1
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
2
|
Schilke BA, Ziegelhoffer T, Domanski P, Marszalek J, Tomiczek B, Craig EA. Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae. Cell Stress Chaperones 2024; 29:721-734. [PMID: 39426497 PMCID: PMC11565464 DOI: 10.1016/j.cstres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant-equimolar to ribosomes. Saccharomyces cerevisiae has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the S. cerevisiae lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation via its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆acl4 cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆acl4. Our results are consistent with a model in which Nacβ2's ribosome association per se or its precise positioning is necessary for productive recruitment of CCR4-Not via its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.
Collapse
Affiliation(s)
- Brenda A Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Przemyslaw Domanski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland; Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States.
| |
Collapse
|
3
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
4
|
Yeh MC, Hsu NH, Chu HY, Yang CH, Hsu PH, Chou CC, Shie JT, Lee WM, Ho MC, Lo KY. Dual protection by Bcp1 and Rkm1 ensures incorporation of uL14 into pre-60S ribosomal subunits. J Cell Biol 2024; 223:e202306117. [PMID: 39007857 PMCID: PMC11248248 DOI: 10.1083/jcb.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 07/16/2024] Open
Abstract
Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ning-Hsiang Hsu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hao-Yu Chu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Ting Shie
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Lee
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Mishra RK, Sharma P, Khaja FT, Uday AB, Hussain T. Cryo-EM structure of wheat ribosome reveals unique features of the plant ribosomes. Structure 2024; 32:562-574.e3. [PMID: 38458197 PMCID: PMC7616111 DOI: 10.1016/j.str.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Plants being sessile organisms exhibit unique features in ribosomes, which might aid in rapid gene expression and regulation in response to varying environmental conditions. Here, we present high-resolution structures of the 60S and 80S ribosomes from wheat, a monocot staple crop plant (Triticum aestivum). While plant ribosomes have unique plant-specific rRNA modification (Cm1847) in the peptide exit tunnel (PET), the zinc-finger motif in eL34 is absent, and uL4 is extended, making an exclusive interaction network. We note differences in the eL15-helix 11 (25S) interaction, eL6-ES7 assembly, and certain rRNA chemical modifications between monocot and dicot ribosomes. In eukaryotes, we observe highly conserved rRNA modification (Gm75) in 5.8S rRNA and a flipped base (G1506) in PET. These features are likely involved in sensing or stabilizing nascent chain. Finally, we discuss the importance of the universal conservation of three consecutive rRNA modifications in all ribosomes for their interaction with A-site aminoacyl-tRNA.
Collapse
Affiliation(s)
- Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Faisal Tarique Khaja
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Adwaith B Uday
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India.
| |
Collapse
|
6
|
Steiner A, Favre S, Mack M, Hausharter A, Pillet B, Hafner J, Mitterer V, Kressler D, Pertschy B, Zierler I. Dissecting the Nuclear Import of the Ribosomal Protein Rps2 (uS5). Biomolecules 2023; 13:1127. [PMID: 37509163 PMCID: PMC10377357 DOI: 10.3390/biom13071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The ribosome is assembled in a complex process mainly taking place in the nucleus. Consequently, newly synthesized ribosomal proteins have to travel from the cytoplasm into the nucleus, where they are incorporated into nascent ribosomal subunits. In this study, we set out to investigate the mechanism mediating nuclear import of the small subunit ribosomal protein Rps2. We demonstrate that an internal region in Rps2, ranging from amino acids 76 to 145, is sufficient to target a 3xyEGFP reporter to the nucleus. The importin-β Pse1 interacts with this Rps2 region and is involved in its import, with Rps2 residues arginine 95, arginine 97, and lysine 99 being important determinants for both Pse1 binding and nuclear localization. Moreover, our data reveal a second import mechanism involving the N-terminal region of Rps2, which depends on the presence of basic residues within amino acids 10 to 28. This Rps2 segment overlaps with the binding site of the dedicated chaperone Tsr4; however, the nuclear import of Rps2 via the internal as well as the N-terminal nuclear-targeting element does not depend on Tsr4. Taken together, our study has unveiled hitherto undescribed nuclear import signals, showcasing the versatility of the mechanisms coordinating the nuclear import of ribosomal proteins.
Collapse
Affiliation(s)
- Andreas Steiner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Maximilian Mack
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Annika Hausharter
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Valentin Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Ingrid Zierler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
7
|
Thye KL, Wan Abdullah WMAN, Ong-Abdullah J, Lamasudin DU, Wee CY, Mohd Yusoff MHY, Loh JY, Cheng WH, Lai KS. Calcium lignosulfonate modulates physiological and biochemical responses to enhance shoot multiplication in Vanilla planifolia Andrews. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:377-392. [PMID: 37033764 PMCID: PMC10073391 DOI: 10.1007/s12298-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01293-w.
Collapse
Affiliation(s)
- Kah-Lok Thye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wan Muhamad Asrul Nizam Wan Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor Malaysia
| | | | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
10
|
Hariharan N, Ghosh S, Palakodeti D. The story of rRNA expansion segments: Finding functionality amidst diversity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1732. [PMID: 35429135 DOI: 10.1002/wrna.1732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 01/31/2023]
Abstract
Expansion segments (ESs) are multinucleotide insertions present across phyla at specific conserved positions in eukaryotic rRNAs. ESs are generally absent in bacterial rRNAs with some exceptions, while the archaeal rRNAs have microexpansions at regions that coincide with those of eukaryotic ESs. Although there is an increasing prominence of ribosomes, especially the ribosomal proteins, in fine-tuning gene expression through translation regulation, the role of rRNA ESs is relatively underexplored. While rRNAs have been established as the major catalytic hub in ribosome function, the presence of ESs widens their scope as a species-specific regulatory hub of protein synthesis. In this comprehensive review, we have elaborately discussed the current understanding of the functional aspects of rRNA ESs of cytoplasmic eukaryotic ribosomes and discuss their past, present, and future. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Ribosome Structure/Function Translation > Regulation.
Collapse
Affiliation(s)
- Nivedita Hariharan
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-disciplinary Health Sciences and Technology, Bangalore, India
| | - Sumana Ghosh
- Manipal Academy of Higher Education, Manipal, India
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
11
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Herzog D, Jansen J, Mißun M, Diederichs K, Stengel F, Marx A. Chemical Proteomics of the Tumor Suppressor Fhit Covalently Bound to the Cofactor Ap 3A Elucidates Its Inhibitory Action on Translation. J Am Chem Soc 2022; 144:8613-8623. [PMID: 35522782 PMCID: PMC9121386 DOI: 10.1021/jacs.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.
Collapse
|
13
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
15
|
Oborská-Oplová M, Fischer U, Altvater M, Panse VG. Eukaryotic Ribosome assembly and Nucleocytoplasmic Transport. Methods Mol Biol 2022; 2533:99-126. [PMID: 35796985 PMCID: PMC9761919 DOI: 10.1007/978-1-0716-2501-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.
Collapse
Affiliation(s)
- Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
17
|
Wang X, Yue Z, Xu F, Wang S, Hu X, Dai J, Zhao G. Coevolution of ribosomal RNA expansion segment 7L and assembly factor Noc2p specializes the ribosome biogenesis pathway between Saccharomyces cerevisiae and Candida albicans. Nucleic Acids Res 2021; 49:4655-4667. [PMID: 33823547 PMCID: PMC8096215 DOI: 10.1093/nar/gkab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ribosomes of different species share an evolutionarily conserved core, exhibiting flexible shells formed partially by the addition of species-specific ribosomal RNAs (rRNAs) with largely unexplored functions. In this study, we showed that by swapping the Saccharomyces cerevisiae 25S rRNA genes with non-S. cerevisiae homologs, species-specific rRNA variations caused moderate to severe pre-rRNA processing defects. Specifically, rRNA substitution by the Candida albicans caused severe growth defects and deficient pre-rRNA processing. We observed that such defects could be attributed primarily to variations in expansion segment 7L (ES7L) and could be restored by an assembly factor Noc2p mutant (Noc2p-K384R). We showed that swapping ES7L attenuated the incorporation of Noc2p and other proteins (Erb1p, Rrp1p, Rpl6p and Rpl7p) into pre-ribosomes, and this effect could be compensated for by Noc2p-K384R. Furthermore, replacement of Noc2p with ortholog from C. albicans could also enhance the incorporation of Noc2p and the above proteins into pre-ribosomes and consequently restore normal growth. Taken together, our findings help to elucidate the roles played by the species-specific rRNA variations in ribosomal biogenesis and further provide evidence that coevolution of rRNA expansion segments and cognate assembly factors specialized the ribosome biogenesis pathway, providing further insights into the function and evolution of ribosome.
Collapse
Affiliation(s)
- Xiangxiang Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhiyong Yue
- School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
18
|
Landry-Voyer AM, Bergeron D, Yague-Sanz C, Baker B, Bachand F. PDCD2 functions as an evolutionarily conserved chaperone dedicated for the 40S ribosomal protein uS5 (RPS2). Nucleic Acids Res 2020; 48:12900-12916. [PMID: 33245768 PMCID: PMC7736825 DOI: 10.1093/nar/gkaa1108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carlo Yague-Sanz
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Breac Baker
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Francois Bachand
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
19
|
Structural insights into assembly of the ribosomal nascent polypeptide exit tunnel. Nat Commun 2020; 11:5111. [PMID: 33037216 PMCID: PMC7547690 DOI: 10.1038/s41467-020-18878-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022] Open
Abstract
The nascent polypeptide exit tunnel (NPET) is a major functional center of 60S ribosomal subunits. However, little is known about how the NPET is constructed during ribosome assembly. We utilized molecular genetics, biochemistry, and cryo-electron microscopy (cryo-EM) to investigate the functions of two NPET-associated proteins, ribosomal protein uL4 and assembly factor Nog1, in NPET assembly. Structures of mutant pre-ribosomes lacking the tunnel domain of uL4 reveal a misassembled NPET, including an aberrantly flexible ribosomal RNA helix 74, resulting in at least three different blocks in 60S assembly. Structures of pre-ribosomes lacking the C-terminal extension of Nog1 demonstrate that this extension scaffolds the tunnel domain of uL4 in the NPET to help maintain stability in the core of pre-60S subunits. Our data reveal that uL4 and Nog1 work together in the maturation of ribosomal RNA helix 74, which is required to ensure proper construction of the NPET and 60S ribosomal subunits. The nascent polypeptide exit tunnel (NPET) is a functional center of the large ribosomal subunit through which the nascent polypeptide chains travel from the peptidyltransferase center (PTC). Here the authors provide structural insight into NPET maturation and how it is linked to other aspects of ribosome biogenesis.
Collapse
|
20
|
Yu H, Li Q, Shen X, Zhang L, Liu J, Tan Q, Li Y, Lv B, Shang X. Transcriptomic Analysis of Two Lentinula edodes Genotypes With Different Cadmium Accumulation Ability. Front Microbiol 2020; 11:558104. [PMID: 33042065 PMCID: PMC7526509 DOI: 10.3389/fmicb.2020.558104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023] Open
Abstract
Lentinula edodes, also known as Xiang'gu, is commonly eaten in cultures around the world. However, L. edodes is particularly susceptible to enrichment with heavy metals, particularly cadmium (Cd), which is toxic to human health. Understanding the molecular mechanism and mining key genes involved in Cd enrichment will facilitate genetic modification of L. edodes strains. Two L. edodes genotypes, Le4625 (with higher Cd enrichment capability) and Le4606 (with lower Cd enrichment capability) were used in this study. The Cd concentrations in the mycelia of the tested genotypes differed significantly after Cd (0.1 mg/L) exposure; and the Cd content in Le4625 (1.390 ± 0.098 mg/kg) was approximately three-fold that in Le4606 (0.440 ± 0.038 mg/kg) after 7 h of Cd exposure. A total of 24,592 transcripts were assessed by RNA-Seq to explore variance in Cd accumulation. Firstly, differentially expressed genes (DEGs) were analyzed separately following Cd exposure. In comparison with Ld4625, Ld4606 showed a greater number of Cd-induced changes in transcription. In Ld4606, DEGs following Cd exposure were associated with transmembrane transport, glutathione transfer and cytochrome P450, indicating that these genes could be involved in Cd resistance in L. edodes. Next, Le4606 and Le4625 were exposed to Cd, after which DEGs were identified to explore genetic factors affecting Cd accumulation. After Cd exposure, DEGs between Le4606 and Le4625 encoded proteins involved in multiple biological pathways, including transporters on the membrane, cell wall modification, oxidative stress response, translation, degradation, and signaling pathways. Cadmium enrichment in cells may activate MAPK signaling and the anti-oxidative stress response, which can subsequently alter signal transduction and the intracellular oxidation/reduction balance. Furthermore, several possible candidate genes involved in the Cd accumulation were identified, including the major facilitator superfamily genes, heat shock proteins, and laccase 11, a multicopper oxidase. This comparison of the transcriptomes of two L. edodes strains with different capacities for Cd accumulation provides valuable insight into the cultivation of mushrooms with less Cd enrichment and also serves as a reference for the construction of engineered strains for environmental pollution control.
Collapse
Affiliation(s)
- Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Xiufen Shen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Jianyu Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Yu Li
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Beibei Lv
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| |
Collapse
|
21
|
Liang X, Zuo MQ, Zhang Y, Li N, Ma C, Dong MQ, Gao N. Structural snapshots of human pre-60S ribosomal particles before and after nuclear export. Nat Commun 2020; 11:3542. [PMID: 32669547 PMCID: PMC7363849 DOI: 10.1038/s41467-020-17237-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis is an elaborate and energetically expensive program that involve two hundred protein factors in eukaryotes. Nuclear export of pre-ribosomal particles is one central step which also serves as an internal structural checkpoint to ensure the proper completion of nuclear assembly events. Here we present four structures of human pre-60S particles isolated through a nuclear export factor NMD3, representing assembly stages immediately before and after nuclear export. These structures reveal locations of a dozen of human factors, including an uncharacterized factor TMA16 localized between the 5S RNA and the P0 stalk. Comparison of these structures shows a progressive maturation for the functional regions, such as peptidyl transferase centre and peptide exit tunnel, and illustrate a sequence of factor-assisted rRNA maturation events. These data facilitate our understanding of the global conservation of ribosome assembly in eukaryotes and species-specific features of human assembly factors.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Cryoelectron Microscopy
- Humans
- Models, Molecular
- RNA, Ribosomal, 5S/isolation & purification
- RNA, Ribosomal, 5S/metabolism
- RNA, Ribosomal, 5S/ultrastructure
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Ribosomal Proteins/isolation & purification
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
Collapse
Affiliation(s)
- Xiaomeng Liang
- State Key Laboratory of Membrane Biology, School of Life Science, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Mei-Qing Zuo
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
22
|
Emerging Roles of Gemin5: From snRNPs Assembly to Translation Control. Int J Mol Sci 2020; 21:ijms21113868. [PMID: 32485878 PMCID: PMC7311978 DOI: 10.3390/ijms21113868] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.
Collapse
|
23
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Takamatsu S, Ohashi Y, Onoue N, Tajima Y, Imamichi T, Yonezawa S, Morimoto K, Onouchi H, Yamashita Y, Naito S. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction. Nucleic Acids Res 2020; 48:1985-1999. [PMID: 31875230 PMCID: PMC7038982 DOI: 10.1093/nar/gkz1190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/12/2022] Open
Abstract
A number of regulatory nascent peptides have been shown to regulate gene expression by causing programmed ribosome stalling during translation. Nascent peptide emerges from the ribosome through the exit tunnel, and one-third of the way along which β-loop structures of ribosomal proteins uL4 and uL22 protrude into the tunnel to form the constriction region. Structural studies have shown interactions between nascent peptides and the exit tunnel components including the constriction region. In eukaryotes, however, there is a lack of genetic studies for the involvement of the constriction region in ribosome stalling. Here, we established transgenic Arabidopsis lines that carry mutations in the β-loop structure of uL4. Translation analyses using a cell-free translation system derived from the transgenic Arabidopsis carrying the mutant ribosome showed that the uL4 mutations reduced the ribosome stalling of four eukaryotic stalling systems, including those for which stalled structures have been solved. Our data, which showed differential effects of the uL4 mutations depending on the stalling systems, explained the spatial allocations of the nascent peptides at the constriction that were deduced by structural studies. Conversely, our data may predict allocation of the nascent peptide at the constriction of stalling systems for which structural studies are not done.
Collapse
Affiliation(s)
- Seidai Takamatsu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yubun Ohashi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Noriyuki Onoue
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoko Tajima
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomoya Imamichi
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shinya Yonezawa
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyoko Morimoto
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hitoshi Onouchi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Yamashita
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
25
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
26
|
Puf6 and Loc1 Are the Dedicated Chaperones of Ribosomal Protein Rpl43 in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20235941. [PMID: 31779129 PMCID: PMC6928942 DOI: 10.3390/ijms20235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomal proteins are highly expressed, and the quality of ribosomal proteins must be rigorously controlled to build up a functional ribosome. Rpl43, ribosomal protein large subunit 43, is located nearby the E-site of ribosomes. In our previous study, we found that Puf6, Loc1, and Rpl43 form a trimeric complex in Saccharomyces cerevisiae. Rpl43 protein levels are under-accumulated in the absence of PUF6 or LOC1. However, why the loss of Puf6 or Loc1 decreased the protein levels of Rpl43 remained unclear. In the present study, we further dissected the connections among these three proteins and found that the processing defects of pre-ribosomal RNA in puf6Δ and loc1Δ are similar to those of the mutant with depletion of Rpl43. The stability of newly synthesized Rpl43 protein decreased slightly in puf6Δ and significantly in loc1Δ. We also found that Puf6 and Loc1 could interact with nascent Rpl43 co-translationally via the N-terminus of Rpl43. While the association and dissociation of Rpl43 with karyopherins did not depend on Puf6 and Loc1, Puf6 and Loc1 interacted with nascent Rpl43 in collaboration. While the N-terminus of Puf6 contained nuclear localization signals for transport, the PUF (Pumilio) domain was essential to interaction with Loc1, Rpl43, and 60S subunits. The C-terminus of Loc1 is more important for interaction with Puf6 and Rpl43. In this study, we found that Puf6 and Loc1 are the dedicated chaperones of ribosomal protein Rpl43 and also analyzed the potential interaction domains among the three proteins. Correct formation of the Puf6, Loc1, and Rpl43 ternary complex is required to properly proceed to the next step in 60S biogenesis.
Collapse
|
27
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
28
|
Tsr4 Is a Cytoplasmic Chaperone for the Ribosomal Protein Rps2 in Saccharomyces cerevisiae. Mol Cell Biol 2019; 39:MCB.00094-19. [PMID: 31182640 DOI: 10.1128/mcb.00094-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.
Collapse
|
29
|
Rössler I, Embacher J, Pillet B, Murat G, Liesinger L, Hafner J, Unterluggauer JJ, Birner-Gruenberger R, Kressler D, Pertschy B. Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 2019; 47:6984-7002. [PMID: 31062022 PMCID: PMC6648895 DOI: 10.1093/nar/gkz317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.
Collapse
Affiliation(s)
- Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Julia Embacher
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Julia Judith Unterluggauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
30
|
Ahmed YL, Thoms M, Mitterer V, Sinning I, Hurt E. Crystal structures of Rea1-MIDAS bound to its ribosome assembly factor ligands resembling integrin-ligand-type complexes. Nat Commun 2019; 10:3050. [PMID: 31296859 PMCID: PMC6624252 DOI: 10.1038/s41467-019-10922-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023] Open
Abstract
The Rea1 AAA+-ATPase dislodges assembly factors from pre-60S ribosomes upon ATP hydrolysis, thereby driving ribosome biogenesis. Here, we present crystal structures of Rea1-MIDAS, the conserved domain at the tip of the flexible Rea1 tail, alone and in complex with its substrate ligands, the UBL domains of Rsa4 or Ytm1. These complexes have structural similarity to integrin α-subunit domains when bound to extracellular matrix ligands, which for integrin biology is a key determinant for force-bearing cell-cell adhesion. However, the presence of additional motifs equips Rea1-MIDAS for its tasks in ribosome maturation. One loop insert cofunctions as an NLS and to activate the mechanochemical Rea1 cycle, whereas an additional β-hairpin provides an anchor to hold the ligand UBL domains in place. Our data show the versatility of the MIDAS fold for mechanical force transmission in processes as varied as integrin-mediated cell adhesion and mechanochemical removal of assembly factors from pre-ribosomes.
Collapse
Affiliation(s)
| | - Matthias Thoms
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.,Gene Center, University of Munich, D-81377, Munich, Germany
| | - Valentin Mitterer
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Translation elongation factor eEF1Bα is identified as a novel prognostic marker of gastric cancer. Int J Biol Macromol 2018; 126:345-351. [PMID: 30572058 DOI: 10.1016/j.ijbiomac.2018.12.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/15/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is a common cancer in humans. Although overexpression of eukaryotic translation elongation factor eEF1Bα is associated with cancer onset and progression, little is known about its expression in GC and its prognostic significance. Here we used immunohistochemistry to analyze eEF1Bα expression in the following tissue types: GC, normal gastric, chronic gastritis, intestinal metaplasia, and intraepithelial neoplasia. These data were correlated with patients' clinical information. eEF1Bα was expressed at levels approximately three times higher in GC tissues compared with normal gastric tissues. High expression of eEF1Bα was significantly associated with histological type, TNM stage, tumor size, and distant metastases. GC patients with high eEF1Bα expression experienced significantly shorter overall survival. Bioinformatics analysis indicated that eEF1Bα may be associated with protein synthesis, energy metabolism, cell cycle, and the p53 signaling pathway. We identified the products of RPL10A and RPS13 as critical components of a network comprising eEF1Bα. We concluded that high eEF1Bα expression is associated with poor overall survival and may serve as an independent prognostic factor of GC. Further, we proposed that eEF1Bα likely mediates the development of GC through the cell cycle and p53 signaling pathway. Together, our findings suggest that eEF1Bα could be an effective prognostic biomarker for GC.
Collapse
|
32
|
Dionne KL, Bergeron D, Landry-Voyer AM, Bachand F. The 40S ribosomal protein uS5 (RPS2) assembles into an extraribosomal complex with human ZNF277 that competes with the PRMT3-uS5 interaction. J Biol Chem 2018; 294:1944-1955. [PMID: 30530495 DOI: 10.1074/jbc.ra118.004928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ribosomal (r)-proteins are generally viewed as ubiquitous, constitutive proteins that simply function to maintain ribosome integrity. However, findings in the past decade have led to the idea that r-proteins have evolved specialized functions beyond the ribosome. For example, the 40S ribosomal protein uS5 (RPS2) is known to form an extraribosomal complex with the protein arginine methyltransferase PRMT3 that is conserved from fission yeast to humans. However, the full scope of uS5's extraribosomal functions, including whether uS5 interacts with any other proteins, is not known. In this study, we identify the conserved zinc finger protein 277 (ZNF277) as a new uS5-associated protein by using quantitative proteomics approaches in human cells. As previously shown for PRMT3, we found that ZNF277 uses a C2H2-type zinc finger domain to recognize uS5. Analysis of protein-protein interactions in living cells indicated that the ZNF277-uS5 complex is found in the cytoplasm and the nucleolus. Furthermore, we show that ZNF277 and PRMT3 compete for uS5 binding, because overexpression of PRMT3 inhibited the formation of the ZNF277-uS5 complex, whereas depletion of cellular ZNF277 resulted in increased levels of uS5-PRMT3. Notably, our results reveal that ZNF277 recognizes nascent uS5 in the course of mRNA translation, suggesting cotranslational assembly of the ZNF277-uS5 complex. Our findings thus unveil an intricate network of evolutionarily conserved protein-protein interactions involving extraribosomal uS5, suggesting a key role for uS5 beyond the ribosome.
Collapse
Affiliation(s)
- Kiersten L Dionne
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Danny Bergeron
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Anne-Marie Landry-Voyer
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François Bachand
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
33
|
Schütz S, Michel E, Damberger FF, Oplová M, Peña C, Leitner A, Aebersold R, Allain FHT, Panse VG. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nat Commun 2018; 9:3669. [PMID: 30201955 PMCID: PMC6131548 DOI: 10.1038/s41467-018-06160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/22/2018] [Indexed: 01/16/2023] Open
Abstract
Disordered extensions at the termini and short internal insertions distinguish eukaryotic ribosomal proteins (r-proteins) from their anucleated archaeal counterparts. Here, we report an NMR structure of such a eukaryotic-specific segment (ESS) in the r-protein eS26 in complex with the escortin Tsr2. The structure reveals how ESS attracts Tsr2 specifically to importin:eS26 complexes entering the nucleus in order to trigger non-canonical RanGTP-independent disassembly. Tsr2 then sequesters the released eS26 and prevents rebinding to the importin, providing an alternative allosteric mechanism to terminate the process of nuclear import. Notably, a Diamond–Blackfan anemia-associated Tsr2 mutant protein is impaired in binding to ESS, unveiling a critical role for this interaction in human hematopoiesis. We propose that eS26-ESS and Tsr2 are components of a nuclear sorting system that co-evolved with the emergence of the nucleocytoplasmic barrier and transport carriers. Ribosomal proteins are transported to the nucleus with the help of importins, from which they are released prior to incorporation into the nascent ribosome. Here the authors report the NMR structure of the ribosomal protein eS26 in complex with the escortin Tsr2 and shed light on the mechanism of eS26 release from importin.
Collapse
Affiliation(s)
- Sabina Schütz
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Erich Michel
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Fred F Damberger
- Institute of Molecular Biology & Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Michaela Oplová
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Cohue Peña
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, 8057, Switzerland
| | - Frederic H-T Allain
- Institute of Molecular Biology & Biophysics, ETH Zurich, 8093, Zurich, Switzerland.
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland.
| |
Collapse
|
34
|
Kojima K, Tamura J, Chiba H, Fukada K, Tsukaya H, Horiguchi G. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial-Abaxial Patterning in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 8:2240. [PMID: 29375609 PMCID: PMC5767255 DOI: 10.3389/fpls.2017.02240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Leaf abaxial-adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2). Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2) which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1), has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial-abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2 triple mutants although they showed severe growth defects. These results suggest that the leaf abaxialization phenotype induced by ribosome-related mutations is not merely the result of a general growth defect and that there may be a sensitive process in the ribosome biogenesis pathway that affects adaxial-abaxial patterning when compromised by a mutation.
Collapse
Affiliation(s)
- Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Junya Tamura
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroto Chiba
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kanae Fukada
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
35
|
Wang B, Duan X, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. The association of ribosomal protein L18 (RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication. Virus Res 2017; 245:69-79. [PMID: 29273342 DOI: 10.1016/j.virusres.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). IBDV VP3 is a multifunctional protein playing a key role in virus assembly and pathogenesis. To investigate the role of VP3 in pathogenesis, we transfected DF-1 cells with pRK5-FLAG-vp3 and found that VP3 enhanced type I interferon expression and suppressed IBDV replication. Furthermore we found that VP3 interacted with chicken Ribosomal Protein L18 (chRPL18) in host cells and knockdown of chRPL18 by RNAi significantly promoted Type I interferon expression and inhibited IBDV replication. Moreover, our data show that chicken double-stranded RNA-activated protein kinase (chPKR) interacted with both VP3 and chRPL18. Thus chRPL18 in association with VP3 and chPKR affects viral replication.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 2017; 24:689-699. [PMID: 28880863 DOI: 10.1038/nsmb.3454] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.
Collapse
|
37
|
Sá-Moura B, Kornprobst M, Kharde S, Ahmed YL, Stier G, Kunze R, Sinning I, Hurt E. Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PLoS One 2017; 12:e0183272. [PMID: 28813493 PMCID: PMC5558966 DOI: 10.1371/journal.pone.0183272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, ribosome assembly is a highly complex process that involves more than 200 assembly factors that ensure the folding, modification and processing of the different rRNA species as well as the timely association of ribosomal proteins. One of these factors, Mpp10 associates with Imp3 and Imp4 to form a complex that is essential for the normal production of the 18S rRNA. Here we report the crystal structure of a complex between Imp4 and a short helical element of Mpp10 to a resolution of 1.88 Å. Furthermore, we extend the interaction network of Mpp10 and characterize two novel interactions. Mpp10 is able to bind the ribosome biogenesis factor Utp3/Sas10 through two conserved motifs in its N-terminal region. In addition, Mpp10 interacts with the ribosomal protein S5/uS7 using a short stretch within an acidic loop region. Thus, our findings reveal that Mpp10 provides a platform for the simultaneous interaction with multiple proteins in the 90S pre-ribosome.
Collapse
Affiliation(s)
- Bebiana Sá-Moura
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Markus Kornprobst
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Satyavati Kharde
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Gunter Stier
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Ruth Kunze
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Li Z, Guo Q, Zheng L, Ji Y, Xie YT, Lai DH, Lun ZR, Suo X, Gao N. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii. Cell Res 2017; 27:1275-1288. [PMID: 28809395 DOI: 10.1038/cr.2017.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
As an indispensable molecular machine universal in all living organisms, the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors. High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes. With cryo-electron microscopy technique, we have determined structures of the cytosolic ribosomes from two human parasites, Trichomonas vaginalis and Toxoplasma gondii, at resolution of 3.2-3.4 Å. Although the ribosomal proteins from both pathogens are typical members of eukaryotic families, with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments, the sizes of their rRNAs are sharply different. Very interestingly, rRNAs of T. vaginalis are in size comparable to prokaryotic counterparts, with nearly all the eukaryote-specific rRNA expansion segments missing. These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs, and may aid in design of novel translation inhibitors.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Guo
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lvqin Zheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi-Ting Xie
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J 2017; 474:195-214. [PMID: 28062837 DOI: 10.1042/bcj20160516] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
Collapse
|
40
|
Warda AS, Freytag B, Haag S, Sloan KE, Görlich D, Bohnsack MT. Effects of the Bowen-Conradi syndrome mutation in EMG1 on its nuclear import, stability and nucleolar recruitment. Hum Mol Genet 2017; 25:5353-5364. [PMID: 27798105 PMCID: PMC5418833 DOI: 10.1093/hmg/ddw351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Bowen-Conradi syndrome (BCS) is a severe genetic disorder that is characterised by various developmental abnormalities, bone marrow failure and early infant death. This disease is caused by a single mutation leading to the aspartate 86 to glycine (D86G) exchange in the essential nucleolar RNA methyltransferase EMG1. EMG1 is required for the synthesis of the small ribosomal subunit and is involved in modification of the 18S ribosomal RNA. Here, we identify the pre-ribosomal factors NOP14, NOC4L and UTP14A as members of a nucleolar subcomplex that contains EMG1 and is required for its recruitment to nucleoli. The BCS mutation in EMG1 leads to reduced nucleolar localisation, accumulation of EMG1D86G in nuclear foci and its proteasome-dependent degradation. We further show that EMG1 can be imported into the nucleus by the importins (Imp) Impα/β or Impβ/7. Interestingly, in addition to its role in nuclear import, binding of the Impβ/7 heterodimer can prevent unspecific aggregation of both EMG1 and EMG1D86G on RNAs in vitro, indicating that the importins act as chaperones by binding to basic regions of the RNA methyltransferase. Our findings further indicate that in BCS, nuclear disassembly of the import complex and release of EMG1D86G lead to its nuclear aggregation and degradation, resulting in the reduced nucleolar recruitment of the RNA methyltransferase and defects in the biogenesis of the small ribosomal subunit.
Collapse
Affiliation(s)
- Ahmed S Warda
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Bernard Freytag
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sara Haag
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
41
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
42
|
Pertschy B. When a ribosomal protein grows up - the ribosome assembly path of Rps3. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:140-143. [PMID: 28685140 PMCID: PMC5425276 DOI: 10.15698/mic2017.05.571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
The biogenesis of ribosomes is a central process in all dividing cells. Eukaryotic ribosomes are composed of a large 60S and a small 40S subunit, each comprising a complex assembly of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins). The synthesis of these constituents is spatially separated, with r-proteins being produced by translation in the cytoplasm, while rRNA is generated by transcription in the nucleus. Hence, the arrangement of r-proteins and rRNA into large ribonucleoprotein complexes requires dedicated mechanisms ensuring their encounter in the same compartment. To this end, r-proteins need to be safely delivered to the nucleus where they assemble with the rRNA. Beyond these initial challenges, the synthesis of ribosomes does not merely comprise the joining of r-proteins with rRNA, but occurs in a complex assembly line involving multiple maturation steps, including the processing and folding of rRNA. R-proteins usually have composite rRNA binding sites, with several different rRNA helices contributing to the full interaction. Not all of these interaction sites may already be accessible at the point when an r-protein is incorporated, necessitating that some of the r-protein-rRNA contacts are formed at later maturation stages. In our two recent studies, we investigated the ribosome assembly path of r-proteins in the yeast Saccharomyces cerevisiae using the small subunit r-protein S3 (Rps3) as a model. Our studies revealed intricate mechanisms to protect the protein, transport it into the nucleus, integrate it into pre-ribosomal precursor particles and promote its final stable association with 40S subunits.
Collapse
Affiliation(s)
- Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
43
|
Molecular basis for protection of ribosomal protein L4 from cellular degradation. Nat Commun 2017; 8:14354. [PMID: 28148929 PMCID: PMC5296656 DOI: 10.1038/ncomms14354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires the nuclear import of ∼80 nascent ribosomal proteins and the elimination of excess amounts by the cellular degradation machinery. Assembly chaperones recognize nascent unassembled ribosomal proteins and transport them together with karyopherins to their nuclear destination. We report the crystal structure of ribosomal protein L4 (RpL4) bound to its dedicated assembly chaperone of L4 (Acl4), revealing extensive interactions sequestering 70 exposed residues of the extended RpL4 loop. The observed molecular recognition fundamentally differs from canonical promiscuous chaperone–substrate interactions. We demonstrate that the eukaryote-specific RpL4 extension harbours overlapping binding sites for Acl4 and the nuclear transport factor Kap104, facilitating its continuous protection from the cellular degradation machinery. Thus, Acl4 serves a dual function to facilitate nuclear import and simultaneously protect unassembled RpL4 from the cellular degradation machinery. Acl4 is a dedicated assembly chaperone for ribosomal protein RpL4 that recognizes RpL4 in the cytoplasm to facilitate its nuclear import. Here the authors reveal the mechanism whereby Acl4 recognizes RpL4 and functions to protect it from Tom1-mediated degradation until RpL4 incorporation into the maturing 60S pre-ribosomal subunit.
Collapse
|
44
|
Baßler J, Ahmed YL, Kallas M, Kornprobst M, Calviño FR, Gnädig M, Thoms M, Stier G, Ismail S, Kharde S, Castillo N, Griesel S, Bastuck S, Bradatsch B, Thomson E, Flemming D, Sinning I, Hurt E. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Sci 2017; 26:327-342. [PMID: 27863450 DOI: 10.1002/pro.3085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022]
Abstract
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Yasar Luqman Ahmed
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Martina Kallas
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Markus Kornprobst
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabiola R Calviño
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marén Gnädig
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Matthias Thoms
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Gunter Stier
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sherif Ismail
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Satyavati Kharde
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Nestor Castillo
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sabine Griesel
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sonja Bastuck
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Bettina Bradatsch
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Emma Thomson
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dirk Flemming
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Irmgard Sinning
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
45
|
Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell 2017; 166:380-393. [PMID: 27419870 DOI: 10.1016/j.cell.2016.06.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 β-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.
Collapse
|
46
|
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) are involved in a wide range of cellular functions and they often facilitate interactions with RNAs, DNAs, and proteins. Although many computational methods can predict IDPs and IDRs in protein sequences, only a few methods predict their functions and these functions primarily concern protein binding. We describe how to use the first computational method DisoRDPbind for high-throughput prediction of multiple functions of disordered regions. Our method predicts the RNA-, DNA-, and protein-binding residues located in IDRs in the input protein sequences. DisoRDPbind provides accurate predictions and is sufficiently fast to make predictions for full genomes. Our method is implemented as a user-friendly webserver that is freely available at http://biomine.ece.ualberta.ca/DisoRDPbind/ . We overview our predictor, discuss how to run the webserver, and show how to interpret the corresponding results. We also demonstrate the utility of our method based on two case studies, human BRCA1 protein that binds various proteins and DNA, and yeast 60S ribosomal protein L4 that interacts with proteins and RNA.
Collapse
|
47
|
Peña C, Schütz S, Fischer U, Chang Y, Panse VG. Prefabrication of a ribosomal protein subcomplex essential for eukaryotic ribosome formation. eLife 2016; 5. [PMID: 27929371 PMCID: PMC5148605 DOI: 10.7554/elife.21755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Spatial clustering of ribosomal proteins (r-proteins) through tertiary interactions is a striking structural feature of the eukaryotic ribosome. However, the functional importance of these intricate inter-connections, and how they are established is currently unclear. Here, we reveal that a conserved ATPase, Fap7, organizes interactions between neighboring r-proteins uS11 and eS26 prior to their delivery to the earliest ribosome precursor, the 90S. In vitro, uS11 only when bound to Fap7 becomes competent to recruit eS26 through tertiary contacts found between these r-proteins on the mature ribosome. Subsequently, Fap7 ATPase activity unloads the uS11:eS26 subcomplex onto its rRNA binding site, and therefore ensures stoichiometric integration of these r-proteins into the 90S. Fap7-depletion in vivo renders uS11 susceptible to proteolysis, and precludes eS26 incorporation into the 90S. Thus, prefabrication of a native-like r-protein subcomplex drives efficient and accurate construction of the eukaryotic ribosome. DOI:http://dx.doi.org/10.7554/eLife.21755.001
Collapse
Affiliation(s)
- Cohue Peña
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Vikram G Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Ting YH, Lu TJ, Johnson AW, Shie JT, Chen BR, Kumar S S, Lo KY. Bcp1 Is the Nuclear Chaperone of Rpl23 in Saccharomyces cerevisiae. J Biol Chem 2016; 292:585-596. [PMID: 27913624 DOI: 10.1074/jbc.m116.747634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic ribosomes are composed of rRNAs and ribosomal proteins. Ribosomal proteins are translated in the cytoplasm and imported into the nucleus for assembly with the rRNAs. It has been shown that chaperones or karyopherins responsible for import can maintain the stability of ribosomal proteins by neutralizing unfavorable positive charges and thus facilitate their transports. Among 79 ribosomal proteins in yeast, only a few are identified with specific chaperones. Besides the classic role in maintaining protein stability, chaperones have additional roles in transport, chaperoning the assembly site, and dissociation of ribosomal proteins from karyopherins. Bcp1 has been shown to be necessary for the export of Mss4, a phosphatidylinositol 4-phosphate 5-kinase, and required for ribosome biogenesis. However, its specific function in ribosome biogenesis has not been described. Here, we show that Bcp1 dissociates Rpl23 from the karyopherins and associates with Rpl23 afterward. Loss of Bcp1 causes instability of Rpl23 and deficiency of 60S subunits. In summary, Bcp1 is a novel 60S biogenesis factor via chaperoning Rpl23 in the nucleus.
Collapse
Affiliation(s)
- Ya-Han Ting
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ting-Jun Lu
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Arlen W Johnson
- the Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Jing-Ting Shie
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Bo-Ru Chen
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Suresh Kumar S
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,the Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Kai-Yin Lo
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan,
| |
Collapse
|
49
|
Pillet B, Mitterer V, Kressler D, Pertschy B. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. Bioessays 2016; 39:1-12. [PMID: 27859409 DOI: 10.1002/bies.201600153] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.
Collapse
Affiliation(s)
- Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| |
Collapse
|
50
|
Mitterer V, Gantenbein N, Birner-Gruenberger R, Murat G, Bergler H, Kressler D, Pertschy B. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Sci Rep 2016; 6:36714. [PMID: 27819319 PMCID: PMC5098186 DOI: 10.1038/srep36714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
After their cytoplasmic synthesis, ribosomal proteins need to be transported into the nucleus, where they assemble with ribosomal RNA into pre-ribosomal particles. Due to their physicochemical properties, they need protection from aggregation on this path. Newly synthesized ribosomal protein Rps3 forms a dimer that is associated with one molecule of its specific chaperone Yar1. Here we report that redundant pathways contribute to the nuclear import of Rps3, with the classical importin α/β pathway (Kap60/Kap95 in yeast) constituting a main import route. The Kap60/Kap95 heterodimer mediates efficient nuclear import of Rps3 by recognition of an N-terminal monopartite nuclear localization signal (NLS). This Rps3-NLS is located directly adjacent to the Yar1-binding site and, upon binding of Kap60 to Rps3, Yar1 is displaced from the ribosomal protein in vitro. While Yar1 does not directly interact with Kap60 in vitro, affinity purifications of Yar1 and Rps3, however, revealed that Kap60 is present in the Rps3/Yar1 complex in vivo. Indeed we could reconstitute such a protein complex containing Rps3 and both Yar1 and Kap60 in vitro. Our data suggest that binding of Yar1 to one N-domain and binding of Kap60 to the second N-domain of dimerized Rps3 orchestrates import and protection of the ribosomal protein.
Collapse
Affiliation(s)
- Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Nadine Gantenbein
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| |
Collapse
|