1
|
Ma X, Xu Z, Wang X, Sun S, Zhang J, Tang R, Ling L, Wei B, Hu L, Wang E. Aberrant WDR5 promotes the progression of cervical cancer through the YAP1- CTGF pathway. Life Sci 2025:123712. [PMID: 40414554 DOI: 10.1016/j.lfs.2025.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
AIMS WDR5 plays a pivotal role in promoting cancer progression across various malignancies. However, its involvement in cervical cancer remains poorly understood. This study aims to elucidate the mechanisms by which WDR5 drives cervical cancer progression. MATERIALS AND METHODS Cervical cancer tissues were analyzed to assess WDR5 regulation. In vitro assays evaluated the effects of WDR5 loss-of-function on cell proliferation, migration, and invasion. Mechanistic studies investigated the interaction between WDR5 and YAP1, and the subsequent modulation of CTGF gene expression via histone 3 lysine 4 trimethylation. Xenograft tumor models were utilized to examine the in vivo role of WDR5 in cervical cancer progression. KEY FINDINGS WDR5 is significantly upregulated in cervical cancer tissues and correlates with poor prognosis. Loss of WDR5 function markedly suppresses cervical cancer cell proliferation, migration, and invasion in vitro. WDR5 interacts with YAP1, enhancing CTGF expression through histone methylation. In vivo, the oncogenic function of WDR5 is contingent upon the YAP1-CTGF signaling axis. SIGNIFICANCE This study identifies the WDR5/YAP1/CTGF pathway as a key mechanism in cervical cancer progression, suggesting that targeting this axis may provide a promising therapeutic approach.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhonglei Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xinrui Wang
- The College of life science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shiying Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Junhui Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Ruxian Tang
- The College of life science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lin Ling
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Liangchang Hu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Enlin Wang
- The College of life science, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
2
|
Majmudar PR, Keri RA. The neural stem cell gene PAFAH1B1 controls cell cycle progression, DNA integrity, and paclitaxel sensitivity of triple-negative breast cancer cells. J Biol Chem 2025:110235. [PMID: 40378956 DOI: 10.1016/j.jbc.2025.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive disease with limited approved therapeutic options. The rapid growth and genomic instability of TNBC cells makes mitosis a compelling target, and a current mainstay of treatment is paclitaxel (Ptx), a taxane that stabilizes microtubules during mitosis. While initially effective, acquired resistance to Ptx is common, and other antimitotic therapies can be similarly rendered ineffective due to the development of resistance or systemic toxicity underscoring the need for new therapeutic approaches. Interrogating CRISPR essentiality screens in TNBC cell lines, we identified PAFAH1B1 (LIS1) as a potential vulnerability in this disease. PAFAH1B1 regulates mitotic spindle orientation, proliferation, and cell migration during neurodevelopment, yet little is known regarding its function in breast cancer. We found that suppressing PAFAH1B1 expression in TNBC cells reduces cell number, while non-malignant cells remain unaffected. PAFAH1B1 suppression alters cell cycle dynamics, increasing mitotic duration and accumulation of cells in the G2/M phase. The suppression of PAFAH1B1 expression also increases DNA double-strand breaks, indicating a requirement for sustained PAFAH1B1 expression to maintain the genomic integrity of TNBC cells. Lastly, PAFAH1B1 silencing substantially enhances these defects in cells that are taxane-resistant and sensitizes both parental and Ptx-resistant TNBC cells to Ptx. These results indicate that LIS1/PAFAH1B1 may be a novel target for the development of new anti-mitotic agents for treating TNBC, particularly in the context of paclitaxel resistance.
Collapse
Affiliation(s)
- Parth R Majmudar
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106, United States; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
3
|
Kong F, Bao E, Zhong Y, Wang Y, Liu R, Zhang H, Yang L, Jiang R, Liu X, Li C, Liu X, Pan X, Zheng K, You H, Tang R. HBV core protein enhances WDR46 stabilization to upregulate NUSAP1 and promote HCC progression. Hepatol Commun 2025; 9:e0680. [PMID: 40366140 PMCID: PMC12055171 DOI: 10.1097/hc9.0000000000000680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The HBV core protein (HBC) is crucial for the progression of HCC. WD repeat-containing (WDR) 46 (WDR46) is implicated in the development of different tumors. Nevertheless, whether WDR46 is controlled by HBC to drive hepatocarcinogenesis remains unclear. METHODS Different HCC cohorts, immunohistochemical staining, and bioinformatics analysis were utilized to estimate the clinical correlation between WDR46 and HBV-associated HCC. Western blotting, co-immunoprecipitation, chromatin immunoprecipitation, and oncology functional assays were performed to evaluate the effect of HBC on WDR46 in upregulating nucleolar spindle-associated protein 1 (NUSAP1), the influence of WDR46 on HBC-mediated HCC cell biological functions, and the mechanisms of WDR46 upregulation mediated by HBC to increase NUSAP1. RESULTS WDR46 expression was elevated in HBV-related HCC in a HBC-dependent manner. Overexpression of WDR46 is closely linked to severe prognosis of tumors. Functionally, WDR46 contributes to HBC-induced cell growth and migration in vitro and in vivo. Furthermore, HBC enhanced WDR46 protein stabilization by hampering the interaction between WDR46 and TRIM25, thereby decreasing WDR46 ubiquitination. NUSAP1, a DNA replication-related molecule, is a vital downstream target of WDR46. Relying on WDR46, HBC promoted NUSAP1 upregulation to modulate the biological functions of HBC in HCC cells. Importantly, HBC enhanced the interaction between WDR46 and the transcription factor c-Myc to facilitate c-Myc recruitment to the NUSAP1 promoter, leading to the increase of NUSAP1 transcription. CONCLUSIONS Our comprehensive data provides new insights into the mechanisms responsible for HBC-induced hepatocarcinogenesis. WDR46 and its downstream molecule, NUSAP1, may act as novel therapeutic targets for HBV-related tumors.
Collapse
Affiliation(s)
- Fanyun Kong
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ensi Bao
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujie Zhong
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huanyang Zhang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Jiang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuanke Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chen Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Sun W, Yu H, Ye J, Qin L, Wang L, Yan H, Zhang Z, Aliper A, Ren F, Ding X, Zhavoronkov A, Liu D. Discovery of Novel Inhibitors for WD Repeat-Containing Protein 5 (WDR5)-MYC Protein-Protein Interaction. Chem Biol Drug Des 2025; 105:e70129. [PMID: 40395176 DOI: 10.1111/cbdd.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
The WD Repeat-Containing Protein 5 (WDR5) and MYC interaction is crucial for MYC-mediated oncogenesis, yet effective therapeutic intervention remains challenging due to the limited efficacy of current treatments targeting WDR5. Herein, we report the discovery of novel WDR5-MYC protein-protein interaction (PPI) inhibitors with improved potency and drug-like properties by utilizing a generative chemistry platform along with a physics-model-based tool AlChemistry. Initially, three hits were identified with reasonable binding affinity for WDR5, and further refinement through detailed structural analysis led to the discovery of sub-micromolar affinity compounds (compound 9c-1), which are > 30-fold better than reported inhibitors. These findings provide a promising starting point for targeting the WDR5-MYC interaction in MYC-driven cancers.
Collapse
Affiliation(s)
- Wei Sun
- Huadong Medicine Company Limited, Hangzhou, China
| | - Huaxing Yu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Jiuyong Ye
- Huadong Medicine Company Limited, Hangzhou, China
| | - Luoheng Qin
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Linli Wang
- Huadong Medicine Company Limited, Hangzhou, China
| | - Hailu Yan
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Zhimin Zhang
- Huadong Medicine Company Limited, Hangzhou, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Masdar City, UAE
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Masdar City, UAE
| | - Dongzhou Liu
- Huadong Medicine Company Limited, Hangzhou, China
| |
Collapse
|
5
|
Yang Y, Zhang S, Wu Z, Li W, Sun X, Xuan Y, Hang T, Xu L, Chen X. Crystal structures of Kif2A complexed with WDR5 reveal the structural plasticity of WIN-S7 sites. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40302551 DOI: 10.3724/abbs.2025066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Chromosome congression and spindle assembly are essential for genomic stability and proper cell division, with deficiencies in these processes linked to tumorigenesis. WD repeat-containing protein 5 (WDR5), a core component of the mixed lineage leukemia (MLL) methyltransferase complex, directly binds to kinesin family member 2A (Kif2A) to regulate these mitotic events. Despite the importance of this interaction, its structural basis for Kif2A recognition by WDR5 remains unclear. Here, we determine the crystal structure of WDR5 in complex with a Kif2A-derived peptide (residues 114-122) at a resolution of 1.85 Å. Structural analysis reveals that Kif2A engages both the WIN and S7 sites of WDR5 via Arg117 and Ser121, with Ser121 forming hydrogen bonds with WDR5 Tyr191 and Lys259, driving Tyr191 rotation and opening the S7 pocket. Additional structures of WDR5 complexed with truncated or mutated Kif2A peptides and a WDR5 Y191F variant highlight the dynamic nature of Tyr191. Notably, anti-WDR5 compounds exhibit a similar binding mode at the WDR5 WIN-S7 site. The results of mutagenesis combined with isothermal titration calorimetry (ITC) assays underscore the critical roles of Arg117 and Ser121 in mediating the binding of Kif2A to WDR5. In summary, our findings provide atomic-level insights into the molecular mechanisms underlying the non-canonical mitotic function of the MLL/WDR5 complex and highlight WIN-S7 sites as promising therapeutic targets for diseases associated with chromosomal instability, such as cancers.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhangyu Wu
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Wenwen Li
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xuefang Sun
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yumi Xuan
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 581055, China
| | - Tianrong Hang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Li Xu
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen 518107, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Yu Y, Yu X, Pan B, Chan HM, Kaniskan HÜ, Jin J, Cai L, Wang GG. Pharmacologic degradation of WDR5 suppresses oncogenic activities of SS18::SSX and provides a therapeutic of synovial sarcoma. SCIENCE ADVANCES 2025; 11:eads7876. [PMID: 40267190 PMCID: PMC12017321 DOI: 10.1126/sciadv.ads7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer-causing aberrations recurrently target the chromatic-regulatory factors, leading to epigenetic dysregulation. Almost all patients with synovial sarcoma (SS) carry a characteristic gene fusion, SS18::SSX, which produces a disease-specific oncoprotein that is incorporated into the switch/sucrose non-fermentable (SWI/SNF) chromatin-remodeling complexes and profoundly alters their functionalities. Targeting epigenetic dependency in cancers holds promise for improving current treatment. Leveraging on cancer cell dependency dataset, pharmacological tools, and genomic profiling, we find WDR5, a factor critical for depositing histone H3 lysine 4 (H3K4) methylation, to be an unexplored vulnerability in SS. Mechanistically, WDR5 and SS18::SSX interact and colocalize at oncogenes where WDR5 promotes H3K4 methylation and the chromatin association of SS18::SSX-containing chromatin-remodeling complexes. WDR5 degradation by proteolysis-targeting chimera (PROTAC) not only suppresses the SS18::SSX-related oncogenic programs but additionally causes the ribosomal protein deregulations leading to p53 activation. WDR5-targeted PROTAC suppresses SS growth in vitro and in vivo, providing a promising strategy for the SS treatment.
Collapse
Affiliation(s)
- Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xufen Yu
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ho Man Chan
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA 02451, USA
| | - H. Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Han Q, Gu Y, Xiang H, Zhang L, Wang Y, Yang C, Li J, Steiner C, Lapalombella R, Woyach JA, Yang Y, Dovat S, Song C, Ge Z. Targeting WDR5/ATAD2 signaling by the CK2/IKAROS axis demonstrates therapeutic efficacy in T-ALL. Blood 2025; 145:1407-1421. [PMID: 39785511 PMCID: PMC11969266 DOI: 10.1182/blood.2024024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD repeat-containing protein 5 (WDR5) in T-ALL. With in vitro and in vivo models, we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2). Moreover, the function of a zinc finger transcription factor of the Kruppel family (IKAROS) is often impaired by genetic alteration and casein kinase II (CK2) which is overexpressed in T-ALL. We found that IKAROS directly regulates WDR5 transcription; CK2 inhibitor, CX-4945, strongly suppresses WDR5 expression by restoring IKAROS function. Last, combining CX-4945 with WDR5 inhibitor demonstrates synergistic efficacy in the patient-derived xenograft mouse models. In conclusion, our results demonstrated that WDR5/ATAD2 is a new oncogenic signaling pathway in T-ALL, and simultaneous targeting of WRD5 and CK2/IKAROS has synergistic antileukemic efficacy and represents a promising potential strategy for T-ALL therapy.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Huimin Xiang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Linyao Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Wang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chan Yang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jun Li
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chelsea Steiner
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Jennifer A. Woyach
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Hershey Medical Center, Pennsylvania State University Medical College, Hershey, PA
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
8
|
Wurm AA, Schewe DM. Two is better than one: dual targeting of WDR5 in T-ALL. Blood 2025; 145:1339-1341. [PMID: 40146156 DOI: 10.1182/blood.2024027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Affiliation(s)
- Alexander A Wurm
- University Hospital Dresden
- Technical University Dresden
- National Center for Tumor Diseases Dresden partner site
| | - Denis M Schewe
- University Hospital Dresden
- Technical University Dresden
- National Center for Tumor Diseases Dresden partner site
| |
Collapse
|
9
|
Fesik SW. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025; 125:3586-3594. [PMID: 40043012 PMCID: PMC11951080 DOI: 10.1021/acs.chemrev.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
There are many highly validated cancer targets that are difficult or impossible to drug due to the absence of suitable pockets that can bind small molecules. Fragment-based methods have been shown to be a useful approach for identifying ligands to proteins that were previously thought to be undruggable. In this review, I will give an overview of fragment-based ligand discovery and provide examples from our own work on how fragment-based methods were used to discover high affinity ligands for challenging cancer drug targets.
Collapse
Affiliation(s)
- Stephen W. Fesik
- Department of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235 United States
| |
Collapse
|
10
|
Masschelin PM, Ochsner SA, Hartig SM, McKenna NJ, Cox AR. Islet single-cell transcriptomic profiling during obesity-induced beta cell expansion in female mice. iScience 2025; 28:112031. [PMID: 40104055 PMCID: PMC11914824 DOI: 10.1016/j.isci.2025.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Targeting beta cell proliferation is an appealing approach to restore glucose control in type 1 diabetes. However, the underlying mechanisms of beta cell proliferation remain incompletely understood, limiting identification of new therapeutic targets. Obesity is a naturally occurring process that potently induces human and rodent beta cell replication, representing an ideal model to study mechanisms of beta cell proliferation. We showed previously acute whole-body Lepr gene deletion in adult mice induces obesity and massive beta cell expansion. Here, using single-cell transcriptomics with female Lepr KO islets, we identified distinct populations of beta cells undergoing unfolded protein response (UPR), stress resolution, and cell cycle progression. Lepr KO beta cells undergoing UPR markedly increased chaperone protein, ribosomal biogenesis, and cell cycle transcriptional programs that were enriched for Xbp1 and Myc target genes. Our findings suggest a coordinated transcriptional mechanism involving Xbp1 and Myc to alleviate UPR and stimulate beta cell proliferation in obese female mice.
Collapse
Affiliation(s)
- Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, Univeristy of Texas Health Science Center at Houston, Houston TX 77019, USA
| |
Collapse
|
11
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2025; 19:1103-1115. [PMID: 39718930 PMCID: PMC11752528 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
12
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Jakobsen ST, Siersbæk R. Transcriptional regulation by MYC: an emerging new model. Oncogene 2025; 44:1-7. [PMID: 39468222 DOI: 10.1038/s41388-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
14
|
Oliveira JC, Negreiro JM, Nunes FM, Barbosa FG, Mafezoli J, Mattos MC, Fernandes MCR, Pessoa C, Furtado CLM, Zanatta G, Oliveira MCF. In Silico Study of the Anti-MYC Potential of Lanostane-Type Triterpenes. ACS OMEGA 2024; 9:50844-50858. [PMID: 39741863 PMCID: PMC11683602 DOI: 10.1021/acsomega.4c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
One of the most investigated molecular targets for anticancer therapy is the proto-oncogene MYC, which is amplified and thus overexpressed in many types of cancer. Due to its structural characteristics, developing inhibitors for the target has proven to be challenging. In this study, the anti-MYC potential of lanostane-type triterpenes was investigated for the first time, using computational approaches that involved ensemble docking, prediction of structural properties and pharmacokinetic parameters, molecular dynamics (MD), and binding energy calculation using the molecular mechanics-generalized born surface area (MM-GBSA) method. The analysis of physicochemical properties, druglikeness, and pharmacokinetic parameters showed that ligands ganoderic acid E (I), ganoderlactone D (II), ganoderic acid Y (III), ganoderic acid Df (IV), lucidenic acid F (V), ganoderic acid XL4 (VI), mariesiic acid A (VII), and phellinol E (VIII) presented properties within the filter used. These eight ligands, in general, could interact with the molecular target favorably, with interaction energy values between -8.3 and -8.6 kcal mol-1. In MD, the results of RMSD, RMSF, radius of gyration, and hydrogen bonds of the complexes revealed that ligands I, IV, VI, and VII interacted satisfactorily with the protein during the simulations and assisted in its conformational and energetic stabilization. The binding energy calculation using the MM-GBSA method showed better results for the MYC-VII and MYC-I complexes (-44.98 and -41.96 kcal mol-1, respectively). These results support the hypothesis that such molecules can interact with MYC for a considerable period, which would be an essential condition for them to exert their inhibitory activity effectively.
Collapse
Affiliation(s)
- José
A. C. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jonatas M. Negreiro
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Fátima M. Nunes
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Francisco G. Barbosa
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jair Mafezoli
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Marcos C. Mattos
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Maria C. R. Fernandes
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Claudia Pessoa
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Cristiana L. M. Furtado
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
- Graduate
Program in Medical Sciences, University
of Fortaleza, Rua Francisco
Segundo da Costa, 23-57, Fortaleza, CE 60811-650, Brazil
| | - Geancarlo Zanatta
- Department
of Biophysics, Bioscience Institute, Federal
University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Building 43422, Laboratory
204, Porto Alegre, RS 91501-970, Brazil
| | - Maria C. F. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
15
|
Wang D, Chen J, Wu G, Xiong F, Liu W, Wang Q, Kuai Y, Huang W, Qi Y, Wang B, He R, Chen Y. MBD2 regulates the progression and chemoresistance of cholangiocarcinoma through interaction with WDR5. J Exp Clin Cancer Res 2024; 43:272. [PMID: 39350229 PMCID: PMC11440836 DOI: 10.1186/s13046-024-03188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant, rapidly progressing tumor of the bile duct. Owing to its chemoresistance, it always has an extremely poor prognosis. Therefore, detailed elucidation of the mechanisms of chemoresistance and identification of therapeutic targets are still needed. METHODS We analyzed the expression of MBD2 (Methyl-CpG-binding domain 2) in CCA and normal bile duct tissues using the public database and immunohistochemistry (IHC). The roles of MBD2 in CCA cell proliferation, migration, and chemoresistance ability were validated through CCK-8, plate cloning assay, wound healing assays and xenograft mouse model. In addition, we constructed a primary CCA mouse model to further confirm the effect of MBD2. RNA-seq and co-IP-MS were used to identify the mechanisms by how MBD2 leads to chemoresistance. RESULTS MBD2 was upregulated in CCA. It promoted the proliferation, migration and chemoresistance of CCA cells. Mechanistically, MBD2 directly interacted with WDR5, bound to the promoter of ABCB1, promoted the trimethylation of H3K4 in this region through KMT2A, and activated the expression of ABCB1. Knocking down WDR5 or KMT2A blocked the transcriptional activation of ABCB1 by MBD2. The molecular inhibitor MM-102 targeted the interaction of WDR5 with KMT2A. MM-102 inhibited the expression of ABCB1 in CCA cells and decreased the chemoresistance of CCA to cisplatin. CONCLUSION MBD2 promotes the progression and chemoresistance of CCA through interactions with WDR5. MM-102 can effectively block this process and increase the sensitivity of CCA to cisplatin.
Collapse
Affiliation(s)
- Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430074, Hubei, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run- Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| |
Collapse
|
16
|
BenDavid E, Yang C, Zhou Y, Pfaller CK, Samuel CE, Ma D. Host WD repeat-containing protein 5 inhibits protein kinase R-mediated integrated stress response during measles virus infection. J Virol 2024; 98:e0102024. [PMID: 39194235 PMCID: PMC11406981 DOI: 10.1128/jvi.01020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Chuyuan Yang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles E. Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
17
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
18
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
19
|
Vogt M, Dudvarski Stankovic N, Cruz Garcia Y, Hofstetter J, Schneider K, Kuybu F, Hauck T, Adhikari B, Hamann A, Rocca Y, Grysczyk L, Martin B, Gebhardt-Wolf A, Wiegering A, Diefenbacher M, Gasteiger G, Knapp S, Saur D, Eilers M, Rosenfeldt M, Erhard F, Vos SM, Wolf E. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Gut 2024; 73:1509-1528. [PMID: 38821858 PMCID: PMC11347226 DOI: 10.1136/gutjnl-2023-331519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.
Collapse
Affiliation(s)
- Markus Vogt
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Yiliam Cruz Garcia
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Katharina Schneider
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Filiz Kuybu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theresa Hauck
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bikash Adhikari
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anton Hamann
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yamila Rocca
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Lara Grysczyk
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benedikt Martin
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
| | - Georg Gasteiger
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dieter Saur
- Institute of Translational Cancer Research, TUM School of Medicine and Health, Munich, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| |
Collapse
|
20
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Lee MS, Jui J, Sahu A, Goldman D. Mycb and Mych stimulate Müller glial cell reprogramming and proliferation in the uninjured and injured zebrafish retina. Development 2024; 151:dev203062. [PMID: 38984586 PMCID: PMC11369687 DOI: 10.1242/dev.203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
In the injured zebrafish retina, Müller glial cells (MG) reprogram to adopt retinal stem cell properties and regenerate damaged neurons. The strongest zebrafish reprogramming factors might be good candidates for stimulating a similar regenerative response by mammalian MG. Myc proteins are potent reprogramming factors that can stimulate cellular plasticity in differentiated cells; however, their role in MG reprogramming and retina regeneration remains poorly explored. Here, we report that retinal injury stimulates mycb and mych expression and that, although both Mycb and Mych stimulate MG reprogramming and proliferation, only Mych enhances retinal neuron apoptosis. RNA-sequencing analysis of wild-type, mychmut and mycbmut fish revealed that Mycb and Mych regulate ∼40% and ∼16%, respectively, of the genes contributing to the regeneration-associated transcriptome of MG. Of these genes, those that are induced are biased towards regulation of ribosome biogenesis, protein synthesis, DNA synthesis, and cell division, which are the top cellular processes affected by retinal injury, suggesting that Mycb and Mych are potent MG reprogramming factors. Consistent with this, forced expression of either of these proteins is sufficient to stimulate MG proliferation in the uninjured retina.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Jui
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aresh Sahu
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Bailey JK, Ma D, Clegg DO. Initial Characterization of WDR5B Reveals a Role in the Proliferation of Retinal Pigment Epithelial Cells. Cells 2024; 13:1189. [PMID: 39056772 PMCID: PMC11275010 DOI: 10.3390/cells13141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.
Collapse
Affiliation(s)
- Jeffrey K. Bailey
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Dennis O. Clegg
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
23
|
Wang H, Zhou Y, Lu L, Cen J, Wu Z, Yang B, Zhu C, Cao J, Yu Y, Chen W. Identification of 5-Thiocyanatothiazol-2-amines Disrupting WDR5-MYC Protein-Protein Interactions. ACS Med Chem Lett 2024; 15:1143-1150. [PMID: 39015274 PMCID: PMC11247650 DOI: 10.1021/acsmedchemlett.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
MYC amplification is frequently observed in approximately 50% of human cancers, rendering it a highly desired anticancer target. Given the challenge of direct pharmacological inhibiting of MYC, impairing the interaction of MYC and its key cofactor WDR5 has been proposed as a promising strategy for MYC-driven cancer treatment. Herein, we report the discovery of 5-thiocyanatothiazol-2-amines that disrupt the WDR5-MYC interaction. Hit fragments were initially identified in a fluorescence polarization (FP)-based screening of an in-house library, and structural-activity relationship exploration resulted in the lead compounds 4m and 4o with potent inhibitory activities on WDR5-MYC interaction (K i = 2.4 μM for 4m; K i = 1.0 μM for 4o). These compounds were further validated via differential scanning fluorimetry (DSF) and coimmunoprecipitation (Co-IP). Moreover, 4m and 4o exhibited good cellular activities with the IC50 values at the micromolar level (IC50 = 0.71-7.40 μM) against multiple MYC-driven cancer cell lines. Our findings afforded a potential small molecule blocking the WDR5-MYC interaction.
Collapse
Affiliation(s)
- Haiyang Wang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihui Zhou
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Department
of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Lu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Cen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenying Wu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
| | - Chengliang Zhu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Drug Safety Evaluation and Research of ZJU, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou City 310058, China
| | - Ji Cao
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Yongping Yu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- School
of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Wenteng Chen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
24
|
Qin Y, Dong X, Lu M, Jing L, Chen Q, Guan F, Xiang Z, Huang J, Yang C, He X, Qu J, Yang Z. PARP1 interacts with WDR5 to enhance target gene recognition and facilitate tumorigenesis. Cancer Lett 2024; 593:216952. [PMID: 38750719 DOI: 10.1016/j.canlet.2024.216952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.
Collapse
Affiliation(s)
- Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Guan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengkai Xiang
- Department of Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Yang Y, Xu L, Zhang S, Yao L, Ding Y, Li W, Chen X. Structural studies of WDR5 in complex with MBD3C WIN motif reveal a unique binding mode. J Biol Chem 2024; 300:107468. [PMID: 38876301 PMCID: PMC11261779 DOI: 10.1016/j.jbc.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex plays a pivotal role in chromatin regulation and transcriptional repression. In mice, methyl-CpG binding domain 3 isoform C (MBD3C) interacts specifically with the histone H3 binding protein WD repeat-containing protein 5 (WDR5) and forms the WDR5-MBD3C/Norde complex. Despite the functional significance of this interaction on embryonic stem cell gene regulation, the molecular mechanism underlying MBD3C recognition by WDR5 remains elusive. Here, we determined the crystal structure of WDR5 in complex with the peptide (residues 40-51) derived from the MBD3C protein at a resolution of 1.9 Å. Structural analysis revealed that MBD3C utilizes a unique binding mode to interact with WDR5, wherein MBD3C Arg43 and Phe47 are involved in recognizing the WDR5-interacting (WIN) site and Tyr191-related B site on the small surface of WDR5, respectively. Notably, the binding induces a ∼91° rotation of WDR5 Tyr191, generating the hydrophobic B site. Furthermore, mutation experiments combined with isothermal titration calorimetry (ITC) assays confirmed the importance of both Arg43 and Phe47 in mediating WDR5 binding affinity. By determining structures of various peptides bound to WDR5, we demonstrated that the WDR5 WIN site and B site can be concurrently recognized by WIN motif peptides containing ''Arg-Cies/Ser-Arg-Val-Phe'' consensus sequence. Overall, this study reveals the structural basis for the formation of the WDR5-MBD3C subcomplex and provides new insights into the recognition mode of WDR5 for the WIN motif. Moreover, these findings shed light on structural-based designs of WDR5-targeted anti-cancer small molecule inhibitors or peptide-mimic drugs.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
| | - Li Xu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Liangrui Yao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuqing Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
26
|
Qian Z, Liang J, Huang R, Song W, Ying J, Bi X, Zhao J, Shi Z, Liu W, Liu J, Li Z, Zhou J, Huang Z, Zhang Y, Zhao D, Wu J, Wang L, Chen X, Mao R, Zhou Y, Guo L, Hu H, Ge D, Li X, Luo Z, Yao J, Li T, Chen Q, Wang B, Wei Z, Chen K, Qu C, Cai J, Jiao Y, Bao L, Zhao H. HBV integrations reshaping genomic structures promote hepatocellular carcinoma. Gut 2024; 73:1169-1182. [PMID: 38395437 PMCID: PMC11187386 DOI: 10.1136/gutjnl-2023-330414] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.
Collapse
Affiliation(s)
- Zhaoyang Qian
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Mao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchi Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dazhuang Ge
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tengyan Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhewen Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Chen
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Bao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Tinsley E, Bredin P, Toomey S, Hennessy BT, Furney SJ. KMT2C and KMT2D aberrations in breast cancer. Trends Cancer 2024; 10:519-530. [PMID: 38453563 DOI: 10.1016/j.trecan.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
KMT2C and KMT2D are histone lysine methyltransferases responsible for the monomethylation of histone 3 lysine 4 (H3K4) residues at gene enhancer sites. KMT2C/D are the most frequently mutated histone methyltransferases (HMTs) in breast cancer, occurring at frequencies of 10-20% collectively. Frequent damaging and truncating somatic mutations indicate a tumour-suppressive role of KMT2C/D in breast oncogenesis. Recent studies using cell lines and mouse models to replicate KMT2C/D loss show that these genes contribute to oestrogen receptor (ER)-driven transcription in ER+ breast cancers through the priming of gene enhancer regions. This review provides an overview of the functions of KMT2C/D and outlines the recent clinical and experimental evidence of the roles of KMT2C and KMT2D in breast cancer development.
Collapse
Affiliation(s)
- Emily Tinsley
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Philip Bredin
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland.
| | - Simon J Furney
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
28
|
Oliva-Vilarnau N, Beusch CM, Sabatier P, Sakaraki E, Tjaden A, Graetz L, Büttner FA, Dorotea D, Nguyen M, Bergqvist F, Sundström Y, Müller S, Zubarev RA, Schulte G, Tredup C, Gramignoli R, Tietge UJ, Lauschke VM. Wnt/β-catenin and NFκB signaling synergize to trigger growth factor-free regeneration of adult primary human hepatocytes. Hepatology 2024; 79:1337-1351. [PMID: 37870288 PMCID: PMC11095891 DOI: 10.1097/hep.0000000000000648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND AIMS The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/β-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS Our results showed that, unlike in rodents, activation of Wnt/β-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFβ inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/β-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/β-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS This study revealed a network of NFκB, TGFβ, and Wnt/β-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christian M. Beusch
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Sakaraki
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Lukas Graetz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Florian A. Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Debra Dorotea
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - My Nguyen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Department of Medicine, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomics Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Sundström
- Department of Medicine, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomics Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Tredup
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnosis Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Uwe J.F. Tietge
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Pai CP, Wang H, Seachrist DD, Agarwal N, Adams JA, Liu Z, Keri RA, Cao K, Schiemann WP, Kao HY. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. Cell Death Differ 2024; 31:768-778. [PMID: 38627584 PMCID: PMC11164886 DOI: 10.1038/s41418-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/30/2024] Open
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
- Chun-Peng Pai
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neel Agarwal
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua A Adams
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zhenghao Liu
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kaixiang Cao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - William P Schiemann
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hung-Ying Kao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
30
|
Huang X, Zhang C, Shang X, Chen Y, Xiao Q, Wei Z, Wang G, Zhen X, Xu G, Min J, Shen S, Liu Y. The NTE domain of PTENα/β promotes cancer progression by interacting with WDR5 via its SSSRRSS motif. Cell Death Dis 2024; 15:335. [PMID: 38744853 PMCID: PMC11094138 DOI: 10.1038/s41419-024-06714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
PTENα/β, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/β to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/β associated cancers. These findings not only shed light on the important role of the PTENα/β-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200127, Shanghai, China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Zhengguo Wei
- School of Biology and Basic Medical Science, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Shaoming Shen
- Institute of Aging & Tissue Regeneration, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200127, Shanghai, China.
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
32
|
Zhao W, Ouyang C, Huang C, Zhang J, Xiao Q, Zhang F, Wang H, Lin F, Wang J, Wang Z, Jiang B, Li Q. ELP3 stabilizes c-Myc to promote tumorigenesis. J Mol Cell Biol 2024; 15:mjad059. [PMID: 37771073 PMCID: PMC11054291 DOI: 10.1093/jmcb/mjad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
ELP3, the catalytic subunit of the Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanistically, ELP3 competes with the E3-ligase FBXW7β for c-Myc binding, resulting in the inhibition of FBXW7β-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3 knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by the reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were found overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for treating c-Myc-driven carcinomas.
Collapse
Affiliation(s)
- Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
33
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
34
|
Shen L, Fang J, Liu L, Yang F, Jenkins JL, Kutchukian PS, Wang H. Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery. J Cheminform 2024; 16:33. [PMID: 38515171 PMCID: PMC10958880 DOI: 10.1186/s13321-024-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, followed by filters for chemical-physical properties and drug-likeness, structure-activity relationship analysis, and clustering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimentally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discovery for hit identification.
Collapse
Affiliation(s)
- Lingling Shen
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| | - Jian Fang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Lulu Liu
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Fei Yang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | | | - He Wang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
El Baba R, Herbein G. EZH2-Myc Hallmark in Oncovirus/Cytomegalovirus Infections and Cytomegalovirus' Resemblance to Oncoviruses. Cells 2024; 13:541. [PMID: 38534385 PMCID: PMC10970056 DOI: 10.3390/cells13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
37
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
38
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN drives oncogenesis by cooperating with the histone methyltransferase G9a and the WDR5 adaptor to orchestrate global gene transcription. PLoS Biol 2024; 22:e3002240. [PMID: 38547242 PMCID: PMC11003700 DOI: 10.1371/journal.pbio.3002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/09/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Lama D, Vosselman T, Sahin C, Liaño-Pons J, Cerrato CP, Nilsson L, Teilum K, Lane DP, Landreh M, Arsenian Henriksson M. A druggable conformational switch in the c-MYC transactivation domain. Nat Commun 2024; 15:1865. [PMID: 38424045 PMCID: PMC10904854 DOI: 10.1038/s41467-024-45826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein. Using probe-based Molecular Dynamics (MD) simulations and machine learning, we identify a conformational switch in the c-MYC amino-terminal transactivation domain (termed coreMYC) that cycles between a closed, inactive, and an open, active conformation. Using the polyphenol epigallocatechin gallate (EGCG) to modulate the conformational landscape of coreMYC, we show through biophysical and cellular assays that the induction of a closed conformation impedes its interactions with the transformation/transcription domain-associated protein (TRRAP) and the TATA-box binding protein (TBP) which are essential for the transcriptional and oncogenic activities of c-MYC. Together, these findings provide insights into structure-activity relationships of c-MYC, which open avenues towards the development of shape-shifting compounds to target c-MYC as well as other disordered transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Carmine P Cerrato
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14813, Huddinge, Sweden
| | - Kaare Teilum
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Department of Cell- and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-221 00, Lund, Sweden.
| |
Collapse
|
40
|
Chang JY, Neugebauer C, Mues Genannt Koers A, 't Hart P. Small molecule WDR5 inhibitors down-regulate lncRNA expression. RSC Med Chem 2024; 15:636-640. [PMID: 38389889 PMCID: PMC10880924 DOI: 10.1039/d3md00605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
WD repeat domain 5 (WDR5) plays an important role as a scaffold protein in both protein-protein and RNA-protein complexes involved in epigenetic gene regulation. In particular, some of these lncRNAs were reported to regulate the expression of genes in cis as well as themselves through binding WDR5. In this report, we investigate the two known binding sites of WDR5 in relation to lncRNA binding and expression. The WBM binding site mediates both protein-protein and lncRNA-protein interactions while the WIN site, which is on the opposite side of the protein, is only known to mediate protein-protein interactions. To dissect the function of different binding sites on WDR5, we characterized them with selective peptide ligands using fluorescence polarization and used these to demonstrate the selectivity of small molecule inhibitors of these two major binding sites. RNA immunoprecipitation experiments were performed to show that lncRNA-WDR5 complex formation could be interrupted using a WBM site inhibitor. Finally, we demonstrated that WDR5 regulated lncRNAs are down regulated with different sensitivity toward the corresponding inhibitors, demonstrating the potential of targeting lncRNA-protein interactions to reduce oncogenic lncRNA expression.
Collapse
Affiliation(s)
- Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Cora Neugebauer
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Anne Mues Genannt Koers
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
41
|
Nagar A, Dubey A, Sharma A, Singh M. Exploring promising natural compounds for breast cancer treatment: in silico molecular docking targeting WDR5-MYC protein interaction. J Biomol Struct Dyn 2024:1-15. [PMID: 38356140 DOI: 10.1080/07391102.2024.2317975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.
Collapse
Affiliation(s)
- Amka Nagar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| |
Collapse
|
42
|
Venkatraman S, Balasubramanian B, Thuwajit C, Meller J, Tohtong R, Chutipongtanate S. Targeting MYC at the intersection between cancer metabolism and oncoimmunology. Front Immunol 2024; 15:1324045. [PMID: 38390324 PMCID: PMC10881682 DOI: 10.3389/fimmu.2024.1324045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
MYC activation is a known hallmark of cancer as it governs the gene targets involved in various facets of cancer progression. Of interest, MYC governs oncometabolism through the interactions with its partners and cofactors, as well as cancer immunity via its gene targets. Recent investigations have taken interest in characterizing these interactions through multi-Omic approaches, to better understand the vastness of the MYC network. Of the several gene targets of MYC involved in either oncometabolism or oncoimmunology, few of them overlap in function. Prominent interactions have been observed with MYC and HIF-1α, in promoting glucose and glutamine metabolism and activation of antigen presentation on regulatory T cells, and its subsequent metabolic reprogramming. This review explores existing knowledge of the role of MYC in oncometabolism and oncoimmunology. It also unravels how MYC governs transcription and influences cellular metabolism to facilitate the induction of pro- or anti-tumoral immunity. Moreover, considering the significant roles MYC holds in cancer development, the present study discusses effective direct or indirect therapeutic strategies to combat MYC-driven cancer progression.
Collapse
Affiliation(s)
- Simran Venkatraman
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Brinda Balasubramanian
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaroslaw Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Milk, microbiome, Immunity and Lactation research for Child Health (MILCH) and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
43
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
44
|
Deutzmann A, Sullivan DK, Dhanasekaran R, Li W, Chen X, Tong L, Mahauad-Fernandez WD, Bell J, Mosley A, Koehler AN, Li Y, Felsher DW. Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma. Nat Commun 2024; 15:963. [PMID: 38302473 PMCID: PMC10834515 DOI: 10.1038/s41467-024-45128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.
Collapse
Affiliation(s)
- Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Delaney K Sullivan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Renumathy Dhanasekaran
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Division of Gastroenterology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20012, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20012, USA
| | - Xinyu Chen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ling Tong
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - John Bell
- Stanford Genome Technology Center, Stanford University, Stanford, CA, 94305, USA
| | - Adriane Mosley
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yulin Li
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Institute for Academic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX, 77030, USA.
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
45
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Hofstetter J, Ogunleye A, Kutschke A, Buchholz LM, Wolf E, Raabe T, Gallant P. Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila. Life Sci Alliance 2024; 7:e202302130. [PMID: 37935464 PMCID: PMC10629571 DOI: 10.26508/lsa.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
Collapse
Affiliation(s)
- Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayoola Ogunleye
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - André Kutschke
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lisa Marie Buchholz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Molecular Genetics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Teuscher KB, Mills JJ, Tian J, Han C, Meyers KM, Sai J, South TM, Crow MM, Van Meveren M, Sensintaffar JL, Zhao B, Amporndanai K, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors. J Med Chem 2023; 66:16783-16806. [PMID: 38085679 DOI: 10.1021/acs.jmedchem.3c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232-0142, United States
| | | | | | | | | | | | | | | | | | | | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States
| |
Collapse
|
50
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|