1
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
2
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Qin Y, Dong X, Lu M, Jing L, Chen Q, Guan F, Xiang Z, Huang J, Yang C, He X, Qu J, Yang Z. PARP1 interacts with WDR5 to enhance target gene recognition and facilitate tumorigenesis. Cancer Lett 2024; 593:216952. [PMID: 38750719 DOI: 10.1016/j.canlet.2024.216952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.
Collapse
Affiliation(s)
- Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Guan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengkai Xiang
- Department of Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. PLoS Genet 2024; 20:e1011278. [PMID: 38805552 PMCID: PMC11161047 DOI: 10.1371/journal.pgen.1011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility at dawn and dusk over the circadian cycle. We observed significant oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible at both dawn and dusk, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase at dawn. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Dhahri H, Fondufe-Mittendorf YN. Exploring the interplay between PARP1 and circRNA biogenesis and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1823. [PMID: 37957925 PMCID: PMC11089078 DOI: 10.1002/wrna.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
PARP1 (poly-ADP-ribose polymerase 1) is a multidomain protein with a flexible and self-folding structure that allows it to interact with a wide range of biomolecules, including nucleic acids and target proteins. PARP1 interacts with its target molecules either covalently via PARylation or non-covalently through its PAR moieties induced by auto-PARylation. These diverse interactions allow PARP1 to participate in complex regulatory circuits and cellular functions. Although the most studied PARP1-mediated functions are associated with DNA repair and cellular stress response, subsequent discoveries have revealed additional biological functions. Based on these findings, PARP1 is now recognized as a major modulator of gene expression. Several discoveries show that this multifunctional protein has been intimately connected to several steps of mRNA biogenesis, from transcription initiation to mRNA splicing, polyadenylation, export, and translation of mRNA to proteins. Nevertheless, our understanding of PARP1's involvement in the biogenesis of both coding and noncoding RNA, notably circular RNA (circRNA), remains restricted. In this review, we outline the possible roles of PARP1 in circRNA biogenesis. A full examination of the regulatory roles of PARP1 in nuclear processes with an emphasis on circRNA may reveal new avenues to control dysregulation implicated in the pathogenesis of several diseases such as neurodegenerative disorders and cancers. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
6
|
Alagna NS, Thomas TI, Wilson KL, Reddy KL. Choreography of lamina-associated domains: structure meets dynamics. FEBS Lett 2023; 597:2806-2822. [PMID: 37953467 PMCID: PMC10858991 DOI: 10.1002/1873-3468.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.
Collapse
Affiliation(s)
- Nicholas S. Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tiera I. Thomas
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L. Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L. Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553315. [PMID: 37645872 PMCID: PMC10462003 DOI: 10.1101/2023.08.15.553315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Zheng G, Pang S, Wang J, Wang F, Wang Q, Yang L, Ji M, Xie D, Zhu S, Chen Y, Zhou Y, Higgins GA, Wiley JW, Hou X, Lin R. Glucocorticoid receptor-mediated Nr1d1 chromatin circadian misalignment in stress-induced irritable bowel syndrome. iScience 2023; 26:107137. [PMID: 37404374 PMCID: PMC10316663 DOI: 10.1016/j.isci.2023.107137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk.
Collapse
Affiliation(s)
- Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junbao Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Qi Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lili Yang
- Central Laboratory of Yan’an Hospital Affiliated to Kunming Medical University, Kunming Medical University, Kunming 650500, China
| | - Mengdie Ji
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Shengtao Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Zhou
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - John W. Wiley
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Jesus M, Cabral A, Monteiro C, Duarte AP, Morgado M. Peripheral Neuropathy Potentially Associated to Poly (ADP-Ribose) Polymerase Inhibitors: An Analysis of the Eudravigilance Database. Curr Oncol 2023; 30:6533-6545. [PMID: 37504339 PMCID: PMC10378010 DOI: 10.3390/curroncol30070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Poly (ADP-Ribose) polymerase inhibitors (PARPi) have emerged as a targeted therapy in cancer treatment with promising results in various types of cancer. This work aims to investigate the profile of adverse drug reactions (ADRs) associated with PARPi through the reports provided by the Eudravigilance (EV) database. We also intend to analyze the potential association of peripheral neuropathy to PARPi. Data on individual case safety reports (ICSRs) were obtained by accessing the European spontaneous reporting system via the EV website. A total of 12,762 ICSRs were collected from the EV database. Serious cases of nervous system disorders were analyzed providing strong evidence that peripheral neuropathy was reported in a higher frequency in patients treated with niraparib. Most cases reported a not recovered/not resolved outcome and involved drug withdrawal. However, several studies suggest that PARPi attenuate chemotherapy-induced painful neuropathy. Unexpected ADRs such as peripheral neuropathy may also occur, mostly in patients taking niraparib. Further pharmacovigilance studies should be conducted in this area to clarify with more precision the toxicity profile of these drugs.
Collapse
Affiliation(s)
- Mafalda Jesus
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
- Health Sciences Research Center, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
| | - António Cabral
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
- Pharmaceutical Services of Local Healthcare Unit of Guarda, 6300-749 Guarda, Portugal
| | - Cristina Monteiro
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
- Health Sciences Research Center, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- UFBI-Pharmacovigilance Unit of Beira Interior, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Paula Duarte
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
- Health Sciences Research Center, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- UFBI-Pharmacovigilance Unit of Beira Interior, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Manuel Morgado
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
- Health Sciences Research Center, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Pharmaceutical Services of University Hospital Center of Cova da Beira, 6200-251 Covilhã, Portugal
| |
Collapse
|
10
|
Cecere SC, Casartelli C, Forte M, Pignata S, Pisano C. Safety of PARP inhibitors as maintenance therapy in ovarian cancer. Expert Opin Drug Saf 2023; 22:897-908. [PMID: 37668154 DOI: 10.1080/14740338.2023.2254699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Antiangiogenic agents and poly(ADP-ribose) polymerase inhibitors (PARP-Is) have improved the outcome of patients suffering from ovarian cancer. However, as they are associated with many adverse events (AEs), it is important to be aware of their safety and toxicity profiles. AREAS COVERED We reviewed PARP-I therapeutical indications, mechanism of action, metabolism, and interactions. We reported on all major and minor AEs that have emerged from clinical trials (SOLO1, PRIMA, PAOLA1, ATHENA, SOLO2, NOVA, ARIEL3, NORA), their follow-ups, meta-analyses, and real-world studies, particularly hematologic toxicities and their management, and secondary malignancies (myelodysplastic syndrome and acute myeloid leukemia). We also addressed gastrointestinal, neurological, respiratory, hepatic, and renal toxicity and the use of PARP-Is in older, pregnant, and lactating patients. No specific research strategy in terms of keywords, inclusive dates and databases was used. EXPERT OPINION PARP-Is benefits largely outweigh the risks associated with potential AEs. Randomized controlled trials produced strong good, quality data, but they enrolled a selected population and failed to capture rare events. More pharmacovigilance data and real-life studies on a larger and more heterogeneous sample are needed to understand PARP-Is differences and to clarify the incidence of late AEs to balance the risk/benefit ratio.
Collapse
Affiliation(s)
- Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | | | - Miriam Forte
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
11
|
Vestlund J, Sumida N, Mehmood R, Bhartiya D, Wu S, Göndör A. The Nodewalk assay to quantitate chromatin fiber interactomes in very small cell populations. Nat Protoc 2023; 18:755-782. [PMID: 36434098 DOI: 10.1038/s41596-022-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
The chromosome conformation capture method and its derivatives, such as circularized chromosome conformation capture, carbon copy chromosome conformation capture, high-throughput chromosome conformation capture and capture high-throughput chromosome conformation capture, have pioneered our understanding of the principles of chromosome folding in the nucleus. These technical advances, however, cannot precisely quantitate interaction frequency in very small input samples. Here we describe a protocol for the Nodewalk assay, which is based on converting chromosome conformation capture DNA samples to RNA and subsequently to cDNA using strategically placed primers. This pipeline enables the quantitative analyses of chromatin fiber interactions without compromising its sensitivity down to <300 cells, making it suitable for MiSeq analyses of higher-order chromatin structures in biopsies, circulating tumor cells and transitional cell states, for example. Importantly, the quality of the Nodewalk sample can be assessed before sequencing to avoid unnecessary costs. Moreover, it enables analyses from hundreds of different restriction enzyme fragment viewpoints within the same initial small input sample to uncover complex, genome-wide networks. Following optimization of the different steps, the entire protocol can be completed within 2 weeks.
Collapse
Affiliation(s)
- Johanna Vestlund
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Noriyuki Sumida
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.,Bio Systems Design Department, Bio Analytical Systems Product Division, Analytical & Medical Solution Business Group, Hitachi High Technologies, Hitachinaka, Ibaraki, Japan
| | - Rashid Mehmood
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Deeksha Bhartiya
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Shuangyang Wu
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Epigenetic Insights on PARP-1 Activity in Cancer Therapy. Cancers (Basel) 2022; 15:cancers15010006. [PMID: 36612003 PMCID: PMC9817704 DOI: 10.3390/cancers15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The regulation of chromatin state and histone protein eviction have been proven essential during transcription and DNA repair. Poly(ADP-ribose) (PAR) polymerase 1 (PARP-1) and poly(ADP-ribosyl)ation (PARylation) are crucial mediators of these processes by affecting DNA/histone epigenetic events. DNA methylation/hydroxymethylation patterns and histone modifications are established by mutual coordination between all epigenetic modifiers. This review will focus on histones and DNA/histone epigenetic machinery that are direct targets of PARP-1 activity by covalent and non-covalent PARylation. The effects of these modifications on the activity/recruitment of epigenetic enzymes at DNA damage sites or gene regulatory regions will be outlined. Furthermore, based on the achievements made to the present, we will discuss the potential application of epigenetic-based therapy as a novel strategy for boosting the success of PARP inhibitors, improving cell sensitivity or overcoming drug resistance.
Collapse
|
13
|
A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for niraparib. Sci Rep 2022; 12:20601. [PMID: 36446798 PMCID: PMC9709073 DOI: 10.1038/s41598-022-23726-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022] Open
Abstract
Niraparib was approved for the treatment of platinum-sensitive recurrent epithelial ovarian cancer, fallopian tube and primary peritoneal cancer. The authors retrospectively investigated niraparib-related adverse events (AEs) through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Four algorithms were employed to quantify the signals of niraparib associated AEs, using data from the FAERS between 2017 and 2021. MYSQL 8.0, Navicat Premium 15, Microsoft EXCEL 2019 and the GraphPad Prism 8 were used to conduct statistical analysis. There are 7,238,157 reports collected from the FAERS database, of which 11,701 reports listed niraparib as the 'primary suspected (PS)' drug. A total of 97 significant disproportionality PTs conforming to the four algorithms were simultaneously retained. Unexpected significant AEs such as neuropathy peripheral, photosensitivity reaction, gastrooesophageal reflux disease might also occur. The median onset time of niraparib-associated AEs was 18 days (interquartile range [IQR] 4-66 days), and most of the cases occurred within the first months after niraparib initiation. The study found niraparib-associated AEs and might provide important support for clinical monitoring and risk identification of niraparib.
Collapse
|
14
|
Yuan Y, Padilla MA, Clark D, Yadlapalli S. Streamlined single-molecule RNA-FISH of core clock mRNAs in clock neurons in whole mount Drosophila brains. Front Physiol 2022; 13:1051544. [PMID: 36439243 PMCID: PMC9682093 DOI: 10.3389/fphys.2022.1051544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Circadian clocks are ∼24-h timekeepers that control rhythms in almost all aspects of our behavior and physiology. While it is well known that subcellular localization of core clock proteins plays a critical role in circadian regulation, very little is known about the spatiotemporal organization of core clock mRNAs and its role in generating ∼24-h circadian rhythms. Here we describe a streamlined single molecule Fluorescence In Situ Hybridization (smFISH) protocol and a fully automated analysis pipeline to precisely quantify the number and subcellular location of mRNAs of Clock, a core circadian transcription factor, in individual clock neurons in whole mount Drosophila adult brains. Specifically, we used ∼48 fluorescent oligonucleotide probes that can bind to an individual Clock mRNA molecule, which can then be detected as a diffraction-limited spot. Further, we developed a machine learning-based approach for 3-D cell segmentation, based on a pretrained encoder-decoder convolutional neural network, to automatically identify the cytoplasm and nuclei of clock neurons. We combined our segmentation model with a spot counting algorithm to detect Clock mRNA spots in individual clock neurons. Our results demonstrate that the number of Clock mRNA molecules cycle in large ventral lateral clock neurons (lLNvs) with peak levels at ZT4 (4 h after lights are turned on) with ∼80 molecules/neuron and trough levels at ZT16 with ∼30 molecules/neuron. Our streamlined smFISH protocol and deep learning-based analysis pipeline can be employed to quantify the number and subcellular location of any mRNA in individual clock neurons in Drosophila brains. Further, this method can open mechanistic and functional studies into how spatiotemporal localization of clock mRNAs affect circadian rhythms.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Ye Yuan, ; Swathi Yadlapalli,
| | - Marc-Antonio Padilla
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Dunham Clark
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, United States
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Ye Yuan, ; Swathi Yadlapalli,
| |
Collapse
|
15
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
16
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
17
|
Sun X, Zhang J, Cao C. CTCF and Its Partners: Shaper of 3D Genome during Development. Genes (Basel) 2022; 13:genes13081383. [PMID: 36011294 PMCID: PMC9407368 DOI: 10.3390/genes13081383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
The 3D genome organization and its dynamic modulate genome function, playing a pivotal role in cell differentiation and development. CTCF and cohesin, acting as the core architectural components involved in chromatin looping and genome folding, can also recruit other protein or RNA partners to fine-tune genome structure during development. Moreover, systematic screening for partners of CTCF has been performed through high-throughput approaches. In particular, several novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx, have been identified, and these partners are mostly implicated in transcriptional regulation and chromatin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated complexes in chromatin structure modulation, which may extend our understanding of the functions of higher-order chromatin architecture in developmental processes.
Collapse
Affiliation(s)
- Xiaoyue Sun
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Cao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Correspondence:
| |
Collapse
|
18
|
Mora A, Huang X, Jauhari S, Jiang Q, Li X. Chromatin Hubs: A biological and computational outlook. Comput Struct Biotechnol J 2022; 20:3796-3813. [PMID: 35891791 PMCID: PMC9304431 DOI: 10.1016/j.csbj.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
This review discusses our current understanding of chromatin biology and bioinformatics under the unifying concept of “chromatin hubs.” The first part reviews the biology of chromatin hubs, including chromatin–chromatin interaction hubs, chromatin hubs at the nuclear periphery, hubs around macromolecules such as RNA polymerase or lncRNAs, and hubs around nuclear bodies such as the nucleolus or nuclear speckles. The second part reviews existing computational methods, including enhancer–promoter interaction prediction, network analysis, chromatin domain callers, transcription factory predictors, and multi-way interaction analysis. We introduce an integrated model that makes sense of the existing evidence. Understanding chromatin hubs may allow us (i) to explain long-unsolved biological questions such as interaction specificity and redundancy of mechanisms, (ii) to develop more realistic kinetic and functional predictions, and (iii) to explain the etiology of genomic disease.
Collapse
Affiliation(s)
- Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
- Corresponding authors.
| | - Xiaowei Huang
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
| | - Shaurya Jauhari
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
| | - Qin Jiang
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210000, PR China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, PR China
- Corresponding authors.
| |
Collapse
|
19
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
20
|
Nakahata Y, Fukada Y. Molecular connections between circadian clock and health/aging. J Biochem 2022; 171:473-476. [PMID: 35383844 DOI: 10.1093/jb/mvac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
For decades, considerable efforts have been expended for solving the molecular mechanisms of disease progression. An important clue to tackle this question is the circadian clock. Recent findings have uncovered previously unknown molecular connections between circadian clock and disease incidence, consequently causing the aging process. Furthermore, "chronotherapy" is emerging as a new concept of optimizing the time of the day for drug administration according to target gene expressions in order to maximize therapeutic efficacy and minimize the side effects. This concept will help cure patients and prevent them from suffering evitable pain and side effects. This JB special issue "Molecular connections between circadian clock and health/aging" discusses how the circadian clocks link to health and aging from molecular to organismal levels.
Collapse
Affiliation(s)
- Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Martorana F, Da Silva LA, Sessa C, Colombo I. Everything Comes with a Price: The Toxicity Profile of DNA-Damage Response Targeting Agents. Cancers (Basel) 2022; 14:cancers14040953. [PMID: 35205700 PMCID: PMC8870347 DOI: 10.3390/cancers14040953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary DNA damage induces genome instability, which may elicit cancer development. Defects in the DNA repair machinery further enhance cancer predisposition, but can also be exploited as a therapeutic target. Indeed, targeted agents against specific components of DNA repair, such as PARP inhibitors, are employed in various tumor types, while others, such as ATR, CHK1 or WEE1 inhibitors, are in clinical development. Even though these molecules have proven to be effective in different settings, they display several on- and off-target toxicities, shared by the whole pharmacological class or are drug specific. Among these effects, hematological and gastrointestinal toxicities are the most common, while others are less frequent but potentially life-threatening (e.g., myelodysplastic syndromes). Particular caution is needed in the case of combinatorial therapeutic approaches, which are currently being developed in clinical trials. In any case, it is necessary to recognize and properly manage adverse events of these drugs. This review provides a comprehensive overview on the safety profile of DDR-targeting agents, including indications for their management in clinical practice. Abstract Targeting the inherent vulnerability of cancer cells with an impaired DNA Damage Repair (DDR) machinery, Poly-ADP-Ribose-Polymerase (PARP) inhibitors have yielded significant results in several tumor types, eventually entering clinical practice for the treatment of ovarian, breast, pancreatic and prostate cancer. More recently, inhibitors of other key components of DNA repair, such as ATR, CHK1 and WEE1, have been developed and are currently under investigation in clinical trials. The inhibition of DDR inevitably induces on-target and off-target adverse events. Hematological and gastrointestinal toxicities as well as fatigue are common with all DDR-targeting agents, while other adverse events are drug specific, such as hypertension with niraparib and transaminase elevation with rucaparib. Cases of pneumonitis and secondary hematological malignancies have been reported with PARP inhibitors and, despite being overly rare, they deserve particular attention due to their severity. Safety also represents a crucial issue for the development of combination regimens incorporating DDR-targeting agents with other treatments, such as chemotherapy, anti-angiogenics or immunotherapy. As such, overlapping and cumulative toxicities should be considered, especially when more than two classes of drugs are combined. Here, we review the safety profile of DDR-targeting agents when used as single agents or in combination and we provide principles of toxicity management.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Leandro Apolinario Da Silva
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
| | - Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
- Correspondence: ; Tel.: +41-91-811-8194
| |
Collapse
|
23
|
Kawakami S, Yoshitane H, Morimura T, Kimura W, Fukada Y. Diurnal shift of mouse activity by the deficiency of an aging-related gene Lmna. J Biochem 2022; 171:509-518. [PMID: 35137145 DOI: 10.1093/jb/mvac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear lamina is a fundamental structure of the cell nucleus and regulates a wide range of molecular pathways. Defects of components of the nuclear lamina cause aging-like physiological disorders, called laminopathy. Generally, aging and diseases are often associated with perturbation of various time-of-day-dependent regulations, but it remains still elusive whether laminopathy induces any changes of the circadian clock and physiological rhythms. Here we demonstrated that deficiency of Lmna gene in mice caused an obvious shift of locomotor activities to the daytime. The abnormal activity profile was accompanied by a remarkable change in phase-angle between the central clock in the suprachiasmatic nucleus (SCN) and lung peripheral clocks, leaving the phase of the SCN clock unaffected by the mutation. These observations suggest that Lmna deficiency causes a change of the habitat from nocturnal to diurnal behaviors. On the other hand, molecular oscillation and its phase resetting mechanism were intact in both the Lmna-deficient cells and progeria-mimicking cells. Intriguingly, high-fat diet feeding extended the short lifespan and ameliorated the abnormalities of the behaviors and the phase of the peripheral clock in the Lmna-deficient mice. The present study supports the important contribution of the energy conditions to a shift between the diurnal and nocturnal activities.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Taiki Morimura
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Kimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Chachoua I, Tzelepis I, Dai H, Lim JP, Lewandowska-Ronnegren A, Casagrande FB, Wu S, Vestlund J, Mallet de Lima CD, Bhartiya D, Scholz BA, Martino M, Mehmood R, Göndör A. Canonical WNT signaling-dependent gating of MYC requires a noncanonical CTCF function at a distal binding site. Nat Commun 2022; 13:204. [PMID: 35017527 PMCID: PMC8752836 DOI: 10.1038/s41467-021-27868-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Abnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 μm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture. Gene-gating of a MYC oncogenic super-enhancer (OSE) increases its expression in colon cancer cells in a poorly understood process. Here the authors show that MYC gating requires a CTCF binding site (CTCFBS) within the OSE that directs the stepwise trafficking of the OSE to the nuclear pore to facilitate increased nuclear export of MYC mRNA, which results in a growth advantage.
Collapse
Affiliation(s)
- Ilyas Chachoua
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Ilias Tzelepis
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Hao Dai
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.,Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jia Pei Lim
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lewandowska-Ronnegren
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Shuangyang Wu
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Vestlund
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Diettrich Mallet de Lima
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Deeksha Bhartiya
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Barbara A Scholz
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Mirco Martino
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Rashid Mehmood
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
26
|
Dai R, Xu W, Chen W, Cui L, Li L, Zhou J, Jin X, Wang Y, Wang L, Sun Y. Epigenetic modification of <i>Kiss1</i> gene expression in the AVPV is essential for female reproductive aging. Biosci Trends 2022; 16:346-358. [DOI: 10.5582/bst.2022.01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ruoxi Dai
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen Xu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Urology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lisha Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jing Zhou
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xueling Jin
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
28
|
Li J, Zhang Z. Risk of fatigue with PARP inhibitors in cancer patients: a systematic review and meta-analysis of 29 phase II/III randomized controlled trials. J Chemother 2021; 33:452-461. [PMID: 33583364 DOI: 10.1080/1120009x.2021.1884797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
Fatigue was a frequently reported adverse event associated with the use of PARP inhibitors. We performed a systematic review and meta-analysis to fully investigate the fatigue of PARP inhibitors in cancer patients. Databases were searched for randomized controlled trials (RCTs) treated with PARP inhibitors till July 2020. Twenty-nine RCTs and 9479 patients were included. This meta-analysis suggests that the use of PARP inhibitors significantly increase the risk of developing all-grade (RR, 1.25; 95%CI, 1.20-1.31; p < 0.00001; I2 = 48%) and high-grade fatigue (RR, 1.92; 95%CI, 1.51-2.45; p < 0.00001; I2 = 11%). Veliparib was associated with a relatively lower risk of fatigue. Patients with ovarian cancer tend to be associated with a higher risk of fatigue than those with non-ovarian cancer. Longer duration of therapy was associated with a higher risk of all-grade fatigue. Patients receiving PARP inhibitor monotherapy tends to be associated with a higher risk of all-grade fatigue than those receiving combination treatment.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P.R.China
| | - Zhifeng Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P.R.China
| |
Collapse
|
29
|
Johnston ME, Rivas MP, Nicolle D, Gorse A, Gulati R, Kumbaji M, Weirauch MT, Bondoc A, Cairo S, Geller J, Tiao G, Timchenko N. Olaparib Inhibits Tumor Growth of Hepatoblastoma in Patient-Derived Xenograft Models. Hepatology 2021; 74:2201-2215. [PMID: 34037269 PMCID: PMC8463483 DOI: 10.1002/hep.31919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL. RESULTS We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells. CONCLUSIONS In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
Collapse
Affiliation(s)
- Michael Edward Johnston
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| | - Maria Prates Rivas
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | | | | | - Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Stefano Cairo
- XenTech 4Évry‐CourcouronnesFrance,Istituto di Ricerca PediatricaPaduaItaly
| | - James Geller
- Department of OncologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| |
Collapse
|
30
|
Smith CL, Lan Y, Jain R, Epstein JA, Poleshko A. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. SCIENCE ADVANCES 2021; 7:eabj3035. [PMID: 34559565 PMCID: PMC8462898 DOI: 10.1126/sciadv.abj3035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The nuclear architecture of rod photoreceptor cells in nocturnal mammals is unlike that of other animal cells. Murine rod cells have an “inverted” chromatin organization with euchromatin at the nuclear periphery and heterochromatin packed in the center of the nucleus. In conventional nuclear architecture, euchromatin is mostly in the interior, and heterochromatin is largely at the nuclear periphery. We demonstrate that inverted nuclear architecture is achieved through global relabeling of the rod cell epigenome. During rod cell maturation, H3K9me2-labeled nuclear peripheral heterochromatin is relabeled with H3K9me3 and repositioned to the nuclear center, while transcriptionally active euchromatin is labeled with H3K9me2 and positioned at the nuclear periphery. Global chromatin relabeling is correlated with spatial rearrangement, suggesting a critical role for histone modifications, specifically H3K9 methylation, in nuclear architecture. These results reveal a dramatic example of genome-wide epigenetic relabeling of chromatin that accompanies altered nuclear architecture in a postnatal, postmitotic cell.
Collapse
Affiliation(s)
- Cheryl L. Smith
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
32
|
Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2019756118. [PMID: 34234015 PMCID: PMC8285898 DOI: 10.1073/pnas.2019756118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Collapse
Affiliation(s)
- Yangbo Xiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ye Yuan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mariana Jimenez
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Swathi Yadlapalli
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
33
|
Yue Y, Jiang Z, Sapey E, Wu T, Sun S, Cao M, Han T, Li T, Nian H, Jiang B. Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars. BMC Genomics 2021; 22:529. [PMID: 34246232 PMCID: PMC8272290 DOI: 10.1186/s12864-021-07869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ze Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Enoch Sapey
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tingting Wu
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Mengxue Cao
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
34
|
Programmed suppression of oxidative phosphorylation and mitochondrial function by gestational alcohol exposure correlate with widespread increases in H3K9me2 that do not suppress transcription. Epigenetics Chromatin 2021; 14:27. [PMID: 34130715 PMCID: PMC8207718 DOI: 10.1186/s13072-021-00403-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. Results Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. Conclusions Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00403-w.
Collapse
|
35
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
36
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
37
|
Bisceglie L, Hopp AK, Gunasekera K, Wright RH, Le Dily F, Vidal E, Dall'Agnese A, Caputo L, Nicoletti C, Puri PL, Beato M, Hottiger MO. MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. iScience 2021; 24:102432. [PMID: 33997706 PMCID: PMC8102911 DOI: 10.1016/j.isci.2021.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/27/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
While protein ADP-ribosylation was reported to regulate differentiation and dedifferentiation, it has so far not been studied during transdifferentiation. Here, we found that MyoD-induced transdifferentiation of fibroblasts to myoblasts promotes the expression of the ADP-ribosyltransferase ARTD1. Comprehensive analysis of the genome architecture by Hi-C and RNA-seq analysis during transdifferentiation indicated that ARTD1 locally contributed to A/B compartmentalization and coregulated a subset of MyoD target genes that were however not sufficient to alter transdifferentiation. Surprisingly, the expression of ARTD1 was accompanied by the continuous synthesis of nuclear ADP ribosylation that was neither dependent on the cell cycle nor induced by DNA damage. Conversely to the H2O2-induced ADP-ribosylation, the MyoD-dependent ADP-ribosylation was not associated to chromatin but rather localized to the nucleoplasm. Together, these data describe a MyoD-induced nucleoplasmic ADP-ribosylation that is observed particularly during transdifferentiation and thus potentially expands the plethora of cellular processes associated with ADP-ribosylation. MyoD-dependent transdifferentiation of IMR90 to myoblasts induces ARTD1 expression Transdifferentiation induces nuclear ARTD1-dependent ADP-ribosylation in myoblasts This ADP-ribosylation is induced independent of cell cycle and of DNA damage ARTD1-mediated poly-ADP-ribosylation localizes to the nucleoplasm in myoblasts
Collapse
Affiliation(s)
- Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Roni H Wright
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08003 Barcelona, Spain
| | - François Le Dily
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Enrique Vidal
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Chiara Nicoletti
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Miguel Beato
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Mermet J, Yeung J, Naef F. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. PLoS Genet 2021; 17:e1009350. [PMID: 33524027 PMCID: PMC7877755 DOI: 10.1371/journal.pgen.1009350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/11/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian clock drives extensive temporal gene expression programs controlling daily changes in behavior and physiology. In mouse liver, transcription factors dynamics, chromatin modifications, and RNA Polymerase II (PolII) activity oscillate throughout the 24-hour (24h) day, regulating the rhythmic synthesis of thousands of transcripts. Also, 24h rhythms in gene promoter-enhancer chromatin looping accompany rhythmic mRNA synthesis. However, how chromatin organization impinges on temporal transcription and liver physiology remains unclear. Here, we applied time-resolved chromosome conformation capture (4C-seq) in livers of WT and arrhythmic Bmal1 knockout mice. In WT, we observed 24h oscillations in promoter-enhancer loops at multiple loci including the core-clock genes Period1, Period2 and Bmal1. In addition, we detected rhythmic PolII activity, chromatin modifications and transcription involving stable chromatin loops at clock-output gene promoters representing key liver function such as glucose metabolism and detoxification. Intriguingly, these contacts persisted in clock-impaired mice in which both PolII activity and chromatin marks no longer oscillated. Finally, we observed chromatin interaction hubs connecting neighbouring genes showing coherent transcription regulation across genotypes. Thus, both clock-controlled and clock-independent chromatin topology underlie rhythmic regulation of liver physiology.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Acetylation
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Immunoprecipitation Sequencing/methods
- Circadian Clocks/genetics
- Circadian Rhythm/genetics
- Gene Expression Regulation
- Genome/genetics
- Histones/metabolism
- Liver/metabolism
- Lysine/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA-Seq/methods
- Mice
Collapse
Affiliation(s)
- Jérôme Mermet
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jake Yeung
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Chandradoss KR, Chawla B, Dhuppar S, Nayak R, Ramachandran R, Kurukuti S, Mazumder A, Sandhu KS. CTCF-Mediated Genome Architecture Regulates the Dosage of Mitotically Stable Mono-allelic Expression of Autosomal Genes. Cell Rep 2020; 33:108302. [PMID: 33113374 DOI: 10.1016/j.celrep.2020.108302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.
Collapse
Affiliation(s)
- Keerthivasan Raanin Chandradoss
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Bindia Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Shivnarayan Dhuppar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India.
| |
Collapse
|
40
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
41
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Poly(ADP-ribose) Polymerase 1 (PARP1) restrains MyoD-dependent gene expression during muscle differentiation. Sci Rep 2020; 10:15086. [PMID: 32934320 PMCID: PMC7493885 DOI: 10.1038/s41598-020-72155-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myogenic factor MyoD regulates skeletal muscle differentiation by interacting with a variety of chromatin-modifying complexes. Although MyoD can induce and maintain chromatin accessibility at its target genes, its binding and trans-activation ability can be limited by some types of not fully characterized epigenetic constraints. In this work we analysed the role of PARP1 in regulating MyoD-dependent gene expression. PARP1 is a chromatin-associated enzyme, playing a well recognized role in DNA repair and that is implicated in transcriptional regulation. PARP1 affects gene expression through multiple mechanisms, often involving the Poly(ADP-ribosyl)ation of chromatin proteins. In line with PARP1 down-regulation during differentiation, we observed that PARP1 depletion boosts the up-regulation of MyoD targets, such as p57, myogenin, Mef2C and p21, while its re-expression reverts this effect. We also found that PARP1 interacts with some MyoD-binding regions and that its presence, independently of the enzymatic activity, interferes with MyoD recruitment and gene induction. We finally suggest a relationship between the binding of PARP1 and the loss of the activating histone modification H3K4me3 at MyoD-binding regions. This work highlights not only a novel player in the epigenetic control of myogenesis, but also a repressive and catalytic-independent mechanisms by which PARP1 regulates transcription.
Collapse
|
43
|
Madariaga A, Bowering V, Ahrari S, Oza AM, Lheureux S. Manage wisely: poly (ADP-ribose) polymerase inhibitor (PARPi) treatment and adverse events. Int J Gynecol Cancer 2020; 30:903-915. [PMID: 32276934 PMCID: PMC7398227 DOI: 10.1136/ijgc-2020-001288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have transformed the treatment landscape in front-line and recurrent high-grade serous ovarian cancer. Maintenance strategies with PARPi have been assessed in randomized phase III trials in ovarian cancer; switch maintenance in the case of olaparib, niraparib, and rucaparib; and concurrent followed by continuation maintenance with veliparib. These studies have shown progression-free survival advantage with PARPi maintenance, with no major adverse changes in the quality of life; however, overall survival data remain immature to date. PARPi have also been incorporated in clinical practice as a single-agent treatment strategy in high-grade serous ovarian cancer, mainly in women who harbor alterations in the BRCA1/2 genes or have alterations in the homologous recombination deficiency (HRD) pathway. Contemporary studies are looking into potentially synergistic combination strategies with anti-angiogenics and immune checkpoint inhibitors, among others. The expansion of PARPi treatment has not been limited to ovarian cancer; talazoparib is licensed in patients with HER2-negative breast cancer with germline BRCA mutations (BRCAm), and front-line olaparib maintenance in patients with pancreatic cancer with germline BRCAm. Numerous studies assessing PARPi either in monotherapy or in combination with other agents are ongoing in multiple tumors, including prostate, endometrial, brain, and gastric cancers. Many patients are being treated with PARPi, some for prolonged periods of time. As a result, a thorough knowledge of the potential short- and long-term adverse events and their management is warranted to improve patient safety, treatment efficacy, and towards maintaining an appropriate dose intensity.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Valerie Bowering
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Soha Ahrari
- Pharmacy, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Amit M Oza
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
45
|
Yang L, Yang Y, Yuan J, Sun Y, Dai J, Su B. Transcriptomic Landscape of von Economo Neurons in Human Anterior Cingulate Cortex Revealed by Microdissected-Cell RNA Sequencing. Cereb Cortex 2020; 29:838-851. [PMID: 30535007 PMCID: PMC6319179 DOI: 10.1093/cercor/bhy286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 01/19/2023] Open
Abstract
The von Economo neurons (VENs) are specialized large bipolar projection neurons with restricted distribution in the human brain, and they are far more abundant in humans than in non-human primates. However, VEN functions remain elusive due to the difficulty of isolating VENs and dissecting their connections in the brain. Here, we combined laser-capture-microdissection with RNA sequencing to describe the transcriptomic profile of VENs from human anterior cingulate cortex (ACC). Using pyramidal neurons as reference cells, we identified 344 genes with VEN-associated expression differences, including 215 higher and 129 lower expression genes. Functional enrichment and protein–protein interaction network analyses showed that these genes with VEN-associated expression differences are involved in VEN morphogenesis and functions, such as dendrite branching and axon myelination, and many of them are associated with human social-emotional disorders. With the use of in situ hybridization and immunohistochemistry assays, we validated four novel VEN markers (VAT1L, CHST8, LYPD1, and SULF2). Collectively, we generated a full-spectrum expression profile of VENs from human ACC, greatly enlarging the pool of genes with VEN-associated expression differences that can help researchers to understand the role of VENs in normal and disordered human brains.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yandong Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Sun
- Chinese Brain Bank Center, South-Central University for Nationalities, Wuhan, China
| | - Jiapei Dai
- Chinese Brain Bank Center, South-Central University for Nationalities, Wuhan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
46
|
Abstract
At the nuclear periphery, associations of chromatin with the nuclear lamina through lamina-associated domains (LADs) aid functional organization of the genome. We review the organization of LADs and provide evidence of LAD heterogeneity from cell ensemble and single-cell data. LADs are typically repressive environments in the genome; nonetheless, we discuss findings of lamin interactions with regulatory elements of active genes, and the role lamins may play in genome regulation. We address the relationship between LADs and other genome organizers, and the involvement of LADs in laminopathies. The current data lay the basis for future studies on the significance of lamin-chromatin interactions in health and disease.
Collapse
Affiliation(s)
- Nolwenn Briand
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway.
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
47
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
48
|
Göndör A. WNT-mediated gene gating: a novel principle connecting oncogenic super-enhancers with the nuclear pore to drive pathological expression of MYC. Mol Cell Oncol 2020; 7:1710992. [PMID: 32158925 PMCID: PMC7051154 DOI: 10.1080/23723556.2019.1710992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 11/27/2022]
Abstract
WNT signaling enhances MYC expression in cancer cells to increase the rate of cell proliferation. We have recently found that this principle involves the gating of MYC to nuclear pores mediated by an oncogenic super-enhancer in a ß-catenin-dependent manner in colon cancer cells. This phenomenon, which is absent in normal cells, leads to pathological levels of MYC expression.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Bioclinicum, Solna, Sweden
| |
Collapse
|
49
|
Abstract
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
Collapse
|
50
|
Abstract
Humans, like all mammals, partition their daily behaviour into activity (wakefulness) and rest (sleep) phases that differ largely in their metabolic requirements. The circadian clock evolved as an autonomous timekeeping system that aligns behavioural patterns with the solar day and supports the body functions by anticipating and coordinating the required metabolic programmes. The key component of this synchronization is a master clock in the brain, which responds to light-darkness cues from the environment. However, to achieve circadian control of the entire organism, each cell of the body is equipped with its own circadian oscillator that is controlled by the master clock and confers rhythmicity to individual cells and organs through the control of rate-limiting steps of metabolic programmes. Importantly, metabolic regulation is not a mere output function of the circadian system, but nutrient, energy and redox levels signal back to cellular clocks in order to reinforce circadian rhythmicity and to adapt physiology to temporal tissue-specific needs. Thus, multiple systemic and molecular mechanisms exist that connect the circadian clock with metabolism at all levels, from cellular organelles to the whole organism, and deregulation of this circadian-metabolic crosstalk can lead to various pathologies.
Collapse
|