1
|
Matsumoto S, Kogure Y, Ono S, Numata T, Endo T. Msp1 and Pex19-Pex3 cooperate to achieve correct localization of Pex15 to peroxisomes. FEBS J 2025. [PMID: 40344504 DOI: 10.1111/febs.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Yeast Msp1 is a dual-localized AAA-ATPase on the mitochondrial outer membrane (OM) and peroxisomal membrane. We previously showed that Msp1 transfers mistargeted tail-anchored (TA) proteins from mitochondria to the endoplasmic reticulum (ER) for degradation or delivery to their original destinations. However, the mechanism by which Msp1 in mitochondria and peroxisomes handles authentic peroxisomal TA proteins remains unclear. We show that newly synthesized Pex15 is targeted to peroxisomes primarily via the Pex19- and Pex3-dependent pathway. Mistargeted Pex15 on the mitochondrial OM is extracted by mitochondrial Msp1 and transferred to the ER via the guided-entry of TA proteins pathway for degradation or to peroxisomes via the Pex19-Pex3 pathway. Intriguingly, endogenous Pex15 localized in peroxisomes is also extracted from the membranes by peroxisomal Msp1 but returns to peroxisomes via the Pex19-Pex3 pathway. These results suggest that correct Pex15 localization to peroxisomes relies on not only the initial targeting by Pex19-Pex3 but also the constant re-routing by Msp1 and Pex19-Pex3.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Kogure
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| |
Collapse
|
2
|
Walter IR, Smith BA, Castanzo D, Wohlever ML. Overcoming fluorescence loss in mEOS-based AAA+ unfoldase reporters through covalent linkage. Protein Expr Purif 2025; 232:106724. [PMID: 40306474 DOI: 10.1016/j.pep.2025.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins. To circumvent this challenge, we separately purified mEOS and multiple different AAA+ degrons, including a transmembrane domain. We then covalently linked mEOS and the degrons via Sortase. This innovative approach preserves mEOS fluorescence and photoconversion, even upon linkage to a transmembrane domain. Together, this work offers a broadly applicable platform for the study of membrane associated AAA+ proteins.
Collapse
Affiliation(s)
- Isabella R Walter
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Baylee A Smith
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Dominic Castanzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Institute of Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Gaur D, Acquaviva B, Wohlever ML. An Msp1-Protease Chimera Captures Transient AAA+ Interactions and Unveils Ost4 Mislocalization Errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646376. [PMID: 40236206 PMCID: PMC11996533 DOI: 10.1101/2025.03.31.646376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Membrane protein homeostasis (proteostasis) is essential for maintaining the integrity of eukaryotic organelles. Msp1 is a membrane anchored AAA+ (ATPase Associated with cellular Activities) protein that maintains mitochondrial proteostasis by extracting aberrant proteins from the outer mitochondrial membrane. A comprehensive understanding of the physiological roles of Msp1 has been hindered because AAA+ proteins interact with substrates transiently and common strategies to stabilize this interaction lead to undesirable mitochondrial phenotypes. To circumvent these drawbacks, we fused catalytically active Msp1 to the inactivated protease domain of the AAA+ protease Yme1. The resulting chimera sequesters substrates in the catalytically inactive degradation chamber formed by the protease domain. We performed mass spectrometry analysis with the Msp1-protease chimera and identified the signal anchored protein Ost4 as a novel Msp1 substrate. Topology experiments show that Ost4 adopts mixed orientations when mislocalized to mitochondria and that Msp1 extracts mislocalized Ost4 regardless of orientation. Together, this work develops new tools for capturing transient interactions with AAA+ proteins, identifies new Msp1 substrates, and shows a surprising error in targeting of Ost4.
Collapse
|
4
|
Gaur D, Wohlever ML. A suite of pre-assembled, pET28b-based Golden Gate vectors for efficient protein engineering and expression. Protein Sci 2025; 34:e70106. [PMID: 40130802 PMCID: PMC11934214 DOI: 10.1002/pro.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Expression and purification of recombinant proteins in Escherichia coli is a bedrock technique in biochemistry and molecular biology. Expression optimization requires testing different combinations of solubility tags, affinity purification techniques, and site-specific proteases. This optimization is laborious and time-consuming as these features are spread across different vector series and require different cloning strategies with varying efficiencies. Modular cloning kits based on the Golden Gate system exist, but they are not optimized for protein biochemistry and are overly complicated for many applications, such as undergraduate research or simple screening of protein purification features. An ideal solution is for a single gene synthesis or PCR product to be compatible with a large series of pre-assembled Golden Gate vectors containing a broad array of purification features at either the N or C terminus. To our knowledge, no such system exists. To fulfill this unmet need, we Golden Gate domesticated the pET28b vector and developed a suite of 21 vectors with different combinations of purification tags, solubility domains, visualization/labeling tags, and protease sites. We also developed a vector series with nine different N-terminal tags and no C-terminal cloning scar. The system is modular, allowing users to easily customize the vectors with their preferred combinations of features. To allow for easy visual screening of cloned vectors, we optimized constitutive expression of the fluorescent protein mScarlet3 in the reverse strand, resulting in a red to white color change upon successful cloning. Testing with the model protein sfGFP shows the ease of visual screening, high efficiency of cloning, and robust protein expression. These vectors provide versatile, high-throughput solutions for protein engineering and functional studies in E. coli.
Collapse
Affiliation(s)
- Deepika Gaur
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
5
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Walter IR, Smith BA, Castanzo D, Wohlever ML. Overcoming Fluorescence Loss in mEOS-based AAA+ Unfoldase Reporters Through Covalent Linkage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633048. [PMID: 39868159 PMCID: PMC11761053 DOI: 10.1101/2025.01.14.633048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins. To circumvent this challenge, we separately purified mEOS and a AAA+ degron, covalently linked them via Sortase, and photoconverted the linked construct. This innovative approach preserves fluorescence and enables functional analysis, offering a broadly applicable platform for the study of membrane associated AAA+ proteins.
Collapse
Affiliation(s)
- Isabella R Walter
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
| | - Baylee A Smith
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
| | - Dominic Castanzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Institute of Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261
| |
Collapse
|
7
|
Gaur D, Wohlever ML. A suite of pre-assembled, pET28b-based Golden Gate vectors for efficient protein engineering and expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632842. [PMID: 39868162 PMCID: PMC11761132 DOI: 10.1101/2025.01.13.632842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Expression and purification of recombinant proteins in E. coli is a bedrock technique in biochemistry and molecular biology. Expression optimization requires testing different combinations of solubility tags, affinity purification techniques, and site-specific proteases. This optimization is laborious and time consuming as these features are spread across different vector series and require different cloning strategies with varying efficiencies. Modular cloning kits based on the Golden Gate system exist, but are overly complicated for many applications, such as undergraduate research or simple screening of protein purification features. An ideal solution is for a single gene synthesis or PCR product to be compatible with a large series of pre-assembled Golden Gate vectors containing a broad array of purification features at either the N or C-terminus. To our knowledge, no such system exists. To fulfill this unmet need, we Golden Gate domesticated the pET28b vector and developed a suite of 21 vectors with different combinations of purification tags, solubility domains, visualization/labeling tags, and protease sites. We also developed a completely scarless vector series with 9 different N-terminal tags. The system is modular, allowing users to easily customize the vectors with their preferred combinations of features. To allow for easy visual screening of cloned vectors, we optimized constitutive expression of the fluorescent protein mScarlet3 in the reverse strand, resulting in a red to white color change upon successful cloning. Testing with the model protein sfGFP shows the ease of visual screening, high efficiency of cloning, and robust protein expression. These vectors provide versatile, high-throughput solutions for protein engineering and functional studies in E. coli.
Collapse
Affiliation(s)
- Deepika Gaur
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
8
|
Yan HH, He JJ, Fu C, Chen JH, Tang AH. ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function. Int J Mol Sci 2024; 26:44. [PMID: 39795902 PMCID: PMC11719905 DOI: 10.3390/ijms26010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood. In this study, we demonstrate that ATAD1 is primarily localized to mitochondria in dendrites and, to a lesser extent, in spines in cultured hippocampal neurons. We found that ATAD1 deficiency disrupts the mitochondrial fission-fusion balance, resulting in mitochondrial fragmentation. This deficiency also impairs dendritic branching, hinders dendritic spine maturation, and reduces glutamatergic synaptic transmission in hippocampal neuron. To further investigate the underlying mechanism, we employed an ATP hydrolysis-deficient mutant of ATAD1 to rescue the neuronal deficits associated with ATAD1 loss. We discovered that the synaptic deficits are independent of the mitochondrial morphology changes but rely on its ATP hydrolysis. Furthermore, we show that ATAD1 loss leads to impaired mitochondrial function, including decreased ATP production, impaired membrane potential, and elevated oxidative stress. In conclusion, our results provide evidence that ATAD1 is crucial for maintaining mitochondrial function and regulating neurodevelopment and synaptic function.
Collapse
Affiliation(s)
- Hao-Hao Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Jia-Jia He
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
| | - Chuanhai Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
| | - Jia-Hui Chen
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ai-Hui Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
9
|
Dar MA, Louder R, Cortes M, Chen R, Ma Q, Chakrabarti M, Umanah GKE, Dawson TM, Dawson VL. Cryo-EM Structure of AAA + ATPase Thorase Reveals Novel Helical Filament Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624887. [PMID: 39605435 PMCID: PMC11601504 DOI: 10.1101/2024.11.22.624887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The AAA+ ( A TPases a ssociated with a variety of cellular a ctivities) ATPase, Thorase, also known as ATAD1, plays multiple roles in synaptic plasticity, mitochondrial quality control and mTOR signaling through disassembling protein complexes like AMPAR and mTORC1 in an ATP-dependent manner. The Oligomerization of Thorase is crucial for its disassembly and remodeling functions. We show that wild-type Thorase forms long helical filaments in vitro , dependent on ATP binding but not hydrolysis. We report the Cryogenic Electron Microscopy (cryo-EM) structure of the Thorase filament at a resolution of 4 Å, revealing the dimeric arrangement of the basic repeating unit that is formed through a distinct interface compared to the hexameric MSP1/ATAD1E193Q assembly. Structure-guided mutagenesis confirms the role of critical amino acid residues required for filament formation, oligomerization and disassembly of mTORC1 protein complex. Together, our data reveals a novel filament structure of Thorase and provides critical information that elucidates the mechanism underlying Thorase filament formation and Thorase-mediated disassembly of the mTORC1 complex.
Collapse
|
10
|
Wilson ZN, Balasubramaniam SS, Wong S, Schuler MH, Wopat MJ, Hughes AL. Mitochondrial-derived compartments remove surplus proteins from the outer mitochondrial membrane. J Cell Biol 2024; 223:e202307036. [PMID: 39136938 PMCID: PMC11320589 DOI: 10.1083/jcb.202307036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
The outer mitochondrial membrane (OMM) creates a boundary that imports most of the mitochondrial proteome while removing extraneous or damaged proteins. How the OMM senses aberrant proteins and remodels to maintain OMM integrity remains unresolved. Previously, we identified a mitochondrial remodeling mechanism called the mitochondrial-derived compartment (MDC) that removes a subset of the mitochondrial proteome. Here, we show that MDCs specifically sequester proteins localized only at the OMM, providing an explanation for how select mitochondrial proteins are incorporated into MDCs. Remarkably, selective sorting into MDCs also occurs within the OMM, as subunits of the translocase of the outer membrane (TOM) complex are excluded from MDCs unless assembly of the TOM complex is impaired. Considering that overloading the OMM with mitochondrial membrane proteins or mistargeted tail-anchored membrane proteins induces MDCs to form and sequester these proteins, we propose that one functional role of MDCs is to create an OMM-enriched trap that segregates and sequesters excess proteins from the mitochondrial surface.
Collapse
Affiliation(s)
- Zachary N Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Sara Wong
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mitchell J Wopat
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Fresenius HL, Gaur D, Smith B, Acquaviva B, Wohlever ML. The AAA+ protein Msp1 recognizes substrates by a hydrophobic mismatch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548587. [PMID: 37502992 PMCID: PMC10369969 DOI: 10.1101/2023.07.11.548587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
An essential aspect of protein quality control is enzymatic removal of membrane proteins from the lipid bilayer. Failures in this essential cellular process are associated with neurodegenerative diseases and cancer. Msp1 is a AAA+ (ATPases Associated with diverse cellular Activities) protein that removes mistargeted proteins from the outer mitochondrial membrane (OMM). How Msp1 selectively recognizes and extracts substrates within the complex OMM ecosystem, and the role of the lipid bilayer on these processes is unknown. Here, we describe the development of fully defined, rapid, and quantitative extraction assay that retains physiological substrate selectivity. Using this new assay, we systematically modified both substrates and the lipid environment to demonstrate that Msp1 recognizes substrates by a hydrophobic mismatch between the substrate TMD and the lipid bilayer. We further demonstrate that the rate limiting step in Msp1 activity is extraction of the TMD from the lipid bilayer. Together, these results provide foundational insights into how the lipid bilayer influences AAA+ mediated membrane protein extraction.
Collapse
Affiliation(s)
- Heidi L. Fresenius
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | - Deepika Gaur
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Baylee Smith
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | | | - Matthew L. Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
12
|
Smith B, Gaur D, Walker N, Walter I, Wohlever ML. Energetic requirements and mechanistic plasticity in Msp1-mediated substrate extraction from lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614443. [PMID: 39386490 PMCID: PMC11463475 DOI: 10.1101/2024.09.23.614443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
AAA+ proteins are essential molecular motors involved in numerous cellular processes, yet their mechanism of action in extracting membrane proteins from lipid bilayers remains poorly understood. One roadblock for mechanistic studies is the inability to generate subunit specific mutations within these hexameric proteins. Using the mitochondrial AAA+ protein Msp1 as a model, we created covalently linked dimers with varying combinations of wild type and catalytically inactive E193Q mutations. The wide range of ATPase rates in these constructs allows us to probe how Msp1 uses the energy from ATP hydrolysis to perform the thermodynamically unfavorable task of removing a transmembrane helix (TMH) from a lipid bilayer. Our in vitro and in vivo assays reveal a non-linear relationship between ATP hydrolysis and membrane protein extraction, suggesting a minimum ATP hydrolysis rate is required for effective TMH extraction. While structural data often supports a sequential clockwise/2-residue step (SC/2R) mechanism for ATP hydrolysis, our biochemical evidence suggests mechanistic plasticity in how Msp1 coordinates ATP hydrolysis between subunits, potentially allowing for robustness in processing challenging substrates. This study enhances our understanding of how Msp1 coordinates ATP hydrolysis to drive mechanical work and provides foundational insights about the minimum energetic requirements for TMH extraction and the coordination of ATP hydrolysis in AAA+ proteins.
Collapse
Affiliation(s)
- Baylee Smith
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Deepika Gaur
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Nathan Walker
- University of Pittsburgh, Department of Cell Biology
- University of Illinois, Department of Microbiology
| | - Isabella Walter
- University of Pittsburgh, Department of Cell Biology
- Ohio State University, Department of Molecular Genetics
| | - Matthew L. Wohlever
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| |
Collapse
|
13
|
Bohnert M, Gatsogiannis C, Herrmann JM. The ATP-driven extractor ATAD1/Msp1 proof-reads protein translocation into mitochondria. Trends Cell Biol 2024; 34:698-699. [PMID: 39089957 DOI: 10.1016/j.tcb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The accumulation of translocation intermediates in the mitochondrial import machinery threatens cellular fitness and is associated with cancer and neurodegeneration. A recent study by Weidberg and colleagues identifies ATAD1 as an ATP-driven extraction machine on the mitochondrial surface that pulls precursors into the cytosol to prevent clogging of mitochondrial import pores.
Collapse
Affiliation(s)
- Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Christos Gatsogiannis
- Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany; Institute of Medical Physics and Biophysics and Center for Soft Nanoscience, University of Münster, Münster, Germany
| | | |
Collapse
|
14
|
Kim J, Goldstein M, Zecchel L, Ghorayeb R, Maxwell CA, Weidberg H. ATAD1 prevents clogging of TOM and damage caused by un-imported mitochondrial proteins. Cell Rep 2024; 43:114473. [PMID: 39024102 DOI: 10.1016/j.celrep.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.
Collapse
Affiliation(s)
- John Kim
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Madeleine Goldstein
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lauren Zecchel
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Hilla Weidberg
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Matsumoto S, Ono S, Endo T. Analysis of protein trafficking between mitochondria and the endoplasmic reticulum by fluorescence microscopy. Methods Enzymol 2024; 707:153-171. [PMID: 39488373 DOI: 10.1016/bs.mie.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Precise protein localization is essential for normal cellular functions. However, recent studies have revealed that protein targeting is error-prone, and tail-anchored proteins mistargeted to mitochondria are transferred to the endoplasmic reticulum (ER) by an ATPase Msp1 (yeast)/ATAD1 (human) in the mitochondrial outer membrane for further quality examination in the ER to determine their fate, degradation or re-targeting. Analysis of the inter-organelle transfer of proteins requires a combination of time-lapse fluorescence microscopy and a system to achieve regulation of the protein levels of both transfer substrates and factors regulating the transfer in a coordinated manner at precise timing. This can be achieved by using a promoter switch for expression and acute depletion of involved factors through the degron-based proteasome system. In this chapter, we will describe methods to analyze inter-organelle protein transfer by fluorescence microscope within living yeast cells, by using the example of Msp1-mediated transfer of mistargeted proteins from mitochondria to the ER.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
16
|
Bischof L, Schweitzer F, Schmitz HP, Heinisch JJ. The small yeast GTPase Rho5 requires specific mitochondrial outer membrane proteins for translocation under oxidative stress and interacts with the VDAC Por1. Eur J Cell Biol 2024; 103:151405. [PMID: 38503132 DOI: 10.1016/j.ejcb.2024.151405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.
Collapse
Affiliation(s)
- Linnet Bischof
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Franziska Schweitzer
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany.
| |
Collapse
|
17
|
Yamano K, Kinefuchi H, Kojima W. Mitochondrial quality control via organelle and protein degradation. J Biochem 2024; 175:487-494. [PMID: 38102729 DOI: 10.1093/jb/mvad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are essential eukaryotic organelles that produce ATP as well as synthesize various macromolecules. They also participate in signalling pathways such as the innate immune response and apoptosis. These diverse functions are performed by >1,000 different mitochondrial proteins. Although mitochondria are continuously exposed to potentially damaging conditions such as reactive oxygen species, proteases/peptidases localized in different mitochondrial subcompartments, termed mitoproteases, maintain mitochondrial quality and integrity. In addition to processing incoming precursors and degrading damaged proteins, mitoproteases also regulate metabolic reactions, mitochondrial protein half-lives and gene transcription. Impaired mitoprotease function is associated with various pathologies. In this review, we highlight recent advances in our understanding of mitochondrial quality control regulated by autophagy, ubiquitin-proteasomes and mitoproteases.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
18
|
Yang EJN, Liao PC, Pon L. Mitochondrial protein and organelle quality control-Lessons from budding yeast. IUBMB Life 2024; 76:72-87. [PMID: 37731280 PMCID: PMC10842221 DOI: 10.1002/iub.2783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Pin-Chao Liao
- Institute of Molecular Medicine & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
19
|
Delgado JM, Shepard LW, Lamson SW, Liu SL, Shoemaker CJ. The ER membrane protein complex restricts mitophagy by controlling BNIP3 turnover. EMBO J 2024; 43:32-60. [PMID: 38177312 PMCID: PMC10883272 DOI: 10.1038/s44318-023-00006-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. This screen revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system and the ubiquitin-proteosome system regulated BNIP3 independently. Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. More broadly, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that tightly regulate endogenous tail-anchored protein localization.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Logan Wallace Shepard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Sarah W Lamson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Samantha L Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
20
|
Zhou Q, Yang Y, Xu Z, Deng K, Zhang Z, Hao J, Li N, Wang Y, Wang Z, Chen H, Yang Y, Xiao F, Zhang X, Gao S, Li Y. ATAD1 inhibits hepatitis C virus infection by removing the viral TA-protein NS5B from mitochondria. EMBO Rep 2023; 24:e56614. [PMID: 37789674 PMCID: PMC10626439 DOI: 10.15252/embr.202256614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Technology Center, China Tobacco Henan Industrial Co., LtdZhengzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yuhao Yang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhanxue Xu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Kai Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhenzhen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiawei Hao
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ni Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yanling Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Haihang Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yang Yang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Fei Xiao
- Department of Infectious DiseaseThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaohong Zhang
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Infectious DiseaseThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
21
|
Gerber M, Suppanz I, Oeljeklaus S, Niemann M, Käser S, Warscheid B, Schneider A, Dewar CE. A Msp1-containing complex removes orphaned proteins in the mitochondrial outer membrane of T. brucei. Life Sci Alliance 2023; 6:e202302004. [PMID: 37586887 PMCID: PMC10432679 DOI: 10.26508/lsa.202302004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The AAA-ATPase Msp1 extracts mislocalised outer membrane proteins and thus contributes to mitochondrial proteostasis. Using pulldown experiments, we show that trypanosomal Msp1 localises to both glycosomes and the mitochondrial outer membrane, where it forms a complex with four outer membrane proteins. The trypanosome-specific pATOM36 mediates complex assembly of α-helically anchored mitochondrial outer membrane proteins such as protein translocase subunits. Inhibition of their assembly triggers a pathway that results in the proteasomal digestion of unassembled substrates. Using inducible single, double, and triple RNAi cell lines combined with proteomic analyses, we demonstrate that not only Msp1 but also the trypanosomal homolog of the AAA-ATPase VCP are implicated in this quality control pathway. Moreover, in the absence of VCP three out of the four Msp1-interacting mitochondrial proteins are required for efficient proteasomal digestion of pATOM36 substrates, suggesting they act in concert with Msp1. pATOM36 is a functional analog of the yeast mitochondrial import complex complex and possibly of human mitochondrial animal-specific carrier homolog 2, suggesting that similar mitochondrial quality control pathways linked to Msp1 might also exist in yeast and humans.
Collapse
Affiliation(s)
- Markus Gerber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ida Suppanz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Moritz Niemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Rödl S, Herrmann JM. The role of the proteasome in mitochondrial protein quality control. IUBMB Life 2023; 75:868-879. [PMID: 37178401 DOI: 10.1002/iub.2734] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The abundance of each cellular protein is dynamically adjusted to the prevailing metabolic and stress conditions by modulation of their synthesis and degradation rates. The proteasome represents the major machinery for the degradation of proteins in eukaryotic cells. How the ubiquitin-proteasome system (UPS) controls protein levels and removes superfluous and damaged proteins from the cytosol and the nucleus is well characterized. However, recent studies showed that the proteasome also plays a crucial role in mitochondrial protein quality control. This mitochondria-associated degradation (MAD) thereby acts on two layers: first, the proteasome removes mature, functionally compromised or mis-localized proteins from the mitochondrial surface; and second, the proteasome cleanses the mitochondrial import pore of import intermediates of nascent proteins that are stalled during translocation. In this review, we provide an overview about the components and their specific functions that facilitate proteasomal degradation of mitochondrial proteins in the yeast Saccharomyces cerevisiae. Thereby we explain how the proteasome, in conjunction with a set of intramitochondrial proteases, maintains mitochondrial protein homeostasis and dynamically adapts the levels of mitochondrial proteins to specific conditions.
Collapse
Affiliation(s)
- Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
23
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
Affiliation(s)
- Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| | | |
Collapse
|
24
|
He J, Liu K, Wu Y, Zhao C, Yan S, Chen JH, Hu L, Wang D, Zheng F, Wei W, Xu C, Huang C, Liu X, Yao X, Ding L, Fang Z, Tang AH, Fu C. The AAA-ATPase Yta4/ATAD1 interacts with the mitochondrial divisome to inhibit mitochondrial fission. PLoS Biol 2023; 21:e3002247. [PMID: 37590302 PMCID: PMC10465003 DOI: 10.1371/journal.pbio.3002247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenhui Zhao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaijie Yan
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Hui Chen
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenfan Wei
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengdong Huang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ai-Hui Tang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Abstract
Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of β-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain β-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
26
|
Onishi M, Kubota M, Duan L, Tian Y, Okamoto K. The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Life Sci Alliance 2023; 6:e202201640. [PMID: 36697253 PMCID: PMC9880027 DOI: 10.26508/lsa.202201640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Mitophagy removes defective or superfluous mitochondria via selective autophagy. In yeast, the pro-mitophagic protein Atg32 localizes to the mitochondrial surface and interacts with the scaffold protein Atg11 to promote degradation of mitochondria. Although Atg32-Atg11 interactions are thought to be stabilized by Atg32 phosphorylation, how this posttranslational modification is regulated remains obscure. Here, we show that cells lacking the guided entry of the tail-anchored protein (GET) pathway exhibit reduced Atg32 phosphorylation and Atg32-Atg11 interactions, which can be rescued by additional loss of the ER-resident Ppg1-Far complex, a multi-subunit phosphatase negatively acting in mitophagy. In GET-deficient cells, Ppg1-Far is predominantly localized to mitochondria. An artificial ER anchoring of Ppg1-Far in GET-deficient cells significantly ameliorates defects in Atg32-Atg11 interactions and mitophagy. Moreover, disruption of GET and Msp1, an AAA-ATPase that extracts non-mitochondrial proteins localized to the mitochondrial surface, elicits synthetic defects in mitophagy. Collectively, we propose that the GET pathway mediates ER targeting of Ppg1-Far, thereby preventing dysregulated suppression of mitophagy activation.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsutaka Kubota
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuan Tian
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Delgado JM, Wallace Shepard L, Lamson SW, Liu SL, Shoemaker CJ. The ER membrane protein complex governs lysosomal turnover of a mitochondrial tail-anchored protein, BNIP3, to restrict mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533681. [PMID: 36993512 PMCID: PMC10055395 DOI: 10.1101/2023.03.22.533681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, violate this assumption. Rather, BNIP3 and NIX are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all of its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. By this approach, we revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system regulates BNIP3 alongside, but independent of, the ubiquitin-proteosome system (UPS). Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. In short, while BNIP3 can be cleared by parallel and partially compensatory quality control pathways, non-autophagic lysosomal degradation of BNIP3 is a strong post-translational modifier of BNIP3 function. More broadly, these data reveal an unanticipated connection between mitophagy and TA protein quality control, wherein the endolysosomal system provides a critical axis for regulating cellular metabolism. Moreover, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that ensure tight regulation of endogenous TA protein localization.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Logan Wallace Shepard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Sarah W Lamson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Samantha L Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
- Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
28
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
30
|
Aweida D, Cohen S. The AAA-ATPase ATAD1 and its partners promote degradation of desmin intermediate filaments in muscle. EMBO Rep 2022; 23:e55175. [PMID: 36278411 PMCID: PMC9724657 DOI: 10.15252/embr.202255175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Maintenance of desmin intermediate filaments (IF) is vital for muscle plasticity and function, and their perturbed integrity due to accelerated loss or aggregation causes atrophy and myopathies. Calpain-1-mediated disassembly of ubiquitinated desmin IF is a prerequisite for desmin loss, myofibril breakdown, and atrophy. Because calpain-1 does not harbor a bona fide ubiquitin-binding domain, the precise mechanism for desmin IF disassembly remains unknown. Here, we demonstrate that the AAA-ATPase, ATAD1, is required to facilitate disassembly and turnover of ubiquitinated desmin IF. We identified PLAA and UBXN4 as ATAD1's interacting partners, and their downregulation attenuated desmin loss upon denervation. The ATAD1-PLAA-UBXN4 complex binds desmin filaments and promotes a release of phosphorylated and ubiquitinated species into the cytosol, presenting ATAD1 as the only known AAA-ATPase that preferentially acts on phosphorylated substrates. Desmin filaments disassembly was accelerated by the coordinated functions of Atad1 and calpain-1, which interact in muscle. Thus, by extracting ubiquitinated desmin from the insoluble filament, ATAD1 may expose calpain-1 cleavage sites on desmin, consequently enhancing desmin solubilization and degradation in the cytosol.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | - Shenhav Cohen
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| |
Collapse
|
31
|
Huang Z, Feng Z, Zou Y. New wine in old bottles: current progress on P5 ATPases. FEBS J 2022; 289:7304-7313. [PMID: 34449980 DOI: 10.1111/febs.16172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023]
Abstract
P5 ATPases are evolutionarily conserved P-type transporters. Despite their important roles in the endoplasmic reticulum (ER) and in lysosomes, the substrate specificities and transporting mechanisms of P5 ATPases have remained mysterious. Recently, several studies have provided genetic, biochemical, and structural evidence to help elucidate the physiological functions and substrates of P5 ATPases. Here, we summarize this progress and discuss the potential transport mechanisms of the P5 ATPases-in particular, P5A ATPase-for further study.
Collapse
Affiliation(s)
- Zhiwen Huang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, China
| |
Collapse
|
32
|
Winter JM, Fresenius HL, Cunningham CN, Wei P, Keys HR, Berg J, Bott A, Yadav T, Ryan J, Sirohi D, Tripp SR, Barta P, Agarwal N, Letai A, Sabatini DM, Wohlever ML, Rutter J. Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction. eLife 2022; 11:82860. [PMID: 36409067 DOI: 10.7554/elife.82860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.
Collapse
Affiliation(s)
- Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jordan Berg
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Alex Bott
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Tarun Yadav
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Deepika Sirohi
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Sheryl R Tripp
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Paige Barta
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| |
Collapse
|
33
|
Gao F, Zhang H, Yang J, Cai M, Yang Q, Wang H, Xu Y, Chen H, Hu Y, He W, Zhang J. ATPase Thorase Deficiency Causes α-Synucleinopathy and Parkinson’s Disease-like Behavior. Cells 2022; 11:cells11192990. [PMID: 36230952 PMCID: PMC9563720 DOI: 10.3390/cells11192990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases and is pathologically characterized by α-synucleinopathy, which is harmful to dopaminergic neurons. However, the underlying mechanisms and pathogenesis of PD remain unclear. The AAA + ATPase Thorase was identified as being essential for neuroprotection and synaptic plasticity by regulating the AMPA receptor trafficking. Here, we found that conditional knockout of Thorase resulted in motor behaviors indicative of neurodegeneration. Genetic deletion of Thorase exacerbated phenotypes of α-synucleinopathy in a familial PD-like A53T mouse model, whereas overexpression of Thorase prevented α-syn accumulation in vivo. Biochemical and cell cultures studies presented here suggest that Thorase interacts with α-syn and regulates the degradation of ubiquitinated α-syn. Thorase deficiency promotes α-syn aggregation in primary cultured neurons. The discoveries in this study provide us with a further understanding of the pathogenesis of α-synucleinopathies including PD.
Collapse
Affiliation(s)
- Fei Gao
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Han Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Menghua Cai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Qi Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Yi Xu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Correspondence: (W.H.); (J.Z.)
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Key Laboratory of T Cell and Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
- Correspondence: (W.H.); (J.Z.)
| |
Collapse
|
34
|
Kocaman S, Lo YH, Krahn JM, Sobhany M, Dandey VP, Petrovich ML, Etigunta SK, Williams JG, Deterding LJ, Borgnia MJ, Stanley RE. Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. PNAS NEXUS 2022; 1:pgac118. [PMID: 36090660 PMCID: PMC9437592 DOI: 10.1093/pnasnexus/pgac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.
Collapse
Affiliation(s)
- Seda Kocaman
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Venkata P Dandey
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew L Petrovich
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Suhas K Etigunta
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
35
|
Umanah GKE, Abalde-Atristain L, Khan MR, Mitra J, Dar MA, Chang M, Tangella K, McNamara A, Bennett S, Chen R, Aggarwal V, Cortes M, Worley PF, Ha T, Dawson TM, Dawson VL. AAA + ATPase Thorase inhibits mTOR signaling through the disassembly of the mTOR complex 1. Nat Commun 2022; 13:4836. [PMID: 35977929 PMCID: PMC9385847 DOI: 10.1038/s41467-022-32365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.
Collapse
Affiliation(s)
- George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leire Abalde-Atristain
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mohamad Aasif Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Melissa Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kavya Tangella
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy McNamara
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Bennett
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vasudha Aggarwal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marisol Cortes
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Taekjip Ha
- Departments of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Sinning I, McDowell MA. Cryo-EM insights into tail-anchored membrane protein biogenesis in eukaryotes. Curr Opin Struct Biol 2022; 75:102428. [PMID: 35850079 DOI: 10.1016/j.sbi.2022.102428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Tail-anchored (TA) proteins are a biologically significant class of membrane proteins, which require specialised cellular pathways to insert their single C-terminal transmembrane domain into the correct membrane. Cryo-electron microscopy has recently provided new insights into the organelle-specific machineries for TA protein biogenesis. Structures of targeting and insertase complexes within the canonical guided entry of TA proteins (GET) pathway indicate how substrates are faithfully chaperoned into the endoplasmic reticulum (ER) membrane in metazoans. The core of the GET insertase is conserved within structures of the ER membrane protein complex (EMC), which acts in parallel to insert a different subset of TA proteins. Furthermore, structures of the dislocases Spf1 and Msp1 show how they remove mislocalised TA proteins from the ER and outer mitochondrial membranes respectively.
Collapse
Affiliation(s)
- Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Melanie A McDowell
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
37
|
Matsumoto S, Ono S, Shinoda S, Kakuta C, Okada S, Ito T, Numata T, Endo T. GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. J Cell Biol 2022; 221:213171. [PMID: 35442388 DOI: 10.1083/jcb.202104076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) membrane proteins have a potential risk to be mistargeted to the mitochondrial outer membrane (OM). Such mislocalized TA proteins can be extracted by the mitochondrial AAA-ATPase Msp1 from the OM and transferred to the ER for ER protein quality control involving ubiquitination by the ER-resident Doa10 complex. Yet it remains unclear how the extracted TA proteins can move to the ER crossing the aqueous cytosol and whether this transfer to the ER is essential for the clearance of mislocalized TA proteins. Here we show by time-lapse microscopy that mislocalized TA proteins, including an authentic ER-TA protein, indeed move from mitochondria to the ER in a manner strictly dependent on Msp1 expression. The Msp1-dependent mitochondria-to-ER transfer of TA proteins is blocked by defects in the GET system, and this block is not due to impaired Doa10 functions. Thus, the GET pathway facilitates the transfer of mislocalized TA proteins from mitochondria to the ER.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Saori Shinoda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Satoshi Okada
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
38
|
Wang L, Toutkoushian H, Belyy V, Kokontis CY, Walter P. Conserved structural elements specialize ATAD1 as a membrane protein extraction machine. eLife 2022; 11:e73941. [PMID: 35550246 PMCID: PMC9273213 DOI: 10.7554/elife.73941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial AAA (ATPase Associated with diverse cellular Activities) protein ATAD1 (in humans; Msp1 in yeast) removes mislocalized membrane proteins, as well as stuck import substrates from the mitochondrial outer membrane, facilitating their re-insertion into their cognate organelles and maintaining mitochondria's protein import capacity. In doing so, it helps to maintain proteostasis in mitochondria. How ATAD1 tackles the energetic challenge to extract hydrophobic membrane proteins from the lipid bilayer and what structural features adapt ATAD1 for its particular function has remained a mystery. Previously, we determined the structure of Msp1 in complex with a peptide substrate (Wang et al., 2020). The structure showed that Msp1's mechanism follows the general principle established for AAA proteins while adopting several structural features that specialize it for its function. Among these features in Msp1 was the utilization of multiple aromatic amino acids to firmly grip the substrate in the central pore. However, it was not clear whether the aromatic nature of these amino acids were required, or if they could be functionally replaced by aliphatic amino acids. In this work, we determined the cryo-EM structures of the human ATAD1 in complex with a peptide substrate at near atomic resolution. The structures show that phylogenetically conserved structural elements adapt ATAD1 for its function while generally adopting a conserved mechanism shared by many AAA proteins. We developed a microscopy-based assay reporting on protein mislocalization, with which we directly assessed ATAD1's activity in live cells and showed that both aromatic amino acids in pore-loop 1 are required for ATAD1's function and cannot be substituted by aliphatic amino acids. A short α-helix at the C-terminus strongly facilitates ATAD1's oligomerization, a structural feature that distinguishes ATAD1 from its closely related proteins.
Collapse
Affiliation(s)
- Lan Wang
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
| | - Hannah Toutkoushian
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
| | - Vladislav Belyy
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
| | - Claire Y Kokontis
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
39
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Song J, Becker T. Fidelity of organellar protein targeting. Curr Opin Cell Biol 2022; 75:102071. [DOI: 10.1016/j.ceb.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
41
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
den Brave F, Gupta A, Becker T. Protein Quality Control at the Mitochondrial Surface. Front Cell Dev Biol 2021; 9:795685. [PMID: 34926473 PMCID: PMC8678412 DOI: 10.3389/fcell.2021.795685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria contain two membranes, the outer and inner membrane. The outer membrane fulfills crucial functions for the communication of mitochondria with the cellular environment like exchange of lipids via organelle contact sites, the transport of metabolites and the formation of a signaling platform in apoptosis and innate immunity. The translocase of the outer membrane (TOM complex) forms the entry gate for the vast majority of precursor proteins that are produced on cytosolic ribosomes. Surveillance of the functionality of outer membrane proteins is critical for mitochondrial functions and biogenesis. Quality control mechanisms remove defective and mistargeted proteins from the outer membrane as well as precursor proteins that clog the TOM complex. Selective degradation of single proteins is also an important mode to regulate mitochondrial dynamics and initiation of mitophagy pathways. Whereas inner mitochondrial compartments are equipped with specific proteases, the ubiquitin-proteasome system is a central player in protein surveillance on the mitochondrial surface. In this review, we summarize our current knowledge about the molecular mechanisms that govern quality control of proteins at the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Quality control of protein import into mitochondria. Biochem J 2021; 478:3125-3143. [PMID: 34436539 DOI: 10.1042/bcj20190584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.
Collapse
|
44
|
Nuebel E, Morgan JT, Fogarty S, Winter JM, Lettlova S, Berg JA, Chen YC, Kidwell CU, Maschek JA, Clowers KJ, Argyriou C, Chen L, Wittig I, Cox JE, Roh-Johnson M, Braverman N, Bonkowsky J, Gygi SP, Rutter J. The biochemical basis of mitochondrial dysfunction in Zellweger Spectrum Disorder. EMBO Rep 2021; 22:e51991. [PMID: 34351705 DOI: 10.15252/embr.202051991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.
Collapse
Affiliation(s)
- Esther Nuebel
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, USA
| | - Jeffrey T Morgan
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Yu-Chan Chen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chelsea U Kidwell
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | | | - Lingxiao Chen
- Department of Pathology, McGill University, Montreal, ON, Canada
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Montreal, ON, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, ON, Canada
| | - Joshua Bonkowsky
- Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Farkas Á, Bohnsack KE. Capture and delivery of tail-anchored proteins to the endoplasmic reticulum. J Cell Biol 2021; 220:212470. [PMID: 34264263 PMCID: PMC8287540 DOI: 10.1083/jcb.202105004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Dederer V, Lemberg MK. Transmembrane dislocases: a second chance for protein targeting. Trends Cell Biol 2021; 31:898-911. [PMID: 34147299 DOI: 10.1016/j.tcb.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.
Collapse
Affiliation(s)
- Verena Dederer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Current address: Institute for Pharmaceutical Biology and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
47
|
Drwesh L, Rapaport D. Biogenesis pathways of α-helical mitochondrial outer membrane proteins. Biol Chem 2021; 401:677-686. [PMID: 32017702 DOI: 10.1515/hsz-2019-0440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
Mitochondria harbor in their outer membrane (OM) proteins of different topologies. These proteins are encoded by the nuclear DNA, translated on cytosolic ribosomes and inserted into their target organelle by sophisticated protein import machineries. Recently, considerable insights have been accumulated on the insertion pathways of proteins into the mitochondrial OM. In contrast, little is known regarding the early cytosolic stages of their biogenesis. It is generally presumed that chaperones associate with these proteins following their synthesis in the cytosol, thereby keeping them in an import-competent conformation and preventing their aggregation and/or mis-folding and degradation. In this review, we outline the current knowledge about the biogenesis of different mitochondrial OM proteins with various topologies, and highlight the recent findings regarding their import pathways starting from early cytosolic events until their recognition on the mitochondrial surface that lead to their final insertion into the mitochondrial OM.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
49
|
Laborenz J, Bykov YS, Knöringer K, Räschle M, Filker S, Prescianotto-Baschong C, Spang A, Tatsuta T, Langer T, Storchová Z, Schuldiner M, Herrmann JM. The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Mol Biol Cell 2021; 32:664-674. [PMID: 33596095 PMCID: PMC8108515 DOI: 10.1091/mbc.e20-11-0748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.
Collapse
Affiliation(s)
- Janina Laborenz
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
50
|
Krämer L, Groh C, Herrmann JM. The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 2020; 595:1223-1238. [PMID: 33249599 DOI: 10.1002/1873-3468.14010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lena Krämer
- Cell Biology, University of Kaiserslautern, Germany
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, Germany
| | | |
Collapse
|