1
|
Bai G, Endres T, Kühbacher U, Mengoli V, Greer BH, Peacock EM, Newton MD, Stanage T, Dello Stritto MR, Lungu R, Crossley MP, Sathirachinda A, Cortez D, Boulton SJ, Cejka P, Eichman BF, Cimprich KA. HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability. Mol Cell 2024; 84:3044-3060.e11. [PMID: 39142279 PMCID: PMC11366124 DOI: 10.1016/j.molcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Theresa Endres
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ulrike Kühbacher
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Briana H Greer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Emma M Peacock
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew D Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Roxana Lungu
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ataya Sathirachinda
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Karlene A Cimprich
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Li Y, Zhang Y, Shah SB, Chang CY, Wang H, Wu X. MutSβ protects common fragile sites by facilitating homology-directed repair at DNA double-strand breaks with secondary structures. Nucleic Acids Res 2024; 52:1120-1135. [PMID: 38038265 PMCID: PMC10853791 DOI: 10.1093/nar/gkad1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Common fragile sites (CFSs) are regions prone to chromosomal rearrangements, thereby contributing to tumorigenesis. Under replication stress (RS), CFSs often harbor under-replicated DNA regions at the onset of mitosis, triggering homology-directed repair known as mitotic DNA synthesis (MiDAS) to complete DNA replication. In this study, we identified an important role of DNA mismatch repair protein MutSβ (MSH2/MSH3) in facilitating MiDAS and maintaining CFS stability. Specifically, we demonstrated that MutSβ is required for the increased mitotic recombination induced by RS or FANCM loss at CFS-derived AT-rich and structure-prone sequences (CFS-ATs). We also found that MSH3 exhibits synthetic lethality with FANCM. Mechanistically, MutSβ is required for homologous recombination (HR) especially when DNA double-strand break (DSB) ends contain secondary structures. We also showed that upon RS, MutSβ is recruited to Flex1, a specific CFS-AT, in a PCNA-dependent but MUS81-independent manner. Furthermore, MutSβ interacts with RAD52 and promotes RAD52 recruitment to Flex1 following MUS81-dependent fork cleavage. RAD52, in turn, recruits XPF/ERCC1 to remove DNA secondary structures at DSB ends, enabling HR/break-induced replication (BIR) at CFS-ATs. We propose that the specific requirement of MutSβ in processing DNA secondary structures at CFS-ATs underlies its crucial role in promoting MiDAS and maintaining CFS integrity.
Collapse
Affiliation(s)
- Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yunkun Zhang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Sameer Bikram Shah
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chia-Yu Chang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Isik E, Shukla K, Pospisilova M, König C, Andrs M, Rao S, Rosano V, Dobrovolna J, Krejci L, Janscak P. MutSβ-MutLβ-FANCJ axis mediates the restart of DNA replication after fork stalling at cotranscriptional G4/R-loops. SCIENCE ADVANCES 2024; 10:eadk2685. [PMID: 38324687 PMCID: PMC10849593 DOI: 10.1126/sciadv.adk2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSβ, an MLH1-PMS1 heterodimer termed MutLβ, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSβ, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSβ, MutLβ, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSβ, MutLβ, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.
Collapse
Affiliation(s)
- Esin Isik
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| | - Michaela Pospisilova
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Pekarska 53, Brno 656 91, Czech Republic
| | - Christiane König
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Andrs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Satyajeet Rao
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vinicio Rosano
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jana Dobrovolna
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Pekarska 53, Brno 656 91, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| |
Collapse
|
4
|
Bai G, Endres T, Kühbacher U, Greer BH, Peacock EM, Crossley MP, Sathirachinda A, Cortez D, Eichman BF, Cimprich KA. HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.563641. [PMID: 37961428 PMCID: PMC10634870 DOI: 10.1101/2023.10.27.563641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
|
5
|
Oh JM, Kang Y, Park J, Sung Y, Kim D, Seo Y, Lee E, Ra J, Amarsanaa E, Park YU, Lee S, Hwang J, Kim H, Schärer O, Cho S, Lee C, Takata KI, Lee J, Myung K. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res 2023; 51:5584-5602. [PMID: 37140056 PMCID: PMC10287916 DOI: 10.1093/nar/gkad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.
Collapse
Affiliation(s)
- Jung-Min Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jumi Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dayoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yuri Seo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Young-Un Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Seung Woo Cho
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Ja Yil Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
6
|
Justice JL, Needham JM, Verhalen B, Jiang M, Thompson SR. BK Polyomavirus Requires the Mismatch Repair Pathway for DNA Damage Response Activation. J Virol 2022; 96:e0202821. [PMID: 35389233 PMCID: PMC9044952 DOI: 10.1128/jvi.02028-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome. Specifically, polyomaviruses promote S phase entry and delay S phase exit by activating the DNA damage response (DDR) pathway via an uncharacterized mechanism requiring viral replication. BKPyV infection elevates expression of MutSα, a mismatch repair (MMR) pathway protein complex that senses and repairs DNA mismatches and can activate the DDR. Thus, we investigated the role of the MMR pathway by silencing the MutSα component, Msh6, in BKPyV-infected primary cells. This resulted in severe DNA damage that correlated with weak DNA damage response activation and a failure to arrest the cell cycle to prevent mitotic entry during infection. Furthermore, silencing Msh6 expression resulted in significantly fewer infectious viral particles due to significantly lower levels of VP2, a minor capsid protein important for trafficking during subsequent infections. Since viral assembly occurs in the nucleus, our findings are consistent with a model in which entry into mitosis disrupts viral assembly due to nuclear envelope breakdown, which disperses VP2 throughout the cell, reducing its availability for encapsidation into viral particles. Thus, the MMR pathway may be required to activate the ATR (ATM-Rad3-related) pathway during infection to maintain a favorable environment for both viral replication and assembly. IMPORTANCE Since there are no therapeutics that target BKPyV reactivation in organ transplant patients, it is currently treated by decreasing immunosuppression to allow the natural immune system to fight the viral infection. Antivirals would significantly improve patient outcomes since reducing immunosuppression carries the risk of graft failure. PyVs activate the DDR, for which there are several promising inhibitors. However, a better understanding of how PyVs activate the DDR and what role the DDR plays during infection is needed. Here, we show that a component of the mismatch repair pathway is required for DDR activation during PyV infection. These findings show that the mismatch repair pathway is important for DDR activation during PyV infection and that inhibiting the DDR reduces viral titers by generating less infectious virions that lack the minor capsid protein VP2, which is important for viral trafficking.
Collapse
Affiliation(s)
- Joshua L. Justice
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandy Verhalen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Sakellariou D, Bak ST, Isik E, Barroso SI, Porro A, Aguilera A, Bartek J, Janscak P, Peña-Diaz J. MutSβ regulates G4-associated telomeric R-loops to maintain telomere integrity in ALT cancer cells. Cell Rep 2022; 39:110602. [PMID: 35385755 DOI: 10.1016/j.celrep.2022.110602] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSβ, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSβ recognizes and destabilizes G4 structures in vitro. These data suggest that MutSβ destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.
Collapse
Affiliation(s)
- Despoina Sakellariou
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Sara Thornby Bak
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Esin Isik
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland
| | - Sonia I Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville-CSIC-UPO, Seville, Spain
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville-CSIC-UPO, Seville, Spain
| | - Jiri Bartek
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 17177 Stockholm, Sweden; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic.
| | - Javier Peña-Diaz
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
8
|
Guervilly JH, Blin M, Laureti L, Baudelet E, Audebert S, Gaillard PH. SLX4 dampens MutSα-dependent mismatch repair. Nucleic Acids Res 2022; 50:2667-2680. [PMID: 35166826 PMCID: PMC8934664 DOI: 10.1093/nar/gkac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor SLX4 plays multiple roles in the maintenance of genome stability, acting as a scaffold for structure-specific endonucleases and other DNA repair proteins. It directly interacts with the mismatch repair (MMR) protein MSH2 but the significance of this interaction remained unknown until recent findings showing that MutSβ (MSH2-MSH3) stimulates in vitro the SLX4-dependent Holliday junction resolvase activity. Here, we characterize the mode of interaction between SLX4 and MSH2, which relies on an MSH2-interacting peptide (SHIP box) that drives interaction of SLX4 with both MutSβ and MutSα (MSH2-MSH6). While we show that this MSH2 binding domain is dispensable for the well-established role of SLX4 in interstrand crosslink repair, we find that it mediates inhibition of MutSα-dependent MMR by SLX4, unravelling an unanticipated function of SLX4.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Marion Blin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Luisa Laureti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
9
|
Yasuhara T, Kato R, Yamauchi M, Uchihara Y, Zou L, Miyagawa K, Shibata A. RAP80 suppresses the vulnerability of R-loops during DNA double-strand break repair. Cell Rep 2022; 38:110335. [PMID: 35108530 DOI: 10.1016/j.celrep.2022.110335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA (ssDNA) arising as an intermediate of cellular processes on DNA is a potential vulnerability of the genome unless it is appropriately protected. Recent evidence suggests that R-loops, consisting of ssDNA and DNA-RNA hybrids, can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. However, how the vulnerability of ssDNA in R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops, chromosome translocations, and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.
Collapse
Affiliation(s)
- Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motohiro Yamauchi
- Hospital Campus Laboratory, Radioisotope Center, Central Institute of Radioisotope Science and Safety Management, Kyushu University, Fukuoka, Japan
| | - Yuki Uchihara
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
10
|
Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503438. [PMID: 35094810 DOI: 10.1016/j.mrgentox.2021.503438] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
DNA double strand breaks (DSBs) are the most threatening type of DNA lesions and must be repaired properly in order to inhibit severe diseases and cell death. There are four major repair pathways for DSBs: non-homologous end joining (NHEJ), homologous recombination (HR), single strand annealing (SSA) and alternative end joining (alt-EJ). Cells choose repair pathway depending on the cell cycle phase and the length of 3' end of the DNA when DSBs are generated. Blunt and short regions of the 5' or 3' overhang DNA are repaired by NHEJ, which uses direct ligation or limited resection processing of the broken DNA end. In contrast, HR, SSA and alt-EJ use the resected DNA generated by the MRN (MRE11-RAD50-NBS1) complex and C-terminal binding protein interacting protein (CtIP) activated during the S and G2 phases. Here, we review recent findings on each repair pathway and the choice of repair mechanism and highlight the role of mismatch repair (MMR) protein in HR.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Young SJ, Sebald M, Shah Punatar R, Larin M, Masino L, Rodrigo-Brenni MC, Liang CC, West SC. MutSβ Stimulates Holliday Junction Resolution by the SMX Complex. Cell Rep 2020; 33:108289. [PMID: 33086055 DOI: 10.1016/j.celrep.2020.108289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
MutSα and MutSβ play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSβ, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSβ binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSβ and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSβ in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.
Collapse
Affiliation(s)
- Sarah J Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Meghan Larin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Masino
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Chih-Chao Liang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
13
|
Fang T, Zhang Y, Chang VY, Roos M, Termini CM, Signaevskaia L, Quarmyne M, Lin PK, Pang A, Kan J, Yan X, Javier A, Pohl K, Zhao L, Scott P, Himburg HA, Chute JP. Epidermal growth factor receptor-dependent DNA repair promotes murine and human hematopoietic regeneration. Blood 2020; 136:441-454. [PMID: 32369572 PMCID: PMC7378456 DOI: 10.1182/blood.2020005895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and irradiation cause DNA damage to hematopoietic stem cells (HSCs), leading to HSC depletion and dysfunction and the risk of malignant transformation over time. Extrinsic regulation of HSC DNA repair is not well understood, and therapies to augment HSC DNA repair following myelosuppression remain undeveloped. We report that epidermal growth factor receptor (EGFR) regulates DNA repair in HSCs following irradiation via activation of the DNA-dependent protein kinase-catalytic subunit (DNA-PKcs) and nonhomologous end joining (NHEJ). We show that hematopoietic regeneration in vivo following total body irradiation is dependent upon EGFR-mediated repair of DNA damage via activation of DNA-PKcs. Conditional deletion of EGFR in hematopoietic stem and progenitor cells (HSPCs) significantly decreased DNA-PKcs activity following irradiation, causing increased HSC DNA damage and depressed HSC recovery over time. Systemic administration of epidermal growth factor (EGF) promoted HSC DNA repair and rapid hematologic recovery in chemotherapy-treated mice and had no effect on acute myeloid leukemia growth in vivo. Further, EGF treatment drove the recovery of human HSCs capable of multilineage in vivo repopulation following radiation injury. Whole-genome sequencing analysis revealed no increase in coding region mutations in HSPCs from EGF-treated mice, but increased intergenic copy number variant mutations were detected. These studies demonstrate that EGF promotes HSC DNA repair and hematopoietic regeneration in vivo via augmentation of NHEJ. EGF has therapeutic potential to promote human hematopoietic regeneration, and further studies are warranted to assess long-term hematopoietic effects.
Collapse
Affiliation(s)
| | | | - Vivian Y Chang
- Pediatric Hematology/Oncology
- Jonsson Comprehensive Cancer Center
| | - Martina Roos
- Jonsson Comprehensive Cancer Center
- Division of Hematology/Oncology, Department of Medicine
- Broad Stem Cell Research Center, and
| | | | | | | | - Paulina K Lin
- Division of Hematology/Oncology, Department of Medicine
| | - Amara Pang
- Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine
| | - Xiao Yan
- Department of Molecular and Medical Pharmacology
| | - Anna Javier
- Division of Hematology/Oncology, Department of Medicine
| | | | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine
| | - Peter Scott
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | | | - John P Chute
- Jonsson Comprehensive Cancer Center
- Division of Hematology/Oncology, Department of Medicine
- Broad Stem Cell Research Center, and
| |
Collapse
|
14
|
Lorca V, Garre P. Current status of the genetic susceptibility in attenuated adenomatous polyposis. World J Gastrointest Oncol 2019; 11:1101-1114. [PMID: 31908716 PMCID: PMC6937445 DOI: 10.4251/wjgo.v11.i12.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Adenomatous polyposis (AP) is classified according to cumulative adenoma number in classical AP (CAP) and attenuated AP (AAP). Genetic susceptibility is the major risk factor in CAP due to mutations in the known high predisposition genes APC and MUTYH. However, the contribution of genetic susceptibility to AAP is lower and less understood. New predisposition genes have been recently proposed, and some of them have been validated, but their scarcity hinders accurate risk estimations and prevalence calculations. AAP is a heterogeneous condition in terms of severity, clinical features and heritability. Therefore, clinicians do not have strong discriminating criteria for the recommendation of the genetic study of known predisposition genes, and the detection rate is low. Elucidation and knowledge of new AAP high predisposition genes are of great importance to offer accurate genetic counseling to the patient and family members. This review aims to update the genetic knowledge of AAP, and to expound the difficulties involved in the genetic analysis of a highly heterogeneous condition such as AAP.
Collapse
Affiliation(s)
- Víctor Lorca
- Laboratorio de Oncología Molecular, Grupo de Investigación Clínica y Traslacional en Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Servicio de Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| |
Collapse
|
15
|
Chakraborty U, Mackenroth B, Shalloway D, Alani E. Chromatin Modifiers Alter Recombination Between Divergent DNA Sequences. Genetics 2019; 212:1147-1162. [PMID: 31221666 PMCID: PMC6707472 DOI: 10.1534/genetics.119.302395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Recombination between divergent DNA sequences is actively prevented by heteroduplex rejection mechanisms. In baker's yeast, such antirecombination mechanisms can be initiated by the recognition of DNA mismatches in heteroduplex DNA by MSH proteins, followed by recruitment of the Sgs1-Top3-Rmi1 helicase-topoisomerase complex to unwind the recombination intermediate. We previously showed that the repair/rejection decision during single-strand annealing recombination is temporally regulated by MSH (MutShomolog) protein levels and by factors that excise nonhomologous single-stranded tails. These observations, coupled with recent studies indicating that mismatch repair (MMR) factors interact with components of the histone chaperone machinery, encouraged us to explore roles for epigenetic factors and chromatin conformation in regulating the decision to reject vs. repair recombination between divergent DNA substrates. This work involved the use of an inverted repeat recombination assay thought to measure sister chromatid repair during DNA replication. Our observations are consistent with the histone chaperones CAF-1 and Rtt106, and the histone deacetylase Sir2, acting to suppress heteroduplex rejection and the Rpd3, Hst3, and Hst4 deacetylases acting to promote heteroduplex rejection. These observations, and double-mutant analysis, have led to a model in which nucleosomes located at DNA lesions stabilize recombination intermediates and compete with MMR factors that mediate heteroduplex rejection.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
16
|
Murmann AE, Yu J, Opal P, Peter ME. Trinucleotide Repeat Expansion Diseases, RNAi, and Cancer. Trends Cancer 2018; 4:684-700. [PMID: 30292352 DOI: 10.1016/j.trecan.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023]
Abstract
Many neurodegenerative diseases are caused by unstable trinucleotide repeat (TNR) expansions located in disease-associated genes. siRNAs based on CAG repeat expansions effectively kill cancer cell lines in vitro through RNAi. They also cause significant reduction in tumor growth in a human ovarian cancer mouse model with no toxicity to the treated mice. This suggests that cancer cells are particularly sensitive to CAG TNR-derived siRNAs, and explains a reported inverse correlation between the length of CAG TNRs and reduced global cancer incidences in some CAG TNR diseases. This review discusses both mutant proteins and mutant RNAs as a cause of TNR diseases, with a focus on RNAi and its role in contributing to disease pathology and in suppressing cancer.
Collapse
Affiliation(s)
- Andrea E Murmann
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jindan Yu
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Weßbecher IM, Brieger A. Phosphorylation meets DNA mismatch repair. DNA Repair (Amst) 2018; 72:107-114. [PMID: 30249411 DOI: 10.1016/j.dnarep.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
DNA mismatch repair (MMR) is a highly conserved process and ensures the removal of mispaired DNA bases and insertion-deletion loops right after replication. For this, a MutSα or MutSβ protein complex recognizes the DNA damage, MutLα nicks the erroneous strand, exonuclease 1 removes the wrong nucleotides, DNA polymerase δ refills the gap and DNA ligase I joins the fragments to seal the nicks and complete the repair process. The failure to accomplish these functions is associated with higher mutation rates and may lead to cancer, which highlights the importance of MMR by the maintenance of genomic stability. The post-replicative MMR implies that involved proteins are regulated at several levels, including posttranslational modifications (PTMs). Phosphorylation is one of the most common and major PTMs. Suitable with its regulatory force phosphorylation was shown to influence MMR factors thereby adjusting eukaryotic MMR activity. In this review, we summarized the current knowledge of the role of phosphorylation of MMR process involved proteins and their functional relevance.
Collapse
Affiliation(s)
| | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a.M., Germany.
| |
Collapse
|
18
|
Abstract
Lynch Syndrome (LS) is the most common dominantly inherited colorectal cancer (CRC) predisposition and is caused by a heterozygous germline defect in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. High microsatellite instability (MSI-H) and loss of MMR protein expression in tumours reflecting a defective MMR are indicators for LS, as well as a positive family history of early onset CRC. MSH2 and MSH6 form a major functional heterodimer, and MSH3 is an alternative binding partner for MSH2. So far, the role of germline MSH3 variants remains unclear, as to our knowledge heterozygous truncating variants are not regarded causative for LS, but were detected in patients with CRC, and recently biallelic MSH3 defects have been identified in two patients with adenomatous polyposis. By gene screening we investigated the role of MSH3 in 11 LS patients with truncating MSH6 germline variants and an unexplained MSH2 protein loss in their corresponding MSI-H tumours. We report the first two LS patients harbouring heterozygous germline variants c.1035del and c.2732T>G in MSH3 coincidentally with truncating variants in MSH6. In the patient with truncating germline variants in MSH3 and MSH6, two additional somatic second hits in both genes abrogate all binding partners for the MSH2 protein which might subsequently be degraded. The clinical relevance of MSH3 germline variants is currently under re-evaluation, and heterozygous MSH3 defects alone do not seem to induce a LS phenotype, but might aggravate the MSH6 phenotype in affected family members.
Collapse
|
19
|
Koi M, Tseng-Rogenski SS, Carethers JM. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J Gastrointest Oncol 2018; 10:1-14. [PMID: 29375743 PMCID: PMC5767788 DOI: 10.4251/wjgo.v10.i1.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - Stephanie S Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| |
Collapse
|
20
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
21
|
Colosio A, Frattini C, Pellicanò G, Villa-Hernández S, Bermejo R. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability. Nucleic Acids Res 2016; 44:10676-10690. [PMID: 27672038 PMCID: PMC5159547 DOI: 10.1093/nar/gkw858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022] Open
Abstract
Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability.
Collapse
Affiliation(s)
- Arianna Colosio
- The F.I.R.C. Institute of Molecular Oncology (IFOM) Foundation, Via Adamello 16, 20139 Milan, Italy
| | - Camilla Frattini
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Grazia Pellicanò
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara Villa-Hernández
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain.,Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain .,Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
22
|
Abstract
The ATR (ATM and rad3-related) pathway is crucial for proliferation, responding to DNA replication stress and DNA damage. This critical signaling pathway is carefully orchestrated through a multistep process requiring initial priming of ATR prior to damage, recruitment of ATR to DNA damage lesions, activation of ATR signaling, and, finally, modulation of ATR activity through a variety of post-translational modifications. Following activation, ATR functions in several vital cellular processes, including suppression of replication origin firing, promotion of deoxynucleotide synthesis and replication fork restart, prevention of double-stranded DNA break formation, and avoidance of replication catastrophe and mitotic catastrophe. In many cancers, tumor cells have increased dependence on ATR signaling for survival, making ATR a promising target for cancer therapy. Tumor cells compromised in DNA repair pathways or DNA damage checkpoints, cells reliant on homologous recombination, and cells with increased replication stress are particularly sensitive to ATR inhibition. Understanding ATR signaling and modulation is essential to unraveling which tumors have increased dependence on ATR signaling as well as how the ATR pathway can best be exploited for targeted cancer therapy.
Collapse
Affiliation(s)
- Stephanie A Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129;
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129; .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
23
|
Chakraborty U, Alani E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res 2016; 16:fow071. [PMID: 27573382 PMCID: PMC5976031 DOI: 10.1093/femsyr/fow071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates and epigenetic marks can modulate this critical decision.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
24
|
Lin Z, Xu SH, Wang HQ, Cai YJ, Ying L, Song M, Wang YQ, Du SJ, Shi KQ, Zhou MT. Prognostic value of DNA repair based stratification of hepatocellular carcinoma. Sci Rep 2016; 6:25999. [PMID: 27174663 PMCID: PMC4867671 DOI: 10.1038/srep25999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of DNA repair is frequently associated with tumor progression and response to therapy in hepatocellular carcinoma (HCC). Bioinformatics analyses of HCC data in the Cancer Genome Atlas (TCGA) were performed to define DNA repair based molecular classification that could predict the prognosis of patients with HCC. Furthermore, we tested its predictive performance in 120 independent cases. Four molecular subgroups were identified on the basis of coordinate DNA repair cluster (CDRC) comprising 15 genes in TCGA dataset. Increasing expression of CDRC genes were significantly associated with TP53 mutation. High CDRC was significantly correlated with advanced tumor grades, advanced pathological stage and increased vascular invasion rate. Multivariate Cox regression analysis indicated that the molecular subgrouping was an independent prognostic parameter for both overall survival (p = 0.004, hazard ratio (HR): 2.989) and tumor-free survival (p = 0.049, HR: 3.366) in TCGA dataset. Similar results were also obtained by analyzing the independent cohort. These data suggest that distinct dysregulation of DNA repair constituents based molecular classes in HCC would be useful for predicting prognosis and designing clinical trials for targeted therapy.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Shi-Hao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hai-Qing Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi-Jing Cai
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Li Ying
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mei Song
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qun Wang
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Shan-Jie Du
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Ke-Qing Shi
- Department of Infectious and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Meng-Tao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Acevedo J, Yan S, Michael WM. Direct Binding to Replication Protein A (RPA)-coated Single-stranded DNA Allows Recruitment of the ATR Activator TopBP1 to Sites of DNA Damage. J Biol Chem 2016; 291:13124-31. [PMID: 27129245 DOI: 10.1074/jbc.m116.729194] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/29/2022] Open
Abstract
A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes.
Collapse
Affiliation(s)
- Julyana Acevedo
- From the Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 and
| | - Shan Yan
- the Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina 28223
| | - W Matthew Michael
- From the Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 and
| |
Collapse
|
26
|
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 2016; 18:684-91. [PMID: 27111843 PMCID: PMC4939857 DOI: 10.1038/ncb3344] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.
Collapse
|
27
|
Kemmerich FE, Daldrop P, Pinto C, Levikova M, Cejka P, Seidel R. Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Res 2016; 44:5837-48. [PMID: 27016742 PMCID: PMC4937307 DOI: 10.1093/nar/gkw187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023] Open
Abstract
Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Institute of Experimental Physics I, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, D-48149 Münster, Germany
| | - Peter Daldrop
- Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, D-48149 Münster, Germany
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ralf Seidel
- Institute of Experimental Physics I, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, D-48149 Münster, Germany
| |
Collapse
|