1
|
Schweighofer J, Mulay B, Hoffmann I, Vogt D, Pesenti ME, Musacchio A. Interactions with multiple inner kinetochore proteins determine mitotic localization of FACT. J Cell Biol 2025; 224:e202412042. [PMID: 40094435 PMCID: PMC11912937 DOI: 10.1083/jcb.202412042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The FAcilitates Chromatin Transcription (FACT) complex is a dimeric histone chaperone that operates on chromatin during transcription and replication. FACT also interacts with a specialized centromeric nucleosome containing the histone H3 variant centromere protein A (CENP-A) and with CENP-TW, two subunits of the constitutive centromere-associated network (CCAN), a 16-protein complex associated with CENP-A. The significance of these interactions remains elusive. Here, we show that FACT has multiple additional binding sites on CCAN. The interaction with CCAN is strongly stimulated by casein kinase II phosphorylation of FACT. Mitotic localization of FACT to kinetochores is strictly dependent on specific CCAN subcomplexes. Conversely, CENP-TW requires FACT for stable localization. Unexpectedly, we also find that DNA readily displaces FACT from CCAN, supporting the speculation that FACT becomes recruited through a pool of CCAN that is not stably integrated into chromatin. Collectively, our results point to a potential role of FACT in chaperoning CCAN during transcription or in the stabilization of CCAN at the centromere during the cell cycle.
Collapse
Affiliation(s)
- Julia Schweighofer
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Bhagyashree Mulay
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion E. Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
2
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific distal cohesion site decoupled from the kinetochore. Nat Commun 2025; 16:2116. [PMID: 40032846 PMCID: PMC11876576 DOI: 10.1038/s41467-025-57438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Primary constriction of the M-phase chromosome serves as a marker for the kinetochore position. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are cohered. Here, we find an unconventional chromatid-cohesion pattern in Peromyscus oocytes, with sister chromatids cohered at a chromosome end, spatially separated from the kinetochore. This distal locus enriches cohesin protectors specifically during meiosis, and chromosomes with this additional cohesion site exhibit enhanced cohesin protection at anaphase I compared to those without it, implying an adaptive evolution to ensure cohesion during meiosis. The distal locus corresponds to an additional centromeric satellite block, located far from the satellite block building the kinetochore. Analyses on three Peromyscus species reveal that the internal satellite consistently assembles the kinetochore in mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote cohesion. Our study demonstrates that cohesion regulation is flexible, controlling chromosome segregation in a cell-type dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Shen Z, Adams K, Moreno R, Lera R, Kaufman E, Lang JD, Burkard M. Polo-like kinase 1 maintains transcription and chromosomal accessibility during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637959. [PMID: 39990329 PMCID: PMC11844518 DOI: 10.1101/2025.02.12.637959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Transcription persists at low levels in mitotic cells and plays essential roles in mitotic fidelity and chromosomal dynamics. However, the detailed regulatory network of mitotic transcription remains largely unresolved. Here, we report the novel role of Polo-like kinase 1 (Plk1) in maintaining mitotic transcription. Using 5-ethynyl uridine (5-EU) labeling of nascent RNAs, we found that Plk1 inhibition leads to significant downregulation of nascent transcription in prometaphase cells. Chromatin-localized Plk1 activity is required for transcription regulation and mitotic fidelity. Plk1 sustains global chromosomal accessibility in mitosis, especially at promoter and transcription start site (promoter-TSS) regions, facilitating transcription factor binding and ensuring proper transcriptional activity. We identified SMC4, a common subunit of condensin I and II, as a potential Plk1 substrate. Plk1 activity is fundamental to these processes across non-transformed and transformed cell lines, underscoring its critical role in cell cycle regulation. This study elucidates a novel regulatory mechanism of global mitotic transcription, advancing our understanding of cell cycle control. Significance Statement Cells retain a low level of transcription during mitosis, while the regulatory network and specific contributions of mitotic transcription are not well understood.We identify Polo-like kinase 1 (Plk1) as a novel regulator of mitotic transcription, crucial for chromosome condensation, genome accessibility, and maintaining mitotic fidelity.This study enhances our understanding of Plk1's multifaceted role in mitotic progression, advancing cell cycle regulation knowledge, and informing new cancer therapies' development.
Collapse
|
4
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
5
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Shin Y, Kim S, Choi TI, Kim CH, An W. VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation. Epigenetics Chromatin 2024; 17:35. [PMID: 39587626 PMCID: PMC11590243 DOI: 10.1186/s13072-024-00561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Bone remodeling is a continuous and balanced process which relies on the dynamic equilibrium between osteoclastic bone resorption and osteoblastic bone formation. During osteoclast differentiation, pro-osteoclastogenic and anti-osteoclastogenic genes are selectively targeted by positive and negative transcription regulators, respectively. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in driving epigenetic gene silencing and oncogenic transformation. However, nothing is currently known about a possible involvement of VprBP in signaling pathways that regulate other cellular processes. RESULTS We demonstrate that VprBP stimulates RANKL-induced differentiation of osteoclast precursor cells (OCPs) into mature osteoclasts by suppressing the expression of anti-osteoclastogenic genes through phosphorylation of threonine 120 on histone H2A (H2AT120p). H2AT120p is critical for VprBP function, because abrogating VprBP kinase activity toward H2AT120 transcriptionally reactivates anti-osteoclastogenic genes and significantly attenuates osteoclast differentiation. Consistent with this notion, our in vivo studies established the importance of VprBP-mediated H2AT120p in low bone mass phenotypes and osteoporosis caused by overactive osteoclasts. CONCLUSIONS Our data reveal a previously unrecognized function of VprBP in supporting RANKL-induced osteoclast differentiation and the molecular mechanism underlying its action as a negative regulator of anti-osteoclastogenic genes.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Sako K, Furukawa A, Nozawa RS, Kurita JI, Nishimura Y, Hirota T. Bipartite binding interface recruiting HP1 to chromosomal passenger complex at inner centromeres. J Cell Biol 2024; 223:e202312021. [PMID: 38781028 PMCID: PMC11116813 DOI: 10.1083/jcb.202312021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Maintenance of ploidy depends on the mitotic kinase Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC) whose proficient activity is supported by HP1 enriched at inner centromeres. HP1 is known to associate with INCENP of the CPC in a manner that depends on the PVI motif conserved across HP1 interactors. Here, we found that the interaction of INCENP with HP1 requires not only the PVI motif but also its C-terminally juxtaposed domain. Remarkably, these domains conditionally fold the β-strand (PVI motif) and the α-helix from a disordered sequence upon HP1 binding and render INCENP with high affinity to HP1. This bipartite binding domain termed SSH domain (Structure composed of Strand and Helix) is necessary and sufficient to attain a predominant interaction of HP1 with INCENP. These results identify a unique HP1-binding module in INCENP that ensures enrichment of HP1 at inner centromeres, Aurora B activity, and thereby mitotic fidelity.
Collapse
Affiliation(s)
- Kosuke Sako
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun-ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
8
|
Yuan X, Yan L, Chen Q, Zhu S, Zhou X, Zeng LH, Liu M, He X, Huang J, Lu W, Zhang L, Yan H, Wang F. Molecular mechanism and functional significance of Wapl interaction with the Cohesin complex. Proc Natl Acad Sci U S A 2024; 121:e2405177121. [PMID: 39110738 PMCID: PMC11331136 DOI: 10.1073/pnas.2405177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lu Yan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shukai Zhu
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Zhou
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital of Zhejiang University School of Medicine, and Cancer Center of Zhejiang University, Hangzhou, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Fangwei Wang
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Chen S, Sun Q, Yao B, Ren Y. The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis. Cytogenet Genome Res 2024; 164:69-77. [PMID: 39068909 DOI: 10.1159/000540588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China,
| | - Qiqi Sun
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific decoupling of the pericentromere from the kinetochore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604490. [PMID: 39091844 PMCID: PMC11291024 DOI: 10.1101/2024.07.21.604490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The primary constriction site of the M-phase chromosome is an established marker for the kinetochore position, often used to determine the karyotype of each species. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are most tightly cohered. Here, we found an unconventional pericentromere specification with sister chromatids mainly cohered at a chromosome end, spatially separated from the kinetochore in Peromyscus mouse oocytes. This distal locus enriched cohesin protectors, such as the Chromosomal Passenger Complex (CPC) and PP2A, at a higher level compared to its centromere/kinetochore region, acting as the primary site for sister-chromatid cohesion. Chromosomes with the distal cohesion site exhibited enhanced cohesin protection at anaphase I compared to those without it, implying that these distal cohesion sites may have evolved to ensure sister-chromatid cohesion during meiosis. In contrast, mitotic cells enriched CPC only near the kinetochore and the distal locus was not cohered between sister chromatids, suggesting a meiosis-specific mechanism to protect cohesin at this distal locus. We found that this distal locus corresponds to an additional centromeric satellite block, located far apart from the centromeric satellite block that builds the kinetochore. Several Peromyscus species carry chromosomes with two such centromeric satellite blocks. Analyses on three Peromyscus species revealed that the internal satellite consistently assembles the kinetochore in both mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote sister-chromatid cohesion at that site. Thus, our study demonstrates that pericentromere specification is remarkably flexible and can control chromosome segregation in a cell-type and context dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
11
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
12
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an evolutionarily conserved key regulator for satellite DNA transcription. Nat Commun 2024; 15:5151. [PMID: 38886382 PMCID: PMC11183047 DOI: 10.1038/s41467-024-49567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Yan L, Yuan X, Liu M, Chen Q, Zhang M, Xu J, Zeng LH, Zhang L, Huang J, Lu W, He X, Yan H, Wang F. A non-canonical role of the inner kinetochore in regulating sister-chromatid cohesion at centromeres. EMBO J 2024; 43:2424-2452. [PMID: 38714893 PMCID: PMC11182772 DOI: 10.1038/s44318-024-00104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 06/19/2024] Open
Abstract
The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.
Collapse
Affiliation(s)
- Lu Yan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Xueying Yuan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qinfu Chen
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Miao Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Long Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jun Huang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Fangwei Wang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China.
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an Evolutionarily Conserved Key Regulator for Satellite DNA Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592391. [PMID: 38746280 PMCID: PMC11092777 DOI: 10.1101/2024.05.03.592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
15
|
Ramakrishnan Chandra J, Kalidass M, Demidov D, Dabravolski SA, Lermontova I. The role of centromeric repeats and transcripts in kinetochore assembly and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:982-996. [PMID: 37665331 DOI: 10.1111/tpj.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms. Therefore, it is assumed that the centromeric position is determined epigenetically, and the centromeric histone H3 (CENH3) serves as an epigenetic marker. The loading of CENH3 onto centromeres depends on centromere-licensing factors, chaperones, and transcription of centromeric repeats. Several proteins that regulate CENH3 loading and kinetochore assembly interact with the centromeric transcripts and DNA in a sequence-independent manner. However, the functional aspects of these interactions are not fully understood. This review discusses the variability of centromeric sequences in different organisms and the regulation of their transcription through the RNA Pol II and RNAi machinery. The data suggest that the interaction of proteins involved in CENH3 loading and kinetochore assembly with centromeric DNA and transcripts plays a role in centromere, and possibly neocentromere, formation in a sequence-independent manner.
Collapse
Affiliation(s)
| | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel, 2161002, Israel
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| |
Collapse
|
16
|
Watson S, Porter H, Sudbery I, Thompson R. Modification of Seurat v4 for the Development of a Phase Assignment Tool Able to Distinguish between G2 and Mitotic Cells. Int J Mol Sci 2024; 25:4589. [PMID: 38731808 PMCID: PMC11083997 DOI: 10.3390/ijms25094589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) is a rapidly advancing field enabling the characterisation of heterogeneous gene expression profiles within a population. The cell cycle phase is a major contributor to gene expression variance between cells and computational analysis tools have been developed to assign cell cycle phases to cells within scRNAseq datasets. Whilst these tools can be extremely useful, all have the drawback that they classify cells as only G1, S or G2/M. Existing discrete cell phase assignment tools are unable to differentiate between G2 and M and continuous-phase-assignment tools are unable to identify a region corresponding specifically to mitosis in a pseudo-timeline for continuous assignment along the cell cycle. In this study, bulk RNA sequencing was used to identify differentially expressed genes between mitotic and interphase cells isolated based on phospho-histone H3 expression using fluorescence-activated cell sorting. These gene lists were used to develop a methodology which can distinguish G2 and M phase cells in scRNAseq datasets. The phase assignment tools present in Seurat were modified to allow for cell cycle phase assignment of all stages of the cell cycle to identify a mitotic-specific cell population.
Collapse
Affiliation(s)
- Steven Watson
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Harry Porter
- School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Institute for Nucleic Acid Research (SInFoNiA), Sheffield S10 2TN, UK
| | - Ruth Thompson
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Institute for Nucleic Acid Research (SInFoNiA), Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Wu F, Akbar H, Wang C, Yuan X, Dou Z, Mullen M, Niu L, Zhang L, Zang J, Wang Z, Yao X, Song X, Liu X. Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 15:mjad061. [PMID: 37777834 PMCID: PMC11181942 DOI: 10.1093/jmcb/mjad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.
Collapse
Affiliation(s)
- Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| |
Collapse
|
18
|
Jin T, Ding L, Chen J, Zou X, Xu T, Xuan Z, Wang S, Chen J, Wang W, Zhu C, Zhang Y, Huang P, Pan Z, Ge M. BUB1/KIF14 complex promotes anaplastic thyroid carcinoma progression by inducing chromosome instability. J Cell Mol Med 2024; 28:e18182. [PMID: 38498903 PMCID: PMC10948175 DOI: 10.1111/jcmm.18182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.
Collapse
Affiliation(s)
- Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Wei Wang
- Department of Pathology, Laboratory Medicine CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chaozhuang Zhu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
- Clinical Research Center for Cancer of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
19
|
Contreras A, Perea-Resa C. Transcriptional repression across mitosis: mechanisms and functions. Biochem Soc Trans 2024; 52:455-464. [PMID: 38372373 PMCID: PMC10903446 DOI: 10.1042/bst20231071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Transcription represents a central aspect of gene expression with RNA polymerase machineries (RNA Pol) driving the synthesis of RNA from DNA template molecules. In eukaryotes, a total of three RNA Pol enzymes generate the plethora of RNA species and RNA Pol II is the one transcribing all protein-coding genes. A high number of cis- and trans-acting factors orchestrates RNA Pol II-mediated transcription by influencing the chromatin recruitment, activation, elongation, and/or termination steps. The levels of DNA accessibility, defining open-euchromatin versus close-heterochromatin, delimits RNA Pol II activity as well as the encounter with other factors acting on chromatin such as the DNA replication or DNA repair machineries. The stage of the cell cycle highly influences RNA Pol II activity with mitosis representing the major challenge. In fact, there is a massive inhibition of transcription during the mitotic entry coupled with chromatin dissociation of most of the components of the transcriptional machinery. Mitosis, as a consequence, highly compromises the transcriptional memory and the perpetuation of cellular identity. Once mitosis ends, transcription levels immediately recover to define the cell fate and to safeguard the proper progression of daughter cells through the cell cycle. In this review, we evaluate our current understanding of the transcriptional repression associated with mitosis with a special focus on the molecular mechanisms involved, on the potential function behind the general repression, and on the transmission of the transcriptional machinery into the daughter cells. We finally discuss the contribution that errors in the inheritance of the transcriptional machinery across mitosis might play in stem cell aging.
Collapse
Affiliation(s)
- A. Contreras
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| | - C. Perea-Resa
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
20
|
Zhang Q, Chen Y, Teng Z, Lin Z, Liu H. CDK11 facilitates centromeric transcription to maintain centromeric cohesion during mitosis. Mol Biol Cell 2024; 35:ar18. [PMID: 38019613 PMCID: PMC10881149 DOI: 10.1091/mbc.e23-08-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Actively-transcribing RNA polymerase (RNAP)II is remained on centromeres to maintain centromeric cohesion during mitosis, although it is largely released from chromosome arms. This pool of RNAPII plays an important role in centromere functions. However, the mechanism of RNAPII retention on mitotic centromeres is poorly understood. We here demonstrate that Cyclin-dependent kinase (Cdk)11 is involved in RNAPII regulation on mitotic centromeres. Consistently, we show that Cdk11 knockdown induces centromeric cohesion defects and decreases Bub1 on kinetochores, but the centromeric cohesion defects are partially attributed to Bub1. Furthermore, Cdk11 knockdown and the expression of its kinase-dead version significantly reduce both RNAPII and elongating RNAPII (pSer2) levels on centromeres and decrease centromeric transcription. Importantly, the overexpression of centromeric α-satellite RNAs fully rescues Cdk11-knockdown defects. These results suggest that the maintenance of centromeric cohesion requires Cdk11-facilitated centromeric transcription. Mechanistically, Cdk11 localizes on centromeres where it binds and phosphorylates RNAPII to promote transcription. Remarkably, mitosis-specific degradation of G2/M Cdk11-p58 recapitulates Cdk11-knockdown defects. Altogether, our findings establish Cdk11 as an important regulator of centromeric transcription and as part of the mechanism for retaining RNAPII on centromeres during mitosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Zhen Teng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
21
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Mihalas BP, Pieper GH, Aboelenain M, Munro L, Srsen V, Currie CE, Kelly DA, Hartshorne GM, Telfer EE, McAinsh AD, Anderson RA, Marston AL. Age-dependent loss of cohesion protection in human oocytes. Curr Biol 2024; 34:117-131.e5. [PMID: 38134935 PMCID: PMC7617652 DOI: 10.1016/j.cub.2023.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/05/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a "cohesin bridge" between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age.
Collapse
Affiliation(s)
- Bettina P Mihalas
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Gerard H Pieper
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Mansour Aboelenain
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Theriogenology department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Lucy Munro
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Vlastimil Srsen
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Cerys E Currie
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Geraldine M Hartshorne
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK; University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
23
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 Triggers Melanomagenic Gene Silencing through Histone H2A Phosphorylation. Biomedicines 2023; 11:2552. [PMID: 37760992 PMCID: PMC10526264 DOI: 10.3390/biomedicines11092552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Vpr binding protein (VprBP), also known as DDB1- and CUL4-associated factor1 (DCAF1), is a recently identified atypical kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with the dysregulation of epigenetic factors targeting histones. Here, we demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive the transcriptional inactivation of growth-regulatory genes in melanoma cells. As is the case for its epigenetic function in other types of cancers, VprBP acts to induce a gene silencing program dependent on H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Collectively, our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA;
| | - Tobias S. Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA;
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| |
Collapse
|
24
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 triggers melanomagenic gene silencing through histone H2A phosphorylation. RESEARCH SQUARE 2023:rs.3.rs-3147199. [PMID: 37502858 PMCID: PMC10371079 DOI: 10.21203/rs.3.rs-3147199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with dysregulation of epigenetic factors targeting histones. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. However, it remains unknown whether VprBP is also involved in triggering the pathogenesis of other types of cancer. Results We demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive transcriptional inactivation of growth regulatory genes in melanoma cells. As is the case for its epigenetic function in colon and prostate cancers, VprBP acts to induce gene silencing program dependently of H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Moreover, artificial tethering of VprBP wild type, but not VprBP kinase-dead mutant, to its responsive genes is sufficient for achieving an inactive transcriptional state in VprBP-depleted cells, indicating that VprBP drives gene silencing program in an H2AT120p-dependent manner. Conclusions Our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
|
25
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 triggers melanomagenic gene silencing through histone H2A phosphorylation. RESEARCH SQUARE 2023:rs.3.rs-2950076. [PMID: 37293029 PMCID: PMC10246234 DOI: 10.21203/rs.3.rs-2950076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with dysregulation of epigenetic factors targeting histones. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. However, it remains unknown whether VprBP is also involved in triggering the pathogenesis of other types of cancer. Results We demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive transcriptional inactivation of growth regulatory genes in melanoma cells. As is the case for its epigenetic function in colon and prostate cancers, VprBP acts to induce gene silencing program dependently of H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Moreover, artificial tethering of VprBP wild type, but not VprBP kinase-dead mutant, to its responsive genes is sufficient for achieving an inactive transcriptional state in VprBP-depleted cells, indicating that VprBP drives gene silencing program in an H2AT120p-dependent manner. Conclusions Our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
|
26
|
Zhu J, Guo Q, Choi M, Liang Z, Yuen KWY. Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions. Chromosoma 2023:10.1007/s00412-023-00801-x. [PMID: 37401943 PMCID: PMC10356649 DOI: 10.1007/s00412-023-00801-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Centromeres are no longer considered to be silent. Both centromeric and pericentric transcription have been discovered, and their RNA transcripts have been characterized and probed for functions in numerous monocentric model organisms recently. Here, we will discuss the challenges in centromere transcription studies due to the repetitive nature and sequence similarity in centromeric and pericentric regions. Various technological breakthroughs have helped to tackle these challenges and reveal unique features of the centromeres and pericentromeres. We will briefly introduce these techniques, including third-generation long-read DNA and RNA sequencing, protein-DNA and RNA-DNA interaction detection methods, and epigenomic and nucleosomal mapping techniques. Interestingly, some newly analyzed repeat-based holocentromeres also resemble the architecture and the transcription behavior of monocentromeres. We will summarize evidences that support the functions of the transcription process and stalling, and those that support the functions of the centromeric and pericentric RNAs. The processing of centromeric and pericentric RNAs into multiple variants and their diverse structures may also provide clues to their functions. How future studies may address the separation of functions of specific centromeric transcription steps, processing pathways, and the transcripts themselves will also be discussed.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Qiao Guo
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- Institute of Molecular Physiology, Gaoke Innovation Center, Shenzhen Bay Laboratory, Guangming District, Guangqiao Road, Shenzhen, China
| | - Minjun Choi
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Zhoubin Liang
- Institute of Molecular Physiology, Gaoke Innovation Center, Shenzhen Bay Laboratory, Guangming District, Guangqiao Road, Shenzhen, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
27
|
Smurova K, Damizia M, Irene C, Stancari S, Berto G, Perticari G, Iacovella MG, D'Ambrosio I, Giubettini M, Philippe R, Baggio C, Callegaro E, Casagranda A, Corsini A, Polese VG, Ricci A, Dassi E, De Wulf P. Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 2023; 14:3172. [PMID: 37263996 DOI: 10.1038/s41467-023-38920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Kinetochores assemble on centromeres via histone H3 variant CENP-A and low levels of centromere transcripts (cenRNAs). The latter are ensured by the downregulation of RNA polymerase II (RNAPII) activity, and cenRNA turnover by the nuclear exosome. Using S. cerevisiae, we now add protein kinase Rio1 to this scheme. Yeast cenRNAs are produced either as short (median lengths of 231 nt) or long (4458 nt) transcripts, in a 1:1 ratio. Rio1 limits their production by reducing RNAPII accessibility and promotes cenRNA degradation by the 5'-3'exoribonuclease Rat1. Rio1 similarly curtails the concentrations of noncoding pericenRNAs. These exist as short transcripts (225 nt) at levels that are minimally two orders of magnitude higher than the cenRNAs. In yeast depleted of Rio1, cen- and pericenRNAs accumulate, CEN nucleosomes and kinetochores misform, causing chromosome instability. The latter phenotypes are also observed with human cells lacking orthologue RioK1, suggesting that CEN regulation by Rio1/RioK1 is evolutionary conserved.
Collapse
Affiliation(s)
- Ksenia Smurova
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Damizia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Carmela Irene
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Stefania Stancari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanna Berto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Perticari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giuseppina Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Ilaria D'Ambrosio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giubettini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Réginald Philippe
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Baggio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Elisabetta Callegaro
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Andrea Casagranda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Corsini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Vincenzo Gentile Polese
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Ricci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Peter De Wulf
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
28
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
29
|
Remsburg CM, Konrad KD, Song JL. RNA localization to the mitotic spindle is essential for early development and is regulated by kinesin-1 and dynein. J Cell Sci 2023; 136:jcs260528. [PMID: 36751992 PMCID: PMC10038151 DOI: 10.1242/jcs.260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Kalin D. Konrad
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Jia L. Song
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| |
Collapse
|
30
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
31
|
Cairo G, Greiwe C, Jung GI, Blengini C, Schindler K, Lacefield S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527197. [PMID: 36778459 PMCID: PMC9915740 DOI: 10.1101/2023.02.05.527197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.
Collapse
Affiliation(s)
- Gisela Cairo
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| | - Cora Greiwe
- Indiana University, Department of Biology, Bloomington, IN USA
| | - Gyu Ik Jung
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | | | - Karen Schindler
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| |
Collapse
|
32
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
33
|
Jian Y, Nie L, Liu S, Jiang Y, Dou Z, Liu X, Yao X, Fu C. The fission yeast kinetochore complex Mhf1-Mhf2 regulates the spindle assembly checkpoint and faithful chromosome segregation. J Cell Sci 2023; 136:286678. [PMID: 36537249 DOI: 10.1242/jcs.260124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Sikai Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| |
Collapse
|
34
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
35
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
36
|
Abad MA, Gupta T, Hadders MA, Meppelink A, Wopken JP, Blackburn E, Zou J, Gireesh A, Buzuk L, Kelly DA, McHugh T, Rappsilber J, Lens SMA, Jeyaprakash AA. Mechanistic basis for Sgo1-mediated centromere localization and function of the CPC. J Cell Biol 2022; 221:213318. [PMID: 35776132 PMCID: PMC9253516 DOI: 10.1083/jcb.202108156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC’s intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC–Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking. Here, using an integrative structure-function approach, we show that the “histone H3-like” Sgo1 N-terminal tail-Survivin BIR domain interaction acts as a hotspot essential for CPC–Sgo1 assembly, while downstream Sgo1 residues and Borealin contribute for high-affinity binding. Disrupting Sgo1–Survivin interaction abolished CPC–Sgo1 assembly and perturbed CPC centromere localization and function. Our findings reveal that Sgo1 and H3T3ph use the same surface on Survivin to bind CPC. Hence, it is likely that these interactions take place in a spatiotemporally restricted manner, providing a rationale for the Sgo1-mediated “kinetochore-proximal” CPC centromere pool.
Collapse
Affiliation(s)
- Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tanmay Gupta
- Early Cancer Institute, University of Cambridge Department of Oncology, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Amanda Meppelink
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J Pepijn Wopken
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Anjitha Gireesh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Lana Buzuk
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Toni McHugh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
37
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Ball CB, Parida M, Santana JF, Spector BM, Suarez GA, Price DH. Nuclear export restricts Gdown1 to a mitotic function. Nucleic Acids Res 2022; 50:1908-1926. [PMID: 35048979 PMCID: PMC8887472 DOI: 10.1093/nar/gkac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Approximately half of purified mammalian RNA polymerase II (Pol II) is associated with a tightly interacting sub-stoichiometric subunit, Gdown1. Previous studies have established that Gdown1 inhibits transcription initiation through competitive interactions with general transcription factors and blocks the Pol II termination activity of transcription termination factor 2 (TTF2). However, the biological functions of Gdown1 remain poorly understood. Here, we utilized genetic, microscopic, and multi-omics approaches to functionally characterize Gdown1 in three human cell lines. Acute depletion of Gdown1 caused minimal direct effects on transcription. We show that Gdown1 resides predominantly in the cytoplasm of interphase cells, shuttles between the cytoplasm and nucleus, and is regulated by nuclear export. Gdown1 enters the nucleus at the onset of mitosis. Consistently, genetic ablation of Gdown1 is associated with partial de-repression of mitotic transcription, and Gdown1 KO cells present with evidence of aberrant mitoses coupled to p53 pathway activation. Evidence is presented demonstrating that Gdown1 modulates the combined functions of purified productive elongation factors PAF1C, RTF1, SPT6, DSIF and P-TEFb in vitro. Collectively, our findings support a model wherein the Pol II-regulatory function of Gdown1 occurs during mitosis and is required for genome integrity.
Collapse
Affiliation(s)
- Christopher B Ball
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gustavo A Suarez
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
39
|
Amalina I, Bennett A, Whalley H, Perera D, McGrail JC, Tighe A, Procter DJ, Taylor SS. Inhibitors of the Bub1 spindle assembly checkpoint kinase: synthesis of BAY-320 and comparison with 2OH-BNPP1. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210854. [PMID: 34925867 PMCID: PMC8672067 DOI: 10.1098/rsos.210854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro, we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo, and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.
Collapse
Affiliation(s)
- Ilma Amalina
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ailsa Bennett
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David Perera
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Joanne C. McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David J. Procter
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
40
|
Chen Y, Zhang Q, Liu H. An emerging role of transcription in chromosome segregation: Ongoing centromeric transcription maintains centromeric cohesion. Bioessays 2021; 44:e2100201. [PMID: 34761408 DOI: 10.1002/bies.202100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023]
Abstract
Non-coding centromeres, which dictate kinetochore formation for proper chromosome segregation, are extremely divergent in DNA sequences across species but are under active transcription carried out by RNA polymerase (RNAP) II. The RNAP II-mediated centromeric transcription has been shown to facilitate the deposition of the centromere protein A (CENP-A) to centromeres, establishing a conserved and critical role of centromeric transcription in centromere maintenance. Our recent work revealed another role of centromeric transcription in chromosome segregation: maintaining centromeric cohesion during mitosis. Interestingly, this role appears to be fulfilled through ongoing centromeric transcription rather than centromeric transcripts. In addition, we found that centromeric transcription may not require some of the traditional transcription initiation factors, suggestive of "uniqueness" in its regulation. In this review, we discuss the novel role and regulation of centromeric transcription as well as the potential underlying mechanisms.
Collapse
Affiliation(s)
- Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70112, USA.,Tulane Aging Center, Tulane University School of Medicine, New Orleans, 70112, USA
| |
Collapse
|
41
|
Chen Q, Zhang M, Pan X, Yuan X, Zhou L, Yan L, Zeng LH, Xu J, Yang B, Zhang L, Huang J, Lu W, Fukagawa T, Wang F, Yan H. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Rep 2021; 36:109740. [PMID: 34551298 DOI: 10.1016/j.celrep.2021.109740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Bub1 is required for the kinetochore/centromere localization of two essential mitotic kinases Plk1 and Aurora B. Surprisingly, stable depletion of Bub1 by ∼95% in human cells marginally affects whole chromosome segregation fidelity. We show that CENP-U, which is recruited to kinetochores by the CENP-P and CENP-Q subunits of the CENP-O complex, is required to prevent chromosome mis-segregation in Bub1-depleted cells. Mechanistically, Bub1 and CENP-U redundantly recruit Plk1 to kinetochores to stabilize kinetochore-microtubule attachments, thereby ensuring accurate chromosome segregation. Furthermore, unlike its budding yeast homolog, the CENP-O complex does not regulate centromeric localization of Aurora B. Consistently, depletion of Bub1 or CENP-U sensitizes cells to the inhibition of Plk1 but not Aurora B kinase activity. Taken together, our findings provide mechanistic insight into the regulation of kinetochore function, which may have implications for targeted treatment of cancer cells with mutations perturbing kinetochore recruitment of Plk1 by Bub1 or the CENP-O complex.
Collapse
Affiliation(s)
- Qinfu Chen
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xueying Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linli Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Yan
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
42
|
Herlihy CP, Hahn S, Hermance NM, Crowley EA, Manning AL. Suv420 enrichment at the centromere limits Aurora B localization and function. J Cell Sci 2021; 134:jcs249763. [PMID: 34342353 PMCID: PMC8353524 DOI: 10.1242/jcs.249763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Centromere structure and function are defined by the epigenetic modification of histones at centromeric and pericentromeric chromatin. The constitutive heterochromatin found at pericentromeric regions is highly enriched for H3K9me3 and H4K20me3. Although mis-expression of the methyltransferase enzymes that regulate these marks, Suv39 and Suv420, is common in disease, the consequences of such changes are not well understood. Our data show that increased centromere localization of Suv39 and Suv420 suppresses centromere transcription and compromises localization of the mitotic kinase Aurora B, decreasing microtubule dynamics and compromising chromosome alignment and segregation. We find that inhibition of Suv420 methyltransferase activity partially restores Aurora B localization to centromeres and that restoration of the Aurora B-containing chromosomal passenger complex to the centromere is sufficient to suppress mitotic errors that result when Suv420 and H4K20me3 is enriched at centromeres. Consistent with a role for Suv39 and Suv420 in negatively regulating Aurora B, high expression of these enzymes corresponds with increased sensitivity to Aurora kinase inhibition in human cancer cells, suggesting that increased H3K9 and H4K20 methylation may be an underappreciated source of chromosome mis-segregation in cancer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Amity L. Manning
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609USA
| |
Collapse
|
43
|
Chen Y, Zhang Q, Teng Z, Liu H. Centromeric transcription maintains centromeric cohesion in human cells. J Cell Biol 2021; 220:e202008146. [PMID: 33881484 PMCID: PMC8065269 DOI: 10.1083/jcb.202008146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Centromeric transcription has been shown to play an important role in centromere functions. However, lack of approaches to specifically manipulate centromeric transcription calls into question that the proposed functions are a direct consequence of centromeric transcription. By monitoring nascent RNAs, we found that several transcriptional inhibitors exhibited distinct, even opposing, efficacies on the suppression of ongoing gene and centromeric transcription in human cells, whereas under the same conditions, total centromeric RNAs were changed to a lesser extent. The inhibitor suppressing ongoing centromeric transcription weakened centromeric cohesion, whereas the inhibitor increasing ongoing centromeric transcription strengthened centromeric cohesion. Furthermore, expression of CENP-B DNA-binding domain or CENP-B knockdown moderately increased centromeric transcription without altering gene transcription; as a result, centromeric cohesion was accordingly strengthened. Targeting of the Kox1-KRAB domain with CENP-B DB to centromeres specifically decreased centromeric transcription and weakened centromeric cohesion. Thus, based on these findings, we propose that a major function of centromeric transcription is to maintain centromeric cohesion in human cells.
Collapse
Affiliation(s)
- Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Zhen Teng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
44
|
Abstract
Chromosome instability (CIN) is a major hallmark of cancer cells and believed to drive tumor progression. Several cellular defects including weak centromeric cohesion are proposed to promote CIN, but the molecular mechanisms underlying these defects are poorly understood. In a screening for SET protein levels in various cancer cell lines, we found that most of the cancer cells exhibit higher SET protein levels than nontransformed cells, including RPE-1. Cancer cells with elevated SET often show weak centromeric cohesion, revealed by MG132-induced cohesion fatigue. Partial SET knockdown largely strengthens centromeric cohesion in cancer cells without increasing overall phosphatase 2A (PP2A) activity. Pharmacologically increased PP2A activity in these cancer cells barely ameliorates centromeric cohesion. These results suggest that compromised PP2A activity, a common phenomenon in cancer cells, may not be responsible for weak centromeric cohesion. Furthermore, centromeric cohesion in cancer cells can be strengthened by ectopic Sgo1 overexpression and weakened by SET WT, not by Sgo1-binding-deficient mutants. Altogether, these findings demonstrate that SET overexpression contributes to impaired centromeric cohesion in cancer cells and illustrate misregulated SET-Sgo1 pathway as an underlying mechanism.
Collapse
Affiliation(s)
- Lu Yang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Tianhua Niu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112.,Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
45
|
Leclerc S, Kitagawa K. The Role of Human Centromeric RNA in Chromosome Stability. Front Mol Biosci 2021; 8:642732. [PMID: 33869284 PMCID: PMC8044762 DOI: 10.3389/fmolb.2021.642732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome instability is a hallmark of cancer and is caused by inaccurate segregation of chromosomes. One cellular structure used to avoid this fate is the kinetochore, which binds to the centromere on the chromosome. Human centromeres are poorly understood, since sequencing and analyzing repeated alpha-satellite DNA regions, which can span a few megabases at the centromere, are particularly difficult. However, recent analyses revealed that these regions are actively transcribed and that transcription levels are tightly regulated, unveiling a possible role of RNA at the centromere. In this short review, we focus on the recent discovery of the function of human centromeric RNA in the regulation and structure of the centromere, and discuss the consequences of dysregulation of centromeric RNA in cancer.
Collapse
Affiliation(s)
- Simon Leclerc
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
46
|
Murillo-Pineda M, Valente LP, Dumont M, Mata JF, Fachinetti D, Jansen LE. Induction of spontaneous human neocentromere formation and long-term maturation. J Cell Biol 2021; 220:e202007210. [PMID: 33443568 PMCID: PMC7812830 DOI: 10.1083/jcb.202007210] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Human centromeres form primarily on α-satellite DNA but sporadically arise de novo at naive ectopic loci, creating neocentromeres. Centromere inheritance is driven primarily by chromatin containing the histone H3 variant CENP-A. Here, we report a chromosome engineering system for neocentromere formation in human cells and characterize the first experimentally induced human neocentromere at a naive locus. The spontaneously formed neocentromere spans a gene-poor 100-kb domain enriched in histone H3 lysine 9 trimethylated (H3K9me3). Long-read sequencing revealed this neocentromere was formed by purely epigenetic means and assembly of a functional kinetochore correlated with CENP-A seeding, eviction of H3K9me3 and local accumulation of mitotic cohesin and RNA polymerase II. At formation, the young neocentromere showed markedly reduced chromosomal passenger complex (CPC) occupancy and poor sister chromatin cohesion. However, long-term tracking revealed increased CPC assembly and low-level transcription providing evidence for centromere maturation over time.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Department of Biochemistry, University of Oxford, Oxford, UK
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Marie Dumont
- Institut Curie, Paris Sciences et Lettres, Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - João F. Mata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniele Fachinetti
- Institut Curie, Paris Sciences et Lettres, Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Lars E.T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, UK
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
47
|
Abstract
Accurate chromosome segregation is required for cell survival and organismal development. During mitosis, the spindle assembly checkpoint acts as a safeguard to maintain the high fidelity of mitotic chromosome segregation by monitoring the attachment of kinetochores to the mitotic spindle. Bub1 is a conserved kinase critical for the spindle assembly checkpoint. Bub1 also facilitates chromosome alignment and contributes to the regulation of mitotic duration. Here, focusing on the spindle assembly checkpoint and on chromosome alignment, we summarize the primary literature on Bub1, discussing its structure and functional domains, as well its regulation and roles in mitosis. In addition, we discuss recent evidence for roles of Bub1 beyond mitosis regulation in TGFβ signaling and telomere replication. Finally, we discuss the involvement of Bub1 in human diseases, especially in cancer, and the potential of using Bub1 as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, Korea
| | - Anton Gartner
- IBS Center for Genomic Integrity, Ulsan, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
48
|
The right place at the right time: Aurora B kinase localization to centromeres and kinetochores. Essays Biochem 2021; 64:299-311. [PMID: 32406506 DOI: 10.1042/ebc20190081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key "orchestrators" of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.
Collapse
|
49
|
Functioning mechanisms of Shugoshin-1 in centromeric cohesion during mitosis. Essays Biochem 2021; 64:289-297. [PMID: 32451529 DOI: 10.1042/ebc20190077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Proper regulation of centromeric cohesion is required for faithful chromosome segregation that prevents chromosomal instability. Extensive studies have identified and established the conserved protein Shugoshin (Sgo1/2) as an essential protector for centromeric cohesion. In this review, we summarize the current understanding of how Shugoshin-1 (Sgo1) protects centromeric cohesion at the molecular level. Targeting of Sgo1 to inner centromeres is required for its proper function of cohesion protection. We therefore discuss about the molecular mechanisms that install Sgo1 onto inner centromeres. At metaphase-to-anaphase transition, Sgo1 at inner centromeres needs to be disabled for the subsequent sister-chromatid segregation. A few recent studies suggest interesting models to explain how it is achieved. These models are discussed as well.
Collapse
|
50
|
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22:96-118. [PMID: 33353982 PMCID: PMC7754182 DOI: 10.1038/s41580-020-00315-9] [Citation(s) in RCA: 2889] [Impact Index Per Article: 722.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Chun-Jie Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|