (DSBs) in ribosomal DNA (rDNA) repeats is associated with ATM-dependent repression of ribosomal RNA synthesis and large-scale reorganization of nucleolar architecture, but the signaling events that regulate these responses are largely elusive. Here we show that the nucleolar response to rDNA breaks is dependent on both ATM and ATR activity. We further demonstrate that ATM- and NBS1-dependent recruitment of TOPBP1 in the nucleoli is required for inhibition of ribosomal RNA synthesis and nucleolar segregation in response to rDNA breaks. Mechanistically, TOPBP1 recruitment is mediated by phosphorylation-dependent interactions between three of its BRCT domains and conserved phosphorylated Ser/Thr residues at the C-terminus of the nucleolar phosphoprotein Treacle. Our data thus reveal an important cooperation between TOPBP1 and Treacle in the signaling cascade that triggers transcriptional inhibition and nucleolar segregation in response to rDNA breaks.
Collapse
Affiliation(s)
- Clémence Mooser
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Ioanna-Eleni Symeonidou
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Pia-Amata Leimbacher
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Alison Ribeiro
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephanie Jungmichel
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Sara C Larsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Katja Knechtle
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Arti Jasrotia
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Diana Zurbriggen
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Alain Jeanrenaud
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Colin Leikauf
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Daniel Fink
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland.
| |
Collapse
|
31
|
Wu T, Zhang Z, Wang X. Preparation of endogenous TopBP1/Dpb11 and effect on central checkpoint kinase Mec1- Ddc2 (human ATR-ATRIP homolog). Biochem Biophys Res Commun 2019; 517:291-296. [PMID: 31349966 DOI: 10.1016/j.bbrc.2019.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/17/2019] [Indexed: 11/18/2022]
Abstract
The Saccharomyces cerevisiae Mec1 kinase, the mammalian ATR ortholog, is essential for sensing a variety of DNA lesions and initiating DNA damage response. The Dpb11, a homolog of human TopBP1, functions in activating the Mec1 upon DNA replication stress and DNA damages. Here, we report an affinity purification and ion exchange chromatography method to efficiently purify endogenous Dpb11 under normal expression level directly from yeast whole cell extraction. The final concentration of 5 μM of high purity and homogeneity biochemical preparation enables functional and structural characterization of the physical interaction between Dpb11 and Mec1-Ddc2 complex. The Dpb11 obtained by endogenous purification strongly stimulates the Mec1 kinase activity and promotes the changes in conformational distribution. This observation suggests the Dpb11 activates Mec1 kinase probably through modulation in the kinase conformations.
Collapse
Affiliation(s)
- Tengwei Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China
| | - Zhihui Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China
| | - Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230026, Anhui, China.
| |
Collapse
|
32
|
Min J, Wright WE, Shay JW. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev 2019; 33:814-827. [PMID: 31171703 PMCID: PMC6601508 DOI: 10.1101/gad.324905.119] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. One of the hallmarks of ALT cancer is the excessively clustered telomeres in promyelocytic leukemia (PML) bodies, represented as large bright telomere foci. Here, we present a model system that generates telomere clustering in nuclear polySUMO (small ubiquitin-like modification)/polySIM (SUMO-interacting motif) condensates, analogous to PML bodies, and thus artificially engineered ALT-associated PML body (APB)-like condensates in vivo. We observed that the ALT-like phenotypes (i.e., a small fraction of heterogeneous telomere lengths and formation of C circles) are rapidly induced by introducing the APB-like condensates together with BLM through its helicase domain, accompanied by ssDNA generation and RPA accumulation at telomeres. Moreover, these events lead to mitotic DNA synthesis (MiDAS) at telomeres mediated by RAD52 through its highly conserved N-terminal domain. We propose that the clustering of large amounts of telomeres in human cancers promotes ALT that is mediated by MiDAS, analogous to Saccharomyces cerevisiae type II ALT survivors.
Collapse
Affiliation(s)
- Jaewon Min
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
33
|
Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. eLife 2019; 8:e44353. [PMID: 31135337 PMCID: PMC6561707 DOI: 10.7554/elife.44353] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1. Mutation of these sites does not affect formation of 53BP1 or ATM foci following DNA damage, but abolishes recruitment of TOPBP1, ATR and CHK1 to 53BP1 damage foci, abrogating cell cycle arrest and permitting progression into S-phase. TOPBP1 interaction with 53BP1 is structurally complimentary to its interaction with RAD9-RAD1-HUS1, allowing these damage recognition factors to bind simultaneously to the same TOPBP1 molecule and cooperate in ATR activation in the G1 DNA damage checkpoint.
Collapse
Affiliation(s)
- Nicolas Bigot
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| |
Collapse
|
34
|
Leimbacher PA, Jones SE, Shorrocks AMK, de Marco Zompit M, Day M, Blaauwendraad J, Bundschuh D, Bonham S, Fischer R, Fink D, Kessler BM, Oliver AW, Pearl LH, Blackford AN, Stucki M. MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Mol Cell 2019; 74:571-583.e8. [PMID: 30898438 PMCID: PMC6509287 DOI: 10.1016/j.molcel.2019.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/30/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.
Collapse
Affiliation(s)
- Pia-Amata Leimbacher
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Samuel E Jones
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Mara de Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Jordy Blaauwendraad
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Fink
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland.
| |
Collapse
|
35
|
Day M, Rappas M, Ptasinska K, Boos D, Oliver AW, Pearl LH. BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands. eLife 2018; 7:e39979. [PMID: 30295604 PMCID: PMC6175577 DOI: 10.7554/elife.39979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022] Open
Abstract
TOPBP1 and its fission yeast homologueRad4, are critical players in a range of DNA replication, repair and damage signalling processes. They are composed of multiple BRCT domains, some of which bind phosphorylated motifs in other proteins. They thus act as multi-point adaptors bringing proteins together into functional combinations, dependent on post-translational modifications downstream of cell cycle and DNA damage signals. We have now structurally and/or biochemically characterised a sufficient number of high-affinity complexes for the conserved N-terminal region of TOPBP1 and Rad4 with diverse phospho-ligands, including human RAD9 and Treslin, and Schizosaccharomyces pombe Crb2 and Sld3, to define the determinants of BRCT domain specificity. We use this to identify and characterise previously unknown phosphorylation-dependent TOPBP1/Rad4-binding motifs in human RHNO1 and the fission yeast homologue of MDC1, Mdb1. These results provide important insights into how multiple BRCT domains within TOPBP1/Rad4 achieve selective and combinatorial binding of their multiple partner proteins.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Mathieu Rappas
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Katie Ptasinska
- Genome Damage and Stability CentreSchool of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Dominik Boos
- Fakultät für BiologieUniversität Duisburg-EssenGermanyUnited Kingdom
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes GroupGenome Damage and Stability Centre, School of Life Sciences, University of SussexFalmerUnited Kingdom
| |
Collapse
|
36
|
Priyadarshini R, Hussain M, Attri P, Kaur E, Tripathi V, Priya S, Dhapola P, Saha D, Madhavan V, Chowdhury S, Sengupta S. BLM Potentiates c-Jun Degradation and Alters Its Function as an Oncogenic Transcription Factor. Cell Rep 2018; 24:947-961.e7. [DOI: 10.1016/j.celrep.2018.06.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/07/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
|
37
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
38
|
Chang EYC, Novoa CA, Aristizabal MJ, Coulombe Y, Segovia R, Chaturvedi R, Shen Y, Keong C, Tam AS, Jones SJM, Masson JY, Kobor MS, Stirling PC. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J Cell Biol 2017; 216:3991-4005. [PMID: 29042409 PMCID: PMC5716281 DOI: 10.1083/jcb.201703168] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.
Collapse
Affiliation(s)
| | - Carolina A Novoa
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | - Yan Coulombe
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Richa Chaturvedi
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Yaoqing Shen
- Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Christelle Keong
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Sun L, Huang Y, Edwards RA, Yang S, Blackford AN, Niedzwiedz W, Glover JNM. Structural Insight into BLM Recognition by TopBP1. Structure 2017; 25:1582-1588.e3. [PMID: 28919440 PMCID: PMC6044410 DOI: 10.1016/j.str.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Topoisomerase IIβ binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.
Collapse
Affiliation(s)
- Luxin Sun
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yuhao Huang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sukmin Yang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Andrew N Blackford
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
40
|
Abstract
Tandem BRCT domains are phophoprotein binding modules. In this issue of Structure, Sun et al. (2017) show that a single BRCT domain in TopBP1 binds tightly and specifically to phosphorylated Bloom syndrome helicase (BLM). This work reveals a novel BRCT binding mode and suggests a similar mechanism for TopBP1 interaction with 53BP1.
Collapse
Affiliation(s)
- Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1340] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
42
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
43
|
Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M, Xu D, Takata M, Seidman M, Wang W. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov 2016; 2:16047. [PMID: 28058110 PMCID: PMC5167996 DOI: 10.1038/celldisc.2016.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA translocase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2-FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM. We further show that the FANCM-BLM complex interaction is critical for replication stress-induced FANCM hyperphosphorylation, for normal activation of the FA pathway in response to ICLs, and for efficient traverse of ICLs by the replication machinery. Epistasis studies demonstrate that FANCM and BLM work in the same pathway to promote replication traverse of ICLs. We conclude that FANCM and BLM complex work together at stalled forks to promote both FA repair and replication traverse pathways of ICLs.
Collapse
Affiliation(s)
- Chen Ling
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Jing Huang
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Zhijiang Yan
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Yongjiang Li
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Mioko Ohzeki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Dongyi Xu
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Michael Seidman
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Weidong Wang
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
44
|
ETAA1 acts at stalled replication forks to maintain genome integrity. Nat Cell Biol 2016; 18:1185-1195. [PMID: 27723720 DOI: 10.1038/ncb3415] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023]
Abstract
The ATR checkpoint kinase coordinates cellular responses to DNA replication stress. Budding yeast contain three activators of Mec1 (the ATR orthologue); however, only TOPBP1 is known to activate ATR in vertebrates. We identified ETAA1 as a replication stress response protein in two proteomic screens. ETAA1-deficient cells accumulate double-strand breaks, sister chromatid exchanges, and other hallmarks of genome instability. They are also hypersensitive to replication stress and have increased frequencies of replication fork collapse. ETAA1 contains two RPA-interaction motifs that localize ETAA1 to stalled replication forks. It also interacts with several DNA damage response proteins including the BLM/TOP3α/RMI1/RMI2 and ATR/ATRIP complexes. It binds ATR/ATRIP directly using a motif with sequence similarity to the TOPBP1 ATR-activation domain; and like TOPBP1, ETAA1 acts as a direct ATR activator. ETAA1 functions in parallel to the TOPBP1/RAD9/HUS1/RAD1 pathway to regulate ATR and maintain genome stability. Thus, vertebrate cells contain at least two ATR-activating proteins.
Collapse
|
45
|
Lescale C, Lenden Hasse H, Blackford AN, Balmus G, Bianchi JJ, Yu W, Bacoccina L, Jarade A, Clouin C, Sivapalan R, Reina-San-Martin B, Jackson SP, Deriano L. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep 2016; 16:2967-2979. [PMID: 27601299 PMCID: PMC5033762 DOI: 10.1016/j.celrep.2016.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/04/2022] Open
Abstract
Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Hélène Lenden Hasse
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Gabriel Balmus
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Joy J Bianchi
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, Paris 75015, France
| | - Wei Yu
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Léa Bacoccina
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Angélique Jarade
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Christophe Clouin
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Rohan Sivapalan
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964, CNRS-UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
46
|
Choi SH, Yoo HY. Mdc1 modulates the interaction between TopBP1 and the MRN complex during DNA damage checkpoint responses. Biochem Biophys Res Commun 2016; 479:5-11. [PMID: 27590578 DOI: 10.1016/j.bbrc.2016.08.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
TopBP1 has been identified as a direct activator of ATR and interacts with the Nbs1 subunit of the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. In this study, we show that Mdc1 associates with both TopBP1 and Nbs1 in egg extracts and human cells. We cloned a cDNA encoding the full-length version of Xenopus Mdc1. The association between Mdc1 and TopBP1 involves the first pair of BRCT repeats in TopBP1. The N-terminal region (161-230) of Mdc1 is required for this binding. The interaction between Mdc1 and Nbs1 involves the two tandem BRCT repeats of Nbs1. Functional studies with mutated forms of Mdc1, TopBP1, and Nbs1 indicate that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. TopBP1 cannot interact with Nbs1 in Mdc1-depleted egg extracts, suggesting that Mdc1 connects TopBP1 and Nbs1 together. These findings suggest that Mdc1 is a crucial mediator of the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea.
| |
Collapse
|
47
|
Abstract
Faithful chromosome segregation is critical in preventing genome loss or damage during cell division. Failure to properly disentangle catenated sister chromatids can lead to the formation of bulky or ultrafine anaphase bridges, and ultimately genome instability. In this review we present an overview of the current state of knowledge of how sister chromatid decatenation is carried out, with particular focus on the role of TOP2A and TOPBP1 in this process.
Collapse
Affiliation(s)
- Ronan Broderick
- a Department of Oncology ; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford , UK
| | - Wojciech Niedzwiedz
- a Department of Oncology ; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford , UK
| |
Collapse
|
48
|
Himmels SF, Sartori AA. Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO. Front Genet 2016; 7:152. [PMID: 27602047 PMCID: PMC4993767 DOI: 10.3389/fgene.2016.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most detrimental lesions, as their incorrect or incomplete repair can lead to genomic instability, a hallmark of cancer. Cells have evolved two major competing DSB repair mechanisms: Homologous recombination (HR) and non-homologous end joining (NHEJ). HR is initiated by DNA-end resection, an evolutionarily conserved process that generates stretches of single-stranded DNA tails that are no longer substrates for religation by the NHEJ machinery. Ubiquitylation and sumoylation, the covalent attachment of ubiquitin and SUMO moieties to target proteins, play multifaceted roles in DNA damage signaling and have been shown to regulate HR and NHEJ, thus ensuring appropriate DSB repair. Here, we give a comprehensive overview about the current knowledge of how ubiquitylation and sumoylation control DSB repair by modulating the DNA-end resection machinery.
Collapse
Affiliation(s)
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
49
|
EXD2 promotes homologous recombination by facilitating DNA end resection. Nat Cell Biol 2016; 18:271-280. [PMID: 26807646 PMCID: PMC4829102 DOI: 10.1038/ncb3303] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is critical for survival and genome stability of individual cells and organisms, but also contributes to the genetic diversity of species. A vital step in HR is MRN-CtIP-dependent end resection, which generates the 3' single-stranded DNA overhangs required for the subsequent strand exchange reaction. Here, we identify EXD2 (also known as EXDL2) as an exonuclease essential for DSB resection and efficient HR. EXD2 is recruited to chromatin in a damage-dependent manner and confers resistance to DSB-inducing agents. EXD2 functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks. Finally, we establish that EXD2 stimulates both short- and long-range DSB resection, and thus, together with MRE11, is required for efficient HR. This establishes a key role for EXD2 in controlling the initial steps of chromosomal break repair.
Collapse
|
50
|
Wijnhoven P, Konietzny R, Blackford AN, Travers J, Kessler BM, Nishi R, Jackson SP. USP4 Auto-Deubiquitylation Promotes Homologous Recombination. Mol Cell 2015; 60:362-73. [PMID: 26455393 PMCID: PMC4643306 DOI: 10.1016/j.molcel.2015.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/20/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
Abstract
Repair of DNA double-strand breaks is crucial for maintaining genome integrity and is governed by post-translational modifications such as protein ubiquitylation. Here, we establish that the deubiquitylating enzyme USP4 promotes DNA-end resection and DNA repair by homologous recombination. We also report that USP4 interacts with CtIP and the MRE11-RAD50-NBS1 (MRN) complex and is required for CtIP recruitment to DNA damage sites. Furthermore, we show that USP4 is ubiquitylated on multiple sites including those on cysteine residues and that deubiquitylation of these sites requires USP4 catalytic activity and is required for USP4 to interact with CtIP/MRN and to promote CtIP recruitment and DNA repair. Lastly, we establish that regulation of interactor binding by ubiquitylation occurs more generally among USP-family enzymes. Our findings thus identify USP4 as a novel DNA repair regulator and invoke a model in which ubiquitin adducts regulate USP enzyme interactions and functions.
Collapse
Affiliation(s)
- Paul Wijnhoven
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Rebecca Konietzny
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew N Blackford
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jonathan Travers
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ryotaro Nishi
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|