1
|
Xu Z, Xie H, Song L, Huang Y, Huang J. BRCA1 and BRCA2 in DNA damage and replication stress response: Insights into their functions, mechanisms, and implications for cancer treatment. DNA Repair (Amst) 2025; 150:103847. [PMID: 40373656 DOI: 10.1016/j.dnarep.2025.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Genomic stability is a cornerstone of cellular survival and proliferation. To counter the constant threat posed by endogenous and exogenous DNA-damaging agents, cells rely on a network of intricate mechanisms to safeguard DNA integrity and ensure accurate replication. Among these, the BRCA1 and BRCA2 tumor suppressor proteins play pivotal roles. While traditionally recognized for their involvement in homologous recombination repair and cell cycle checkpoints, emerging evidence highlights their essential functions in protecting stalled replication forks during replication stress. Mutations in BRCA1 or BRCA2 disrupt these critical functions, leading to compromised genome stability and an increased susceptibility to various cancers, particularly breast and ovarian cancers. This review provides a comprehensive analysis of the multifaceted roles of BRCA1 and BRCA2, focusing on their contributions to DNA damage responses and replication stress management. By elucidating the molecular pathways through which BRCA1 and BRCA2 operate, we aim to provide insights into their pivotal roles in maintaining genomic integrity and their implications for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Xu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haihua Xie
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lizhi Song
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuhua Huang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
2
|
Neal FE, Li W, Uhrig ME, Katz JN, Syed S, Sharma N, Dutta A, Burma S, Hromas R, Mazin AV, Dray E, Libich DS, Olsen SK, Wasmuth EV, Zhao W, Sørensen CS, Wiese C, Kwon Y, Sung P. Distinct roles of the two BRCA2 DNA-binding domains in DNA damage repair and replication fork preservation. Cell Rep 2025; 44:115654. [PMID: 40323719 DOI: 10.1016/j.celrep.2025.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Homologous recombination (HR) removes DNA double-strand breaks (DSBs) and preserves stressed DNA replication forks. Successful HR execution requires the tumor suppressor BRCA2, which harbors distinct DNA-binding domains (DBDs): one that possesses three oligonucleotide/oligosaccharide-binding (OB) folds (OB-DBD) and another residing in the C-terminal recombinase binding domain (CTRB-DBD). Here, we employ multi-faceted approaches to delineate the contributions of these domains toward HR and replication fork maintenance. We show that OB-DBD and CTRB-DBD confer single-strand DNA (ssDNA)- and dsDNA-binding capabilities, respectively, and that BRCA2 variants mutated in either domain are impaired in their ability to load the recombinase RAD51 onto ssDNA pre-occupied by RPA. While the CTRB-DBD mutant is modestly affected by DNA break repair, it exhibits a strong defect in the protection of stressed replication forks. In contrast, the OB-DBD is indispensable for both BRCA2 functions. Our study thus defines the unique contributions of the two BRCA2 DBDs in genome maintenance.
Collapse
Affiliation(s)
- Francisco E Neal
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey N Katz
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Shahrez Syed
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - David S Libich
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025; 26:1290-1314. [PMID: 39870965 PMCID: PMC11894219 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
4
|
Rezano A, Gondo N, Sakai Y, Nakamura Y, Phimsen S, Tani T, Ito A, Okada S, Kuwahara K. Tumorigenesis Caused by Aberrant Expression of GANP, a Central Component in the Mammalian TREX-2 Complex-Lessons from Transcription-Coupled DNA Damages. Int J Mol Sci 2024; 25:13612. [PMID: 39769375 PMCID: PMC11727803 DOI: 10.3390/ijms252413612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
DNA is frequently damaged by genotoxic stresses such as ionizing radiation, reactive oxygen species, and nitrogen species. DNA damage is a key contributor to cancer initiation and progression, and thus the precise and timely repair of these harmful lesions is required. Recent studies revealed transcription as a source of genome instability, and transcription-coupled DNA damage has been a focus in cancer research. Impaired mRNA export is closely related to DNA damage through R-loop formation. The molecular machineries of transcription-coupled DNA damage have been extensively analyzed in Saccharomyces cerevisiae. However, the molecular basis of these phenomena in higher eukaryotes remains elusive. In this review, we focus on the relationship between deregulated mRNA export through the transcription-export-2 (TREX-2) complex and cancer development. Particularly, the expression of germinal center-associated nuclear protein (GANP), a molecular scaffold in the TREX-2 complex, is highly associated with tumorigenesis in mice and humans. Although the deregulated expression of other components in the TREX-2 complex might affect cancer development, we have directly demonstrated the significance of GANP in tumorigenesis using genetically modified mice. Additionally, we describe recent evidence for medical applications demonstrating that the downregulation of the other components may be a good candidate for a chemotherapeutic target in terms of reducing the side effects.
Collapse
Affiliation(s)
- Andri Rezano
- Department of Biomedical Sciences, Division of Cell Biology, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia;
| | - Naomi Gondo
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima 892-0833, Kagoshima, Japan;
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yuko Nakamura
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan;
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Tokio Tani
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan;
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Osaka, Japan;
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto 860-0811, Kumamoto, Japan;
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology and Genome Medical Center, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan
| |
Collapse
|
5
|
Uhrig M, Sharma N, Maxwell P, Gomez J, Selemenakis P, Mazin A, Wiese C. Disparate requirements for RAD54L in replication fork reversal. Nucleic Acids Res 2024; 52:12390-12404. [PMID: 39315725 PMCID: PMC11551752 DOI: 10.1093/nar/gkae828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair. In vitro, RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cancer cell lines and non-transformed cells. Analogous to HLTF, SMARCAL1 and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Petey Maxwell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jordi Gomez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Neal F, Li W, Uhrig ME, Sharma N, Syed S, Burma S, Hromas R, Mazin A, Dray E, Libich D, Olsen S, Wasmuth E, Zhao W, Sørensen CS, Wiese C, Kwon Y, Sung P. Distinct roles of the two BRCA2 DNA binding domains in DNA damage repair and replication fork preservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614752. [PMID: 39386664 PMCID: PMC11463483 DOI: 10.1101/2024.09.24.614752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Homologous recombination (HR) is a highly conserved tool for the removal of DNA double-strand breaks (DSBs) and the preservation of stalled and damaged DNA replication forks. Successful completion of HR requires the tumor suppressor BRCA2. Germline mutations in BRCA2 lead to familial breast, ovarian, and other cancers, underscoring the importance of this protein for maintaining genome stability. BRCA2 harbors two distinct DNA binding domains, one that possesses three oligonucleotide/oligosaccharide binding (OB) folds (known as the OB-DBD), and with the other residing in the C-terminal recombinase binding domain (termed the CTRB-DBD) encoded by the last gene exon. Here, we employ a combination of genetic, biochemical, and cellular approaches to delineate contributions of these two DNA binding domains toward HR and the maintenance of stressed DNA replication forks. We show that OB-DBD and CTRB-DBD confer ssDNA and dsDNA binding capabilities to BRCA2, respectively, and that BRCA2 variants mutated in either DNA binding domain are impaired in the ability to load the recombinase RAD51 onto ssDNA pre-occupied by RPA. While the CTRB-DBD mutant is modestly affected for HR, it exhibits a strong defect in the protection of stressed replication forks. In contrast, the OB-DBD is indispensable for both BRCA2 functions. Our study thus defines the unique contributions of the two BRCA2 DNA binding domains in genome maintenance.
Collapse
|
8
|
Huang Y, Li W, Foo T, Ji JH, Wu B, Tomimatsu N, Fang Q, Gao B, Long M, Xu J, Maqbool R, Mukherjee B, Ni T, Alejo S, He Y, Burma S, Lan L, Xia B, Zhao W. DSS1 restrains BRCA2's engagement with dsDNA for homologous recombination, replication fork protection, and R-loop homeostasis. Nat Commun 2024; 15:7081. [PMID: 39152168 PMCID: PMC11329725 DOI: 10.1038/s41467-024-51557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Tzeh Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qingming Fang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Boya Gao
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Melissa Long
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jingfei Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rouf Maqbool
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Tengyang Ni
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Gurusaran M, Zhang J, Zhang K, Shibuya H, Davies OR. MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination. Nat Commun 2024; 15:6552. [PMID: 39095423 PMCID: PMC11297322 DOI: 10.1038/s41467-024-50920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal β-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The β-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Alvaro-Aranda L, Petitalot A, Djeghmoum Y, Panigada D, Singh J, Ehlén Å, Vugic D, Martin C, Miron S, Contreras-Perez A, Nhiri N, Boucherit V, Lafitte P, Dumoulin I, Quiles F, Rouleau E, Jacquet E, Feliubadaló L, del Valle J, Sharan SK, Stoppa-Lyonnet D, Zinn-Justin S, Lázaro C, Caputo S, Carreira A. The BRCA2 R2645G variant increases DNA binding and induces hyper-recombination. Nucleic Acids Res 2024; 52:6964-6976. [PMID: 38142462 PMCID: PMC11229362 DOI: 10.1093/nar/gkad1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.
Collapse
Affiliation(s)
- Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Yasmina Djeghmoum
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Davide Panigada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Jenny Kaur Singh
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Philippe Lafitte
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Francisco Quiles
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Etienne Rouleau
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris 75005, France
- Paris-Cité University, Paris, France
- INSERM U830, Institut Curie, Paris 75005, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| |
Collapse
|
12
|
Nikolić I, Milisavljević M, Timotijević G. Assessing Transcriptomic Responses to Oxidative Stress: Contrasting Wild-Type Arabidopsis Seedlings with dss1(I) and dss1(V) Gene Knockout Mutants. Int J Mol Sci 2024; 25:6291. [PMID: 38927997 PMCID: PMC11203560 DOI: 10.3390/ijms25126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress represents a critical facet of the array of abiotic stresses affecting crop growth and yield. In this paper, we investigated the potential differences in the functions of two highly homologous Arabidopsis DSS1 proteins in terms of maintaining genome integrity and response to oxidative stress. In the context of homologous recombination (HR), it was shown that overexpressing AtDSS1(I) using a functional complementation test increases the resistance of the Δdss1 mutant of Ustilago maydis to genotoxic agents. This indicates its conserved role in DNA repair via HR. To investigate the global transcriptome changes occurring in dss1 plant mutant lines, gene expression analysis was conducted using Illumina RNA sequencing technology. Individual RNA libraries were constructed from three total RNA samples isolated from dss1(I), dss1(V), and wild-type (WT) plants under hydrogen peroxide-induced stress. RNA-Seq data analysis and real-time PCR identification revealed major changes in gene expression between mutant lines and WT, while the dss1(I) and dss1(V) mutant lines exhibited analogous transcription profiles. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed significantly enriched metabolic pathways. Notably, genes associated with HR were upregulated in dss1 mutants compared to the WT. Otherwise, genes of the metabolic pathway responsible for the synthesis of secondary metabolites were downregulated in both dss1 mutant lines. These findings highlight the importance of understanding the molecular mechanisms of plant responses to oxidative stress.
Collapse
Affiliation(s)
| | | | - Gordana Timotijević
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.N.); (M.M.)
| |
Collapse
|
13
|
Chinnam NB, Thapar R, Arvai AS, Sarker AH, Soll JM, Paul T, Syed A, Rosenberg DJ, Hammel M, Bacolla A, Katsonis P, Asthana A, Tsai MS, Ivanov I, Lichtarge O, Silverman RH, Mosammaparast N, Tsutakawa SE, Tainer JA. ASCC1 structures and bioinformatics reveal a novel helix-clasp-helix RNA-binding motif linked to a two-histidine phosphodiesterase. J Biol Chem 2024; 300:107368. [PMID: 38750793 PMCID: PMC11214414 DOI: 10.1016/j.jbc.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roopa Thapar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Altaf H Sarker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer M Soll
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tanmoy Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Uhrig ME, Sharma N, Maxwell P, Selemenakis P, Mazin AV, Wiese C. Disparate requirements for RAD54L in replication fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550704. [PMID: 37546955 PMCID: PMC10402051 DOI: 10.1101/2023.07.26.550704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair (HR). In vitro , RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cells. Analogous to HLTF, SMARCAL1, and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
|
15
|
Balakrishnan S, Adolph M, Tsai MS, Akizuki T, Gallagher K, Cortez D, Chazin WJ. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments. Proc Natl Acad Sci U S A 2024; 121:e2316491121. [PMID: 38466836 PMCID: PMC10962997 DOI: 10.1073/pnas.2316491121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.
Collapse
Affiliation(s)
- Swati Balakrishnan
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Madison Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Tae Akizuki
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Kaitlyn Gallagher
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Walter J. Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
- Department of Chemistry, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
16
|
Zhou Z, Yang H, Liang X, Zhou T, Liu Q, Wang J, Wang W. Reconstitution of the antagonistic effect between C1orf112/FIRRM-FIGNL1 and BRCA2 on RAD51 filament stabilization. STAR Protoc 2024; 5:102791. [PMID: 38133958 PMCID: PMC10776632 DOI: 10.1016/j.xpro.2023.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
C1orf112/FIRRM is a recently identified DNA damage repair factor that regulates RAD51 in homologous recombination through interacting with the anti-recombinase FIGNL1. Here, we describe steps for purifying C1orf112/FIRRM, FIGNL1, miBRCA2, and RAD51 proteins from Escherichia coli or Saccharomyces cerevisiae cells. We then detail procedures for reconstituting the disassembly of RAD51 filament by C1orf112/FIRRM-FIGNL1 in vitro and the antagonistic effect between C1orf112/FIRRM-FIGNL1 and miBRCA2 on RAD51 filament stabilization. For complete details on the use and execution of this protocol, please refer to Zhou et al. (2023).1.
Collapse
Affiliation(s)
- Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinxin Liang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qixiang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
17
|
Hu J, Crickard JB. All who wander are not lost: the search for homology during homologous recombination. Biochem Soc Trans 2024; 52:367-377. [PMID: 38323621 PMCID: PMC10903458 DOI: 10.1042/bst20230705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that functions to maintain genomic integrity. A vital component of the HR reaction is the identification of template DNA to be used during repair. This occurs through a mechanism known as the homology search. The homology search occurs in two steps: a collision step in which two pieces of DNA are forced to collide and a selection step that results in homologous pairing between matching DNA sequences. Selection of a homologous template is facilitated by recombinases of the RecA/Rad51 family of proteins in cooperation with helicases, translocases, and topoisomerases that determine the overall fidelity of the match. This menagerie of molecular machines acts to regulate critical intermediates during the homology search. These intermediates include recombinase filaments that probe for short stretches of homology and early strand invasion intermediates in the form of displacement loops (D-loops) that stabilize paired DNA. Here, we will discuss recent advances in understanding how these specific intermediates are regulated on the molecular level during the HR reaction. We will also discuss how the stability of these intermediates influences the ultimate outcomes of the HR reaction. Finally, we will discuss recent physiological models developed to explain how the homology search protects the genome.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - J. Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
18
|
Palihati M, Iwasaki H, Tsubouchi H. Analysis of the indispensable RAD51 cofactor BRCA2 in Naganishia liquefaciens, a Basidiomycota yeast. Life Sci Alliance 2024; 7:e202302342. [PMID: 38016757 PMCID: PMC10684384 DOI: 10.26508/lsa.202302342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The BRCA2 tumor suppressor plays a critical role in homologous recombination by regulating RAD51, the eukaryotic homologous recombinase. We identified the BRCA2 homolog in a Basidiomycota yeast, Naganishia liquefaciens BRCA2 homologs are found in many Basidiomycota species but not in Ascomycota species. Naganishia BRCA2 (Brh2, for BRCA2 homolog) is about one-third the size of human BRCA2. Brh2 carries three potential BRC repeats with two oligonucleotide/oligosaccharide-binding domains. The homolog of DSS1, a small acidic protein serving as an essential partner of BRCA2 was also identified. The yeast two-hybrid assay shows the interaction of Brh2 with both Rad51 and Dss1. Unlike human BRCA2, Brh2 is not required for normal cell growth, whereas loss of Dss1 results in slow growth. The loss of Brh2 caused pronounced sensitivity to UV and ionizing radiation, and their HR ability, as assayed by gene-targeting efficiency, is compromised. These phenotypes are indistinguishable from those of the rad51 mutant, and the rad51 brh2 double mutant. Naganishia Brh2 is likely the BRCA2 ortholog that functions as an indispensable auxiliary factor for Rad51.
Collapse
Affiliation(s)
- Maierdan Palihati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
19
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
20
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
21
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
22
|
Papageorgiou AC, Pospisilova M, Cibulka J, Ashraf R, Waudby CA, Kadeřávek P, Maroz V, Kubicek K, Prokop Z, Krejci L, Tripsianes K. Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase. Nat Commun 2023; 14:6751. [PMID: 37875529 PMCID: PMC10598209 DOI: 10.1038/s41467-023-42503-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.
Collapse
Affiliation(s)
- Anna C Papageorgiou
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Pospisilova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Raghib Ashraf
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Pavel Kadeřávek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Volha Maroz
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.
| | | |
Collapse
|
23
|
Balakrishnan S, Adolph M, Tsai MS, Gallagher K, Cortez D, Chazin WJ. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558089. [PMID: 37786681 PMCID: PMC10541619 DOI: 10.1101/2023.09.19.558089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed ssDNA. To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (EM) from maps in the 2-3 Å range. The structure reveals the molecular basis for RADX oligomerization and binding of ssDNA binding. The binding of RADX to RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the growing end of RAD51 filaments.
Collapse
Affiliation(s)
- Swati Balakrishnan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Madison Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kaitlyn Gallagher
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Walter J. Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Lead contact
| |
Collapse
|
24
|
Jacobsen NL, Bloch M, Millard PS, Ruidiaz SF, Elsborg JD, Boomsma W, Hendus‐Altenburger R, Hartmann‐Petersen R, Kragelund BB. Phosphorylation of Schizosaccharomyces pombe Dss1 mediates direct binding to the ubiquitin-ligase Dma1 in vitro. Protein Sci 2023; 32:e4733. [PMID: 37463013 PMCID: PMC10443397 DOI: 10.1002/pro.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states. In this work, we show that Schizosaccharomyces pombe Dss1 is a substrate for casein kinase 2 in vitro, and we identify three phosphorylated threonines in its linker region separating two known disordered ubiquitin-binding motifs. Phosphorylations of the threonines had no effect on ubiquitin-binding but caused a slight destabilization of the C-terminal α-helix and mediated a direct interaction with the forkhead-associated (FHA) domain of the RING-FHA E3-ubiquitin ligase defective in mitosis 1 (Dma1). The phosphorylation sites are not conserved and are absent in human Dss1. Sequence analyses revealed that the Txx(E/D) motif, which is important for phosphorylation and Dma1 binding, is not linked to certain branches of the evolutionary tree. Instead, we find that the motif appears randomly, supporting the mechanism of ex nihilo evolution of novel motifs. In support of this, other threonine-based motifs, although frequent, are nonconserved in the linker, pointing to additional functions connected to this region. We suggest that Dss1 acts as an adaptor protein that docks to Dma1 via the phosphorylated FHA-binding motifs, while the C-terminal α-helix is free to bind mitotic septins, thereby stabilizing the complex. The presence of Txx(D/E) motifs in the disordered regions of certain septin subunits may be of further relevance to the formation and stabilization of these complexes.
Collapse
Affiliation(s)
- Nina L. Jacobsen
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Magnus Bloch
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
| | - Peter S. Millard
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Sarah F. Ruidiaz
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
| | - Jonas D. Elsborg
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
| | - Wouter Boomsma
- Department of Computer ScienceUniversity of CopenhagenCopenhagen ØDenmark
| | | | - Rasmus Hartmann‐Petersen
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Birthe B. Kragelund
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| |
Collapse
|
25
|
Zhou Z, Yang H, Liang X, Zhou T, Zhang T, Yang Y, Wang J, Wang W. C1orf112 teams up with FIGNL1 to facilitate RAD51 filament disassembly and DNA interstrand cross-link repair. Cell Rep 2023; 42:112907. [PMID: 37515771 DOI: 10.1016/j.celrep.2023.112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.
Collapse
Affiliation(s)
- Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinxin Liang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
26
|
Belan O, Greenhough L, Kuhlen L, Anand R, Kaczmarczyk A, Gruszka DT, Yardimci H, Zhang X, Rueda DS, West SC, Boulton SJ. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Mol Cell 2023; 83:2925-2940.e8. [PMID: 37499663 PMCID: PMC7615647 DOI: 10.1016/j.molcel.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luke Greenhough
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucas Kuhlen
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
27
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
28
|
Rawal Y, Jia L, Meir A, Zhou S, Kaur H, Ruben EA, Kwon Y, Bernstein KA, Jasin M, Taylor AB, Burma S, Hromas R, Mazin AV, Zhao W, Zhou D, Wasmuth EV, Greene EC, Sung P, Olsen SK. Structural insights into BCDX2 complex function in homologous recombination. Nature 2023; 619:640-649. [PMID: 37344589 PMCID: PMC10712684 DOI: 10.1038/s41586-023-06219-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.
Collapse
Affiliation(s)
- Yashpal Rawal
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aviv Meir
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shuo Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hardeep Kaur
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eliza A Ruben
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kara A Bernstein
- Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
29
|
Bhat D, Malacaria E, Biagi L, Razzaghi M, Honda M, Hobbs K, Hengel S, Pichierri P, Spies M, Spies M. Therapeutic disruption of RAD52-ssDNA complexation via novel drug-like inhibitors. NAR Cancer 2023; 5:zcad018. [PMID: 37139244 PMCID: PMC10150327 DOI: 10.1093/narcan/zcad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
RAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52-ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine in silico REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC50 ∼23-1200 μM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC50 ∼1.3-8 μM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Section, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ludovica Di Biagi
- Mechanisms, Biomarkers and Models Section, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mortezaali Razzaghi
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Masayoshi Honda
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Kathryn F Hobbs
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarah R Hengel
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Section, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA
- Naturis Informatika LLC, 401 Mullin Ave., Iowa City, IA 52246, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Roshan P, Kuppa S, Mattice JR, Kaushik V, Chadda R, Pokhrel N, Tumala BR, Biswas A, Bothner B, Antony E, Origanti S. An Aurora B-RPA signaling axis secures chromosome segregation fidelity. Nat Commun 2023; 14:3008. [PMID: 37230964 PMCID: PMC10212944 DOI: 10.1038/s41467-023-38711-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53217, USA
| | - Brunda R Tumala
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aparna Biswas
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Brian Bothner
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Sofia Origanti
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
31
|
Bell JC, Dombrowski CC, Plank JL, Jensen RB, Kowalczykowski SC. BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proc Natl Acad Sci U S A 2023; 120:e2221971120. [PMID: 36976771 PMCID: PMC10083600 DOI: 10.1073/pnas.2221971120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mutations in the breast cancer susceptibility gene, BRCA2, greatly increase an individual's lifetime risk of developing breast and ovarian cancers. BRCA2 suppresses tumor formation by potentiating DNA repair via homologous recombination. Central to recombination is the assembly of a RAD51 nucleoprotein filament, which forms on single-stranded DNA (ssDNA) generated at or near the site of chromosomal damage. However, replication protein-A (RPA) rapidly binds to and continuously sequesters this ssDNA, imposing a kinetic barrier to RAD51 filament assembly that suppresses unregulated recombination. Recombination mediator proteins-of which BRCA2 is the defining member in humans-alleviate this kinetic barrier to catalyze RAD51 filament formation. We combined microfluidics, microscopy, and micromanipulation to directly measure both the binding of full-length BRCA2 to-and the assembly of RAD51 filaments on-a region of RPA-coated ssDNA within individual DNA molecules designed to mimic a resected DNA lesion common in replication-coupled recombinational repair. We demonstrate that a dimer of RAD51 is minimally required for spontaneous nucleation; however, growth self-terminates below the diffraction limit. BRCA2 accelerates nucleation of RAD51 to a rate that approaches the rapid association of RAD51 to naked ssDNA, thereby overcoming the kinetic block imposed by RPA. Furthermore, BRCA2 eliminates the need for the rate-limiting nucleation of RAD51 by chaperoning a short preassembled RAD51 filament onto the ssDNA complexed with RPA. Therefore, BRCA2 regulates recombination by initiating RAD51 filament formation.
Collapse
Affiliation(s)
- Jason C. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Christopher C. Dombrowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Jody L. Plank
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Ryan B. Jensen
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
32
|
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X. Allosteric autoregulation of DNA binding via a DNA-mimicking protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res 2023; 51:1674-1686. [PMID: 36660822 PMCID: PMC9976917 DOI: 10.1093/nar/gkac1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.
Collapse
Affiliation(s)
- Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Cao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Nikolić I, Samardžić J, Stevanović S, Miljuš-Đukić J, Milisavljević M, Timotijević G. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous Arabidopsis thaliana DSS1 Genes with Roles in Development and the Oxidative Stress Response. Int J Mol Sci 2023; 24:ijms24032442. [PMID: 36768765 PMCID: PMC9916663 DOI: 10.3390/ijms24032442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Global climate change has a detrimental effect on plant growth and health, causing serious losses in agriculture. Investigation of the molecular mechanisms of plant responses to various environmental pressures and the generation of plants tolerant to abiotic stress are imperative to modern plant science. In this paper, we focus on the application of the well-established technology CRISPR/Cas9 genome editing to better understand the functioning of the intrinsically disordered protein DSS1 in plant response to oxidative stress. The Arabidopsis genome contains two highly homologous DSS1 genes, AtDSS1(I) and AtDSS1(V). This study was designed to identify the functional differences between AtDSS1s, focusing on their potential roles in oxidative stress. We generated single dss1(I) and dss1(V) mutant lines of both Arabidopsis DSS1 genes using CRISPR/Cas9 technology. The homozygous mutant lines with large indels (dss1(I)del25 and dss1(V)ins18) were phenotypically characterized during plant development and their sensitivity to oxidative stress was analyzed. The characterization of mutant lines revealed differences in root and stem lengths, and rosette area size. Plants with a disrupted AtDSS1(V) gene exhibited lower survival rates and increased levels of oxidized proteins in comparison to WT plants exposed to oxidative stress induced by hydrogen peroxide. In this work, the dss1 double mutant was not obtained due to embryonic lethality. These results suggest that the DSS1(V) protein could be an important molecular component in plant abiotic stress response.
Collapse
|
34
|
Kwon Y, Rösner H, Zhao W, Selemenakis P, He Z, Kawale AS, Katz JN, Rogers CM, Neal FE, Badamchi Shabestari A, Petrosius V, Singh AK, Joel MZ, Lu L, Holloway SP, Burma S, Mukherjee B, Hromas R, Mazin A, Wiese C, Sørensen CS, Sung P. DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation. Nat Commun 2023; 14:432. [PMID: 36702902 PMCID: PMC9879961 DOI: 10.1038/s41467-023-36211-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.
Collapse
Affiliation(s)
- Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Heike Rösner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuoling He
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jeffrey N Katz
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francisco E Neal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Valdemaras Petrosius
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Akhilesh K Singh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- GentiBio Inc., 150 Cambridgepark Dr, Cambridge, MA, 02140, USA
| | - Marina Z Joel
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Alexander Mazin
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
35
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
36
|
Lecca P, Ihekwaba-Ndibe AEC. Dynamic Modelling of DNA Repair Pathway at the Molecular Level: A New Perspective. Front Mol Biosci 2022; 9:878148. [PMID: 36177351 PMCID: PMC9513183 DOI: 10.3389/fmolb.2022.878148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
DNA is the genetic repository for all living organisms, and it is subject to constant changes caused by chemical and physical factors. Any change, if not repaired, erodes the genetic information and causes mutations and diseases. To ensure overall survival, robust DNA repair mechanisms and damage-bypass mechanisms have evolved to ensure that the DNA is constantly protected against potentially deleterious damage while maintaining its integrity. Not surprisingly, defects in DNA repair genes affect metabolic processes, and this can be seen in some types of cancer, where DNA repair pathways are disrupted and deregulated, resulting in genome instability. Mathematically modelling the complex network of genes and processes that make up the DNA repair network will not only provide insight into how cells recognise and react to mutations, but it may also reveal whether or not genes involved in the repair process can be controlled. Due to the complexity of this network and the need for a mathematical model and software platform to simulate different investigation scenarios, there must be an automatic way to convert this network into a mathematical model. In this paper, we present a topological analysis of one of the networks in DNA repair, specifically homologous recombination repair (HR). We propose a method for the automatic construction of a system of rate equations to describe network dynamics and present results of a numerical simulation of the model and model sensitivity analysis to the parameters. In the past, dynamic modelling and sensitivity analysis have been used to study the evolution of tumours in response to drugs in cancer medicine. However, automatic generation of a mathematical model and the study of its sensitivity to parameter have not been applied to research on the DNA repair network so far. Therefore, we present this application as an approach for medical research against cancer, since it could give insight into a possible approach with which central nodes of the networks and repair genes could be identified and controlled with the ultimate goal of aiding cancer therapy to fight the onset of cancer and its progression.
Collapse
Affiliation(s)
- Paola Lecca
- Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
- *Correspondence: Paola Lecca, ; Adaoha E. C. Ihekwaba-Ndibe,
| | - Adaoha E. C. Ihekwaba-Ndibe
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- *Correspondence: Paola Lecca, ; Adaoha E. C. Ihekwaba-Ndibe,
| |
Collapse
|
37
|
Yuan S, Huang T, Bao Z, Wang S, Wu X, Liu J, Liu H, Chen ZJ. The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots. Genome Biol 2022; 23:187. [PMID: 36068616 PMCID: PMC9446545 DOI: 10.1186/s13059-022-02758-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PRDM9-dependent histone methylation H3K4me3 and H3K36me3 function in assuring accurate homologous recombination at recombination hotspots in mammals. Beyond histone methylation, H3 lysine 9 acetylation (H3K9ac) is also greatly enriched at recombination hotspots. Previous work has indicated the potential cross-talk between H3K4me3 and H3K9ac at recombination hotspots, but it is still unknown what molecular mechanisms mediate the cross-talk between the two histone modifications at hotspots or how the cross-talk regulates homologous recombination in meiosis. RESULTS Here, we find that the histone methylation reader ZCWPW1 is essential for maintaining H3K9ac by antagonizing HDAC proteins' deacetylation activity and further promotes chromatin openness at recombination hotspots thus preparing the way for homologous recombination during meiotic double-strand break repair. Interestingly, ectopic expression of the germ-cell-specific protein ZCWPW1 in human somatic cells enhances double-strand break repair via homologous recombination. CONCLUSIONS Taken together, our findings provide new insights into how histone modifications and their associated regulatory proteins collectively regulate meiotic homologous recombination.
Collapse
Affiliation(s)
- Shenli Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, China National Center for Bioinformation, and Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
| | - Ziyou Bao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shiyu Wang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, China National Center for Bioinformation, and Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
| |
Collapse
|
38
|
Kuang Z, Ke J, Hong J, Zhu Z, Niu L. Structural assembly of the nucleic-acid-binding Thp3-Csn12-Sem1 complex functioning in mRNA splicing. Nucleic Acids Res 2022; 50:8882-8897. [PMID: 35904806 PMCID: PMC9410885 DOI: 10.1093/nar/gkac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
PCI domain proteins play important roles in post-transcriptional gene regulation. In the TREX-2 complex, PCI domain-containing Sac3 and Thp1 proteins and accessory Sem1 protein form a ternary complex required for mRNA nuclear export. In contrast, structurally related Thp3–Csn12–Sem1 complex mediates pre-mRNA splicing. In this study, we determined the structure of yeast Thp3186–470–Csn12–Sem1 ternary complex at 2.9 Å resolution. Both Thp3 and Csn12 structures have a typical PCI structural fold, characterized by a stack of α-helices capped by a C-terminal winged-helix (WH) domain. The overall structure of Thp3186–470–Csn12–Sem1 complex has an inverted V-shape with Thp3 and Csn12 forming the two sides. A fishhook-shaped Sem1 makes extensive contacts on Csn12 to stabilize its conformation. The overall structure of Thp3186–470–Csn12–Sem1 complex resembles the previously reported Sac3–Thp1–Sem1 complex, but also has significant structural differences. The C-terminal WH domains of Thp3 and Csn12 form a continuous surface to bind different forms of nucleic acids with micromolar affinity. Mutation of the basic residues in the WH domains of Thp3 and Csn12 affects nucleic acid binding in vitro and mRNA splicing in vivo. The Thp3–Csn12–Sem1 structure provides a foundation for further exploring the structural elements required for its specific recruitment to spliceosome for pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhiling Kuang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Northwest corner of Susong Rd & Guanhai Rd, Hefei, Anhui 230601, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
39
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
40
|
Selemenakis P, Sharma N, Uhrig ME, Katz J, Kwon Y, Sung P, Wiese C. RAD51AP1 and RAD54L Can Underpin Two Distinct RAD51-Dependent Routes of DNA Damage Repair via Homologous Recombination. Front Cell Dev Biol 2022; 10:866601. [PMID: 35652094 PMCID: PMC9149245 DOI: 10.3389/fcell.2022.866601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5′-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.
Collapse
Affiliation(s)
- Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jeffrey Katz
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
41
|
Jimenez-Sainz J, Krysztofiak A, Garbarino J, Rogers F, Jensen RB. The Pathogenic R3052W BRCA2 Variant Disrupts Homology-Directed Repair by Failing to Localize to the Nucleus. Front Genet 2022; 13:884210. [PMID: 35711920 PMCID: PMC9197106 DOI: 10.3389/fgene.2022.884210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The BRCA2 germline missense variant, R3052W, resides in the DNA binding domain and has been previously classified as a pathogenic allele. In this study, we sought to determine how R3052W alters the cellular functions of BRCA2 in the DNA damage response. The BRCA2 R3052W mutated protein exacerbates genome instability, is unable to rescue homology-directed repair, and fails to complement cell survival following exposure to PARP inhibitors and crosslinking drugs. Surprisingly, despite anticipated defects in DNA binding or RAD51-mediated DNA strand exchange, the BRCA2 R3052W protein mislocalizes to the cytoplasm precluding its ability to perform any DNA repair functions. Rather than acting as a simple loss-of-function mutation, R3052W behaves as a dominant negative allele, likely by sequestering RAD51 in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
42
|
Histone chaperone ASF1 acts with RIF1 to promote DNA end joining in BRCA1-deficient cells. J Biol Chem 2022; 298:101979. [PMID: 35472331 PMCID: PMC9127577 DOI: 10.1016/j.jbc.2022.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Replication timing regulatory factor 1 (RIF1) acts downstream of p53-binding protein 53BP1 to inhibit the resection of DNA broken ends, which plays critical roles in determining the DNA double-strand break repair pathway choice between nonhomologous end joining and homologous recombination (HR). However, the mechanism by which this choice is made is not yet clear. In this study, we identified that histone chaperone protein ASF1 associates with RIF1 and regulates RIF1-dependent functions in the DNA damage response. Similar to loss of RIF1, we found that loss of ASF1 resulted in resistance to poly (ADP-ribose) polymerase (PARP) inhibition in BRCA1-deficient cells with restored HR and decreased telomere fusion in telomeric repeat–binding protein 2 (TRF2)-depleted cells. Moreover, we showed that these functions of ASF1 are dependent on its interaction with RIF1 but not on its histone chaperone activity. Thus, our study supports a new role for ASF1 in dictating double-strand break repair choice. Considering that the status of 53BP1–RIF1 axis is important in determining the outcome of PARP inhibitor–based therapy in BRCA1- or HR-deficient cancers, the identification of ASF1 function in this critical pathway uncovers an interesting connection between these S-phase events, which may reveal new strategies to overcome PARP inhibitor resistance.
Collapse
|
43
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
44
|
Mishra AP, Hartford SA, Sahu S, Klarmann K, Chittela RK, Biswas K, Jeon AB, Martin BK, Burkett S, Southon E, Reid S, Albaugh ME, Karim B, Tessarollo L, Keller JR, Sharan SK. BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks. Nat Commun 2022; 13:1751. [PMID: 35365640 PMCID: PMC8975877 DOI: 10.1038/s41467-022-29409-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB. Mishra et al. have generated mice with a single amino acid substitution in BRCA2, which disrupts its interaction with DSS1 resulting in a severe HR defect. They show the interaction to be dispensable for HR at replication induced and meiotic DSBs.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne A Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kimberly Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Albert B Jeon
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Basic Science Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
45
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
46
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
47
|
Onwubiko NO, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen helicase domain regions responsible for oligomerisation regulate Okazaki fragment synthesis initiation. FEBS Open Bio 2022; 12:649-663. [PMID: 35073603 PMCID: PMC8886539 DOI: 10.1002/2211-5463.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Heinz Peter Nasheuer
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| |
Collapse
|
48
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
49
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
50
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|