1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Lv M, Yang X, Xu C, Song Q, Zhao H, Sun T, Liu J, Zhang Y, Sun G, Xue Y, Zhang Z. SIRT4 Promotes Pancreatic Cancer Stemness by Enhancing Histone Lactylation and Epigenetic Reprogramming Stimulated by Calcium Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412553. [PMID: 40298941 DOI: 10.1002/advs.202412553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Mitochondria Sirtuins including SIRT4 erase a variety of posttranslational modifications from mitochondria proteins, leading to metabolic reprogramming that acts as a tumor suppressor, oncogenic promotor, or both. However, the factors and the underlying mechanisms that stimulate and relay such a signaling cascade are poorly understood. Here, we reveal that the voltage-gated calcium channel subunit α2δ1-mediated calcium signaling can upregulate the expression of SIRT4, which is highly expressed in α2δ1-positive pancreatic tumor-initiating cells (TICs). Furthermore, SIRT4 is functionally sufficient and indispensable to promote TIC properties of pancreatic cancer cells by directly deacetylating ENO1 at K358, leading to attenuated ENO1's RNA-binding capacity, enhanced glycolytic substrate 2-PG affinity, and subsequently robust catalytic activity with boosted glycolytic ability and increased production of lactate acid. Interestingly, both SIRT4 and deacetylated mimetic of ENO1-K358 can increase the lactylation of histones at multiple sites including H3K9 and H3K18 sites, which resulted in epigenetic reprogramming to directly activate a variety of pathways that are essential for stemness. Hence, the study links α2δ1-mediated calcium signaling to SIRT4-mediated histone lactylation epigenetic reprogramming in promoting the stem cell-like properties of pancreatic cancer, which holds significant potential for the development of novel therapeutic strategies by targeting TICs of pancreatic cancer.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Congcong Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Tianjiao Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, 100142, P. R. China
| | - Yuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Guogui Sun
- Department of Chemoradiation, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, 063000, P.R. China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
3
|
Liu X, Zhou L, Huang W, Yang Y, Yang Y, Liu T, Guo M, Yu T, Li Y. Proteomic Analysis and 2-Hydroxyisobutyrylation Profiling in Metabolic Syndrome Induced Restenosis. Mol Cell Proteomics 2025:100978. [PMID: 40287094 DOI: 10.1016/j.mcpro.2025.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Restenosis is the primary complication following stenting for coronary and peripheral arterial disease (PAD), posing an ongoing clinical challenge. Metabolic syndrome (MetS), characterized by metabolic disturbances, has been identified as an independent predictor for postoperative restenosis in coronary and carotid arteries, potentially due to endothelial dysfunction and augmented oxidative stress in cells, while its specific regulatory mechanism is still largely unknown. Lysine 2-hydroxyisobutyrylation (Khib), a recently identified post-translational modification, plays a crucial role in transcriptional regulation and cellular metabolism. However, there is a lack of comprehensive analysis of the proteome and Khib modifications within restenotic vessels in the context of MetS, as well as in the understanding of the associated pathophysiology. In this study, we observed a significant upregulation of Khib in restenotic arteries induced by MetS, confirmed by animal and cellular experiments. Further, using high-throughput liquid chromatography-mass spectrometry, we catalogued 15,558 Khib sites across 2,568 proteins, implicating a multitude of biological functions. Analysis revealed 2,007 Khib sites on 1,002 proteins with considerable differential modifications which are present within the cytoplasm and nucleus. Interestingly, proteins located in the mitochondria, endoplasmic reticulum, and cell membrane also exhibit distinct expression and modification profiles to varying extents that related to vascular smooth muscle contraction, platelet activation, and the PI3K-Akt signaling pathway. Notably, the level of COL1A1 protein detected in the PPI pathway network and the level of Khib modification are diametrically opposed, suggesting a significant role in the disease's pathogenesis. This study provides the first comprehensive proteomic and Khib modification overview of MetS-related in-stent restenosis vasculature, offering key insights to inform novel therapeutic approaches for restenosis mitigation.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Liping Zhou
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong SAR, People's Republic of China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, People's Republic of China
| | - Wenjing Huang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yanyan Yang
- Department of immunology, School of Basic medicine, Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yijun Yang
- Archives Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Tianwei Liu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, Shandong, People's Republic of China.
| | - Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Chen C, Zhang Y, Zang Y, Fan Z, Han Y, Bai X, Wang A, Zhang J, Wang J, Zhang K. SIRT3 Functions as an Eraser of Histone H3K9 Lactylation to Modulate Transcription for Inhibiting the Progression of Esophageal Cancer. Mol Cell Proteomics 2025; 24:100973. [PMID: 40252727 DOI: 10.1016/j.mcpro.2025.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Lysine lactylation (Kla) links lactate metabolism to epigenetic regulation, playing a key role in modulation of gene expression in tumor and immune microenvironment. Our recent study shows that HBO1-mediated histone H3K9la activates the transcription of genes encoding tumorigenesis, suggesting the potential significance of intervening in this Kla site for tumor therapy. Evidence so far indicates that traditional deacetylases can catalyze the removal of Kla; however, the precise demodifying enzyme to histone H3K9la in vivo and functional consequence remain elusive. Herein, we combined an antibody-based proximity labeling approach with mass spectrometry analysis to identify SIRT3 as a major binder to histone H3K9la and showed the specific catalysis of SIRT3 for the removal of lactylation. Molecular docking further revealed the molecular mechanism of the binding of histone H3K9la to SIRT3. More importantly, SIRT3 can specifically modulate gene transcription by regulating H3K9la, inhibiting the progression of esophageal squamous cancer cells. Together, our work identifies the specific delactylase of H3K9la and reveals an H3K9la-mediated molecular mechanism catalyzed by SIRT3 for gene transcription regulation in esophageal squamous cancer cells, and our findings provide an opportunity to investigate the physiological significance of Kla controlled by SIRT3 in cancer.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Yingao Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Zang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China; School of Biomedical Engineer, Tianjin Medical University, Tianjin, China
| | - Zilong Fan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yanpu Han
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Aiyuan Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jianji Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineer, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Liu YQ, Yang Q, He GW. Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol 2025:10.1038/s41569-025-01150-1. [PMID: 40229510 DOI: 10.1038/s41569-025-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Acylations are post-translational modifications in which functional groups are attached to amino acids on proteins. Most acylations (acetylation, butyrylation, crotonylation, lactylation, malonylation, propionylation and succinylation) involve lysine but cysteine (palmitoylation) and glycine (myristoylation) residues can also be altered. Acylations have important roles in physiological and pathophysiological processes, including cardiac hypertrophy and related cardiovascular diseases. These post-translational modifications influence chromatin architecture, transcriptional regulation and metabolic pathways, thereby affecting cardiomyocyte function and pathology. The dynamic interaction between these acylations and their regulatory enzymes, such as histone acetyltransferases, histone deacetylases and sirtuins, underscores the complexity of cellular homeostasis and pathological processes. Emerging evidence highlights the therapeutic potential of targeting acylations to modulate enzyme activity and metabolite levels, offering promising avenues for novel treatments. In this Review, we explore the diverse mechanisms through which acylations contribute to cardiac hypertrophy, highlighting the complexity and potential therapeutic targets in this regulatory network.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
7
|
Huang M, Jin Y, Zhao D, Liu X. Potential role of lactylation in intrinsic immune pathways in lung cancer. Front Pharmacol 2025; 16:1533493. [PMID: 40166469 PMCID: PMC11955616 DOI: 10.3389/fphar.2025.1533493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer, one of the most lethal malignancies, has seen its therapeutic strategies become a focal point of significant scientific attention. Intrinsic immune signaling pathways play crucial roles in anti-tumor immunity but face clinical application challenges despite promising preclinical outcomes. Lactylation, an emerging research focus, may influences lung cancer progression by modulating the functions of histones and non-histone proteins. Recent findings have suggested that lactylation regulates key intrinsic immune molecules, including cGAS-STING, TLR, and RIG-I, thereby impacting interferon expression. However, the precise mechanisms by which lactylation governs intrinsic immune signaling in lung cancer remain unclear. This review presents a comprehensive and systematic analysis of the relationship between lactylation and intrinsic immune signaling pathways in lung cancer and emphasizes the innovative perspective of linking lactylation-mediated epigenetic modifications with immune regulation. By thoroughly examining current research findings, this review uncovers potential regulatory mechanisms and highlights the therapeutic implications of targeting lactylation in lung cancer. Future investigations into the intricate interactions between lactylation and intrinsic immunity are anticipated to unveil novel therapeutic targets and strategies, potentially improving patient survival outcomes.
Collapse
Affiliation(s)
- Mengdie Huang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Jin
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Zhao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Hou HT, Wang XC, Chen HX, Wang J, Yang Q, He GW. Lysine 2-hydroxyisobutyrylation of HXK1 alters energy metabolism and K ATP channel function in the atrium from patients with atrial fibrillation. Cell Commun Signal 2025; 23:117. [PMID: 40033384 PMCID: PMC11874433 DOI: 10.1186/s12964-025-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common form of arrhythmia and is a growing clinical problem. Post-translational modifications (PTMs) constitute crucial epigenetic mechanisms but modification of lysine 2-hydroxyisobutyrylation (Khib) in AF is still unknown. This study aimed to investigate the role and mechanism of Khib in AF. METHODS PTM proteomics was applied in the human atrial tissue from AF and sinus rhythm patients with heart valve disease during cardiac surgery to identify the Khib sites. The functional changes of differential modification sites were further validated at the cellular level. Cellular electrophysiology was performed to record the ion channel current and action potential duration (APD). RESULTS The modification of 124 Khib sites in 35 proteins and 67 sites in 48 proteins exhibited significant increase or decrease in AF compared to sinus rhythm. Ten Khib sites were included in energy metabolism-related signaling pathways (HXK1, TPIS, PGM1, and ODPX in glycolysis; MDHC and IDH3A in tricarboxylic acid cycle; NDUS2, ETFB, ADT3, and ATPB in oxidative respiratory chain). Importantly, decreased HXK1 K418hib regulated by HDAC2 attenuated the original chemical binding domain between HXK1 and glucose, inhibited the binding ability between HXK1 and glucose, and reduced catalytic ability of the enzyme, resulting in low production of glucose-6-phosphate and ATP. Further, it also increased Kir6.2 protein and the current of KATP channel, and decreased APD. CONCLUSIONS This study demonstrates the importance of Khib to catalysis of HXK1 and reveals molecular mechanisms of HXK1 K418hib in AF, providing new insight into strategies of AF.
Collapse
Affiliation(s)
- Hai-Tao Hou
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Xiang-Chong Wang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
- Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Huan-Xin Chen
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Jun Wang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Department of Surgery, OHSU, Portland, OR, USA.
| |
Collapse
|
9
|
Pang P, Liu J, Su W, Gao W, Qiao G, Yuan J, Zheng Y, Zheng C. Modulation of Abnormal Vasoconstriction Through 2-Hydroxyisobutyrylation of Tropomyosin 3 Lys141: Targeting Histone Deacetylase 3 as a Key Approach. J Am Heart Assoc 2025; 14:e037400. [PMID: 39719422 PMCID: PMC12054413 DOI: 10.1161/jaha.124.037400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND TPM3 (tropomyosin 3) is an actin-binding protein in vascular smooth muscle cells, where posttranslational modifications critically regulate its actin affinity, influencing cardiovascular function. Emerging evidence suggests that Khib (2-hydroxyisobutyrylation) plays a significant role in the cardiovascular system. Histone deacetylase 3 (HDAC3) serves as an "eraser" of Khib marks. However, the impact of TPM3 de-2-hydroxyisobutyrylation on vascular contraction remains unclear. METHODS AND RESULTS In this study, we employed mouse models and in vitro experiments to elucidate the mechanism by which phenylephrine-induced HDAC3 activation drives vasoconstriction via de-2-hydroxyisobutyrylation of TPM3. Our findings demonstrate that phenylephrine triggers HDAC3 nuclear export and promotes its interaction with TPM3, resulting in decreased Khib modification and enhanced vasoconstriction. Coimmunoprecipitation experiments confirmed that phenylephrine reduces Khib levels on TPM3 in mouse aorta. Additionally, ex vivo vascular tension assays using mouse aortic rings revealed that treatment with the Khib donor, ethyl 2-hydroxyisobutyrate, induces endothelium-independent vasodilation and ameliorates hypertensive vascular dysfunction. Molecular docking and kinetic simulations identified Lys141 of TPM3 as the primary site targeted by HDAC3-mediated de-2-hydroxyisobutyrylation. This was further validated by adenoviral transfection of isolated blood vessels with a Lys141-mutated TPM3 construct, which abolished the effects of HDAC3 on TPM3 Khib modification and vascular contractility. CONCLUSIONS These findings underscore the critical role of TPM3 de-2-hydroxyisobutyrylation in vasoconstriction and suggest that modulating this posttranslational modification could provide a novel therapeutic strategy for hypertensive vascular dysfunction.
Collapse
Affiliation(s)
- Pan‐Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Jiang‐Xin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Wen‐Bin Su
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Wen‐Cong Gao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
| | - Guan‐Rong Qiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
| | - Jing Yuan
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
| | - Yong‐Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Chang‐Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingChina
- Yunnan Vaccine LaboratoryKunmingChina
| |
Collapse
|
10
|
Huang J, Peng H, Yang D. Research advances in protein lysine 2-hydroxyisobutyrylation: From mechanistic regulation to disease relevance. J Cell Physiol 2024; 239:e31435. [PMID: 39351825 DOI: 10.1002/jcp.31435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Collapse
Affiliation(s)
- Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
11
|
Wang S, Huang T, Wu Q, Yuan H, Wu X, Yuan F, Duan T, Taori S, Zhao Y, Snyder NW, Placantonakis DG, Rich JN. Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest 2024; 134:e176851. [PMID: 39545414 PMCID: PMC11563687 DOI: 10.1172/jci176851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Glioblastoma (GBM), an aggressive brain malignancy with a cellular hierarchy dominated by GBM stem cells (GSCs), evades antitumor immunity through mechanisms that remain incompletely understood. Like most cancers, GBMs undergo metabolic reprogramming toward glycolysis to generate lactate. Here, we show that lactate production by patient-derived GSCs and microglia/macrophages induces tumor cell epigenetic reprogramming through histone lactylation, an activating modification that leads to immunosuppressive transcriptional programs and suppression of phagocytosis via transcriptional upregulation of CD47, a "don't eat me" signal, in GBM cells. Leveraging these findings, pharmacologic targeting of lactate production augments efficacy of anti-CD47 therapy. Mechanistically, lactylated histone interacts with the heterochromatin component chromobox protein homolog 3 (CBX3). Although CBX3 does not possess direct lactyltransferase activity, CBX3 binds histone acetyltransferase (HAT) EP300 to induce increased EP300 substrate specificity toward lactyl-CoA and a transcriptional shift toward an immunosuppressive cytokine profile. Targeting CBX3 inhibits tumor growth by both tumor cell-intrinsic mechanisms and increased tumor cell phagocytosis. Collectively, these results suggest that lactate mediates metabolism-induced epigenetic reprogramming in GBM that contributes to CD47-dependent immune evasion, which can be leveraged to augment efficacy of immuno-oncology therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Tengfei Huang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Huairui Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xujia Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fanen Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tingting Duan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Jeremy N. Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Fu Q, Nguyen T, Kumar B, Azadi P, Zheng YG. Identification of the Regulatory Elements and Protein Substrates of Lysine Acetoacetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621296. [PMID: 39554048 PMCID: PMC11565915 DOI: 10.1101/2024.10.31.621296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Short chain fatty acylations establish connections between cell metabolism and regulatory pathways. Lysine acetoacetylation (Kacac) was recently identified as a new histone mark. However, regulatory elements, substrate proteins, and epigenetic functions of Kacac remain unknown, hindering further in-depth understanding of acetoacetate modulated (patho)physiological processes. Here, we created a chemo-immunological approach for reliable detection of Kacac, and demonstrated that acetoacetate serves as the primary precursor for histone Kacac. We report the enzymatic addition of the Kacac mark by the acyltransferases GCN5, p300, and PCAF, and its removal by deacetylase HDAC3. Furthermore, we establish acetoacetyl-CoA synthetase (AACS) as a key regulator of cellular Kacac levels. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveal the broad impacts of Kacac on multifaceted cellular processes. These findings unveil pivotal regulatory mechanisms for the acetoacetate-mediated Kacac pathway, opening a new avenue for further investigation into ketone body functions in various pathophysiological states.
Collapse
Affiliation(s)
- Qianyun Fu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Zhu Q, Li J, Sun H, Fan Z, Hu J, Chai S, Lin B, Wu L, Qin W, Wang Y, Hsieh-Wilson LC, Yi W. O-GlcNAcylation of enolase 1 serves as a dual regulator of aerobic glycolysis and immune evasion in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2408354121. [PMID: 39446384 PMCID: PMC11536113 DOI: 10.1073/pnas.2408354121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 10/27/2024] Open
Abstract
Aerobic glycolysis and immune evasion are two key hallmarks of cancer. However, how these two features are mechanistically linked to promote tumor growth is not well understood. Here, we show that the glycolytic enzyme enolase-1 (ENO1) is dynamically modified with an O-linked β-N-acetylglucosamine (O-GlcNAcylation), and simultaneously regulates aerobic glycolysis and immune evasion via differential glycosylation. Glycosylation of threonine 19 (T19) on ENO1 promotes its glycolytic activity via the formation of active dimers. On the other hand, glycosylation of serine 249 (S249) on ENO1 inhibits its interaction with PD-L1, decreases association of PD-L1 with the E3 ligase STUB1, resulting in stabilization of PD-L1. Consequently, blockade of T19 glycosylation on ENO1 inhibits glycolysis, and decreases cell proliferation and tumor growth. Blockade of S249 glycosylation on ENO1 reduces PD-L1 expression and enhances T cell-mediated immunity against tumor cells. Notably, elimination of glycosylation at both sites synergizes with PD-L1 monoclonal antibody therapy to promote antitumor immune response. Clinically, ENO1 glycosylation levels are up-regulated and show a positive correlation with PD-L1 levels in human colorectal cancers. Thus, our findings provide a mechanistic understanding of how O-GlcNAcylation bridges aerobic glycolysis and immune evasion to promote tumor growth, suggesting effective therapeutic opportunities.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Jingchao Li
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Zhiya Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Jiating Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Siyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Yong Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Linda C. Hsieh-Wilson
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wen Yi
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| |
Collapse
|
14
|
Burny C, Potočnjak M, Hestermann A, Gartemann S, Hollmann M, Schifferdecker-Hoch F, Markanovic N, Di Sanzo S, Günsel M, Solis-Mezarino V, Voelker-Albert M. Back pain exercise therapy remodels human epigenetic profiles in buccal and human peripheral blood mononuclear cells: an exploratory study in young male participants. Front Sports Act Living 2024; 6:1393067. [PMID: 39478832 PMCID: PMC11521823 DOI: 10.3389/fspor.2024.1393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Background With its high and increasing lifetime prevalence, back pain represents a contemporary challenge for patients and healthcare providers. Monitored exercise therapy is a commonly prescribed treatment to relieve pain and functional limitations. However, the benefits of exercise are often gradual, subtle, and evaluated by subjective self-reported scores. Back pain pathogenesis is interlinked with epigenetically mediated processes that modify gene expression without altering the DNA sequence. Therefore, we hypothesize that therapy effects can be objectively evaluated by measurable epigenetic histone posttranslational modifications and proteome expression. Because epigenetic modifications are dynamic and responsive to environmental exposure, lifestyle choices-such as physical activity-can alter epigenetic profiles, subsequent gene expression, and health traits. Instead of invasive sampling (e.g., muscle biopsy), we collect easily accessible buccal swabs and plasma. The plasma proteome provides a systemic understanding of a person's current health state and is an ideal snapshot of downstream, epigenetically regulated, changes upon therapy. This study investigates how molecular profiles evolve in response to standardized sport therapy and non-controlled lifestyle choices. Results We report that the therapy improves agility, attenuates back pain, and triggers healthier habits. We find that a subset of participants' histone methylation and acetylation profiles cluster samples according to their therapy status, before or after therapy. Integrating epigenetic reprogramming of both buccal cells and peripheral blood mononuclear cells (PBMCs) reveals that these concomitant changes are concordant with higher levels of self-rated back pain improvement and agility gain. Additionally, epigenetic changes correlate with changes in immune response plasma factors, reflecting their comparable ability to rate therapy effects at the molecular level. We also performed an exploratory analysis to confirm the usability of molecular profiles in (1) mapping lifestyle choices and (2) evaluating the distance of a given participant to an optimal health state. Conclusion This pre-post cohort study highlights the potential of integrated molecular profiles to score therapy efficiency. Our findings reflect the complex interplay of an individual's background and lifestyle upon therapeutic exposure. Future studies are needed to provide mechanistic insights into back pain pathogenesis and lifestyle-based epigenetic reprogramming upon sport therapy intervention to maintain therapeutic effects in the long run.
Collapse
Affiliation(s)
| | - Mia Potočnjak
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | | | | | | - Simone Di Sanzo
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
16
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
17
|
He H, Chen J, Hua Y, Xie Z, Tu M, Liu L, Wang H, Yang X, Chen L. α7-nAChR/P300/NLRP3-regulated pyroptosis mediated poor articular cartilage quality induced by prenatal nicotine exposure in female offspring rats. Chem Biol Interact 2024; 400:111183. [PMID: 39098741 DOI: 10.1016/j.cbi.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Nicotine is developmentally toxic. Prenatal nicotine exposure (PNE) affects the development of multiple fetal organs and causes susceptibility to a variety of diseases in offspring. In this study, we aimed to investigate the effect of PNE on cartilage development and osteoarthritis susceptibility in female offspring rats. Wistar rats were orally gavaged with nicotine on days 9-20 of pregnancy. The articular cartilage was obtained at gestational day (GD) 20 and postnatal week (PW) 24, respectively. Further, the effect of nicotine on chondrogenic differentiation was explored by the chondrogenic differentiation model in human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The PNE group showed significantly shallower Safranin O staining and lower Collagen 2a1 content of articular cartilage in female offspring rats. Further, we found that PNE activated pyroptosis in the articular cartilage at GD20 and PW24. In vitro experiments revealed that nicotine inhibited chondrogenic differentiation and activated pyroptosis. After interfering with nod-like receptors3 (NLRP3) expression by SiRNA, it was found that pyroptosis mediated the chondrogenic differentiation inhibition of WJ-MSCs induced by nicotine. In addition, we found that α7-nAChR antagonist α-BTX reversed nicotine-induced NLRP3 and P300 high expression. And, P300 SiRNA reversed the increase of NLRP3 mRNA expression and histone acetylation level in its promoter region induced by nicotine. In conclusion, PNE caused chondrodysplasia and poor articular cartilage quality in female offspring rats. PNE increased the histone acetylation level of NLRP3 promoter region by α7-nAChR/P300, which resulting in the high expression of NLRP3. Further, NLRP3 mediated the inhibition of chondrogenic differentiation by activating pyroptosis.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Hua
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Xie
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Tu
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xu Yang
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
18
|
Li X, Yu T, Li X, He X, Zhang B, Yang Y. Role of novel protein acylation modifications in immunity and its related diseases. Immunology 2024; 173:53-75. [PMID: 38866391 DOI: 10.1111/imm.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
19
|
Al Reza H, Santangelo C, Al Reza A, Iwasawa K, Sachiko S, Glaser K, Bondoc A, Merola J, Takebe T. Self-Assembled Generation of Multi-zonal Liver Organoids from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610426. [PMID: 39257824 PMCID: PMC11384014 DOI: 10.1101/2024.08.30.610426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and critical to understanding metabolic homeostasis and liver injury. While several bioactive molecules have been described to play a role in directing zonal fates, including ascorbate and bilirubin, in vitro replication of zonal liver architecture has not been achieved to date. In order to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid culture by co-culturing ascorbate and bilirubin enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with urea cycle, glutathione synthesis and glutamate synthesis. Single nucleus RNA sequencing analysis of these zonally patterned organoids identifies hepatoblast differentiation trajectory that mimics periportal-, interzonal-, and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate or bilirubin dependent binding of histone acetyltransferase p300 (EP300) to methylcytosine dioxygenase TET1 or hypoxia-inducible factor 1-alpha (HIF1α). Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonemia and hyperbilirubinemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Sachiko Sachiko
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
21
|
Yan E, Tan M, Jiao N, He L, Wan B, Zhang X, Yin J. Lysine 2-hydroxyisobutyrylation levels determined adipogenesis and fat accumulation in adipose tissue in pigs. J Anim Sci Biotechnol 2024; 15:99. [PMID: 38992763 PMCID: PMC11242017 DOI: 10.1186/s40104-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown. RESULTS In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs. CONCLUSIONS From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.
Collapse
Affiliation(s)
- Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingyang Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Molecular Design Breeding Frontier Science Center of the Ministry of Education (MOE), Beijing, 100193, China.
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Molecular Design Breeding Frontier Science Center of the Ministry of Education (MOE), Beijing, 100193, China.
| |
Collapse
|
22
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
24
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
25
|
Xie W, Deng L, Qian R, Huang X, Liu W, Tang S. Curculigoside Attenuates Endoplasmic Reticulum Stress-Induced Epithelial Cell and Fibroblast Senescence by Regulating the SIRT1-P300 Signaling Pathway. Antioxidants (Basel) 2024; 13:420. [PMID: 38671868 PMCID: PMC11047561 DOI: 10.3390/antiox13040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The senescence of alveolar epithelial cells (AECs) and fibroblasts plays a pivotal role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a condition lacking specific therapeutic interventions. Curculigoside (CCG), a prominent bioactive constituent of Curculigo, exhibits anti-osteoporotic and antioxidant activities. Our investigation aimed to elucidate the anti-senescence and anti-fibrotic effects of CCG in experimental pulmonary fibrosis and delineate its underlying molecular mechanisms. Our findings demonstrate that CCG attenuates bleomycin-induced pulmonary fibrosis and lung senescence in murine models, concomitantly ameliorating lung function impairment. Immunofluorescence staining for senescence marker p21, alongside SPC or α-SMA, suggested that CCG's mitigation of lung senescence correlates closely with the deceleration of senescence in AECs and fibroblasts. In vitro, CCG mitigated H2O2-induced senescence in AECs and the natural senescence of primary mouse fibroblasts. Mechanistically, CCG can upregulate SIRT1 expression, downregulating P300 expression, enhancing Trim72 expression to facilitate P300 ubiquitination and degradation, reducing the acetylation levels of antioxidant enzymes, and upregulating their expression levels. These actions collectively inhibited endoplasmic reticulum stress (ERS) and alleviated senescence. Furthermore, the anti-senescence effects and mechanisms of CCG were validated in a D-galactose (D-gal)-induced progeroid model. This study provides novel insights into the mechanisms underlying the action of CCG in cellular senescence and chronic diseases, offering potential avenues for the development of innovative drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Weixi Xie
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
- The School of Nursing, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
26
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
27
|
Xia Z, Ding X, Ji C, Zhou D, Sun X, Liu T. EP300 restores the glycolytic activity and anti-tumor function of CD8 + cytotoxic T cells in nasopharyngeal carcinoma. iScience 2024; 27:108957. [PMID: 38333692 PMCID: PMC10850748 DOI: 10.1016/j.isci.2024.108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Competition for glucose may metabolically limit T cells during cancer progression. This study shows that culturing in the condition medium (CM) of NPC c6661 cells restricted glycolytic and immune activities of CD8+ T cells. These cells also exhibited limited tumor-eliminating effects in mouse xenograft tumor models. Glucose supplementation restored glycolysis and immune activity of CD8+ T cells in vitro and in vivo by rescuing the expression of E1A binding protein p300 (EP300). EP300 upregulated bromodomain PHD finger transcription factor (BPTF) expression by catalyzing H3K27ac modification, and BPTF further activated AT-rich interaction domain 1A (ARID1A) transcription. Either BPTF or ARID1A knockdown in CD8+ T cells reduced their glycolytic activity, decreased the secretion of cytotoxic molecules, and blocked the tumor-killing function in mice. Overall, this study demonstrates that EP300 restores the glycolytic and anti-tumor activities of CD8+ T cells in the glucose restriction condition in NPC through the BPTF/ARID1A axis.
Collapse
Affiliation(s)
- Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Xiaoxu Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Chao Ji
- Clinical Epidemiology Teaching and Research Section, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Dabo Zhou
- Repair Teaching and Research Section, School and Hospital of Stomatology, China Medical University, Shenyang 110002, Liaoning, P.R. China
| | - Xun Sun
- Department of Immunology, College of Basic Medicine, China Medical University, Shenyang 110002, Liaoning, P.R. China
| | - Tiancong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| |
Collapse
|
28
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
29
|
Zheng H, Mei H, Li X, Li D, Liu W. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in Aspergillus fumigatus. Curr Microbiol 2024; 81:74. [PMID: 38253771 PMCID: PMC10803526 DOI: 10.1007/s00284-023-03565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024]
Abstract
Aspergillus fumigatus is the significant causative agent in cases of invasive aspergillosis, leading to a high mortality rate in immunocompromised patients. A comprehensive understanding of its growth patterns and metabolic processes within the host is a critical prerequisite for the development of effective antifungal strategies. Lysine 2-hydroxyisobutyrylation (Khib) is a highly conserved protein posttranslational modifications (PTM) found in various organisms. In this study, we investigate the biological impact of Khib in A. fumigatus. Using a combination of antibody enrichment with the conventional LC-MS/MS method, the pattern of Khib-modification in proteins and their respective sites were analyzed in a wild type strain of A. fumigatus. Our findings revealed 3494 Khib-modified proteins with a total of 18,091 modified sites in this strain. Functional enrichment analysis indicated that these Khib-modified proteins participate in a diverse range of cellular functions, spanning various subcellular locations such as ribosome biosynthesis, protein synthesis and nucleocytoplasmic transport. Notably, when compared with other reported eukaryotes, A. fumigatus exhibited consistently higher numbers of Khib-modified proteins, suggesting the potential significance of this modification in this organism. An interesting observation is the prevalence of Khib modifications in most enzymes involved in the ergosterol synthesis pathway. The insights gathered from this study provide new avenue for studying PTM-associated mechanisms in fungal growth and offer potential implication for antifungal drug development.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Xiaofang Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Ma Q, Zeng Q, Wang K, Qian M, Li J, Wang H, Zhang H, Jiang J, Chen Z, Huang W. Acetyltransferase P300 Regulates Glucose Metabolic Reprogramming through Catalyzing Succinylation in Lung Cancer. Int J Mol Sci 2024; 25:1057. [PMID: 38256128 PMCID: PMC10816063 DOI: 10.3390/ijms25021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant protein post-translational modification is a hallmark of malignant tumors. Lysine succinylation (Ksucc) plays a vital role in cell energy metabolism in various cancers. However, whether succinylation can be catalyzed by acetyltransferase p300 remains unclear. In this study, we unveiled that p300 is a "writer" for succinylation, and p300-mediated Ksucc promotes cell glycometabolism in lung adenocarcinoma (LUAD). Specifically, our succinylome data revealed that EP300 deficiency leads to the systemic reduction of Ksucc, and 79.55% of the p300-succinylated proteins were found in the cytoplasm, which were primarily enriched in the carbohydrate metabolism process. Interestingly, deleting EP300 led to a notable decrease in Ksucc levels on several glycolytic enzymes, especially Phosphoglycerate Kinase 1 (PGK1). Mutation of the succinylated site of PGK1 notably hindered cell glycolysis and lactic acid excretion. Metabolomics in vivo indicated that p300-caused metabolic reprogramming was mainly attributed to the altered carbohydrate metabolism. In addition, 89.35% of LUAD patients exhibited cytoplasmic localization of p300, with higher levels in tumor tissues than adjacent normal tissues. High levels of p300 correlated with advanced tumor stages and poor prognosis of LUAD patients. Briefly, we disclose the activity of p300 to catalyze succinylation, which contributes to cell glucose metabolic reprogramming and malignant progression of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wan Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
31
|
Li X, Zhu Y, Yao Z, Ge R. The lysine 2-hydroxyisobutyrylome of Helicobacter pylori: Indicating potential roles of lysine 2-hydroxyisobutyrylation in the bacterial metabolism. Microb Pathog 2024; 186:106510. [PMID: 38147967 DOI: 10.1016/j.micpath.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Helicobacter pylori (H. pylori) is a pathogen which colonizes the stomach, causing ulcers, chronic gastritis and other related diseases. Protein post-translational modifications (PTMs) in bacteria mainly include glycosylation, ubiquitination, nitrosylation, methylation, phosphorylation and acetylation, all of which have divergent functions in the physiology and pathology of the bacterium. Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered type of PTM in recent years in some kinds of organisms, and this PTM is involved in the regulation of a variety of metabolic process, such as bacterial glucose metabolism, lipid metabolism and protein synthesis. This study performed the first qualitative lysine 2-hydroxyisobutyrylome in H. pylori, and a total of 4419 Khib sites in 812 proteins were identified. The results show that Khib sites are mainly located in the key functional regions or active domains of proteins involved in nickel-trafficking, energy production, virulence factors, anti-oxidation, metal resistance, and ribosome biosynthesis in H. pylori. The study presented here provides new hints in the metabolism and pathology of H. pylori and the proteins with Khib modification may be potentially promising targets for the further development of antibiotics, especially considering the high occurrence of treatment failure of H. pylori failure due to development of antibiotics-resistance.
Collapse
Affiliation(s)
- Xinhang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yulin Zhu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zihui Yao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiguang Ge
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
32
|
Werelusz P, Galiniak S, Mołoń M. Molecular functions of moonlighting proteins in cell metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119598. [PMID: 37774631 DOI: 10.1016/j.bbamcr.2023.119598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Moonlighting proteins have more than one physiologically significant role within one polypeptide chain. The multifunctionality of proteins was first described in 1987 by Joram Piatigorsky and Graeme Wistow. Cells can benefit from involvement of these proteins in biological processes in several ways, e.g. at the energy level. Furthermore, cells have developed a number of mechanisms to change these proteins' functions. Moonlighting proteins are found in all types of organisms, including prokaryotes, eukaryotes, and even viruses. These proteins include a variety of enzymes that serve as receptors, secreted cytokines, transcription factors, or proteasome components. Additionally, there are many combinations of functions, e.g. among receptors and transcription factors, chaperones and cytokines, as well as transcription factors within the ribosome. This work describes enzymes involved in several important metabolic processes in cells, namely cellular respiration, gluconeogenesis, the urea cycle, and pentose phosphate metabolism.
Collapse
Affiliation(s)
| | - Sabina Galiniak
- Institute of Medical Sciences, Rzeszów University, Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów, Poland.
| |
Collapse
|
33
|
Tian Y, Wan N, Zhang H, Shao C, Ding M, Bao Q, Hu H, Sun H, Liu C, Zhou K, Chen S, Wang G, Ye H, Hao H. Chemoproteomic mapping of the glycolytic targetome in cancer cells. Nat Chem Biol 2023; 19:1480-1491. [PMID: 37322158 DOI: 10.1038/s41589-023-01355-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.
Collapse
Affiliation(s)
- Yang Tian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ning Wan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hanqing Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuyu Bao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huiyong Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chenguang Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Kun Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Zhang Z, Wang Y, Liang Z, Meng Z, Zhang X, Ma G, Chen Y, Zhang M, Su Y, Li Z, Liang Y, Niu H. Modification of lysine-260 2-hydroxyisobutyrylation destabilizes ALDH1A1 expression to regulate bladder cancer progression. iScience 2023; 26:108142. [PMID: 37867947 PMCID: PMC10585400 DOI: 10.1016/j.isci.2023.108142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
ALDH1A1 is one of the classical stem cell markers for bladder cancer. Lysine 2-hydroxyisobutyrylation (Khib) is a newfound modification to modulate the protein expression, and the underlying mechanisms of how ALDH1A1 was regulated by Khib modification in bladder cancer remains unknown. Here, ALDH1A1 showed a decreased K260hib modification, as identified by protein modification omics in bladder cancer. Decreasing ALDH1A1 expression significantly suppressed the proliferation, migration and invasion of bladder cancer cells. Moreover, K260hib modification is responsible for the activity of ALDH1A1 in bladder cancer, which is regulated by HDAC2/3. Higher K260hib modification on ALDH1A1 promotes protein degradation through chaperone-mediated autophagy (CMA), and ALDH1A1 K260hib could sensitize bladder cancer cells to chemotherapeutic drugs. Higher ALDH1A1 expression with a lower K260hib modification indicates a poor prognosis in patients with bladder cancer. Overall, we demonstrated that K260hib of ALDH1A1 can be used as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Zhilei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhaoyuan Meng
- School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Yinjie Su
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266071, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
36
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
37
|
Zhang L, Shi X, Qiu H, Liu S, Yang T, Li X, Liu X. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front Immunol 2023; 14:1171834. [PMID: 37869005 PMCID: PMC10587562 DOI: 10.3389/fimmu.2023.1171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a major life-threatening syndrome of organ dysfunction caused by a dysregulated host response due to infection. Dysregulated immunometabolism is fundamental to the onset of sepsis. Particularly, short-chain fatty acids (SCFAs) are gut microbes derived metabolites serving to drive the communication between gut microbes and the immune system, thereby exerting a profound influence on the pathophysiology of sepsis. Protein post-translational modifications (PTMs) have emerged as key players in shaping protein function, offering novel insights into the intricate connections between metabolism and phenotype regulation that characterize sepsis. Accumulating evidence from recent studies suggests that SCFAs can mediate various PTM-dependent mechanisms, modulating protein activity and influencing cellular signaling events in sepsis. This comprehensive review discusses the roles of SCFAs metabolism in sepsis associated inflammatory and immunosuppressive disorders while highlights recent advancements in SCFAs-mediated lysine acylation modifications, such as substrate supplement and enzyme regulation, which may provide new pharmacological targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Zhang N, Wang S, Tian H, Li S, Liu L, Li J, Chen D, Zhao S, Yan X, Niaz M, Zhao L, Ren Y, Chen F. Functions of lysine 2-hydroxyisobutyrylation and future perspectives on plants. Proteomics 2023; 23:e2300045. [PMID: 37338329 DOI: 10.1002/pmic.202300045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel protein post-translational modifications (PTMs) observed in both eukaryotes and prokaryotes. Recent studies suggested that this novel PTM has the potential to regulate different proteins in various pathways. Khib is regulated by lysine acyltransferases and deacylases. This novel PTM reveals interesting connections between modifications and protein physiological functions, including gene transcription, glycolysis and cell growth, enzymic activity, sperm motility, and aging. Here, we review the discovery and the current understanding of this PTM. Then, we outline the networks of complexity of interactions among PTMs in plants, and raise possible directions of this novel PTM for future investigations in plants.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lulu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jiaqi Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
40
|
Serio S, Pagiatakis C, Musolino E, Felicetta A, Carullo P, Laura Frances J, Papa L, Rozzi G, Salvarani N, Miragoli M, Gornati R, Bernardini G, Condorelli G, Papait R. Cardiac Aging Is Promoted by Pseudohypoxia Increasing p300-Induced Glycolysis. Circ Res 2023; 133:687-703. [PMID: 37681309 DOI: 10.1161/circresaha.123.322676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.
Collapse
Affiliation(s)
- Simone Serio
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Arianna Felicetta
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Javier Laura Frances
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Laura Papa
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Giacomo Rozzi
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Nicolò Salvarani
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council of Italy (N.S.)
| | - Michele Miragoli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Medicine and Surgery, University of Parma, Italy (M.M.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Roberto Papait
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| |
Collapse
|
41
|
Chen S, Li D, Zeng Z, Zhang W, Xie H, Tang J, Liao S, Cai W, Liu F, Tang D, Dai Y. Analysis of proteome and post-translational modifications of 2-hydroxyisobutyrylation reveals the glycolysis pathway in oral adenoid cystic carcinoma. World J Surg Oncol 2023; 21:301. [PMID: 37741973 PMCID: PMC10517466 DOI: 10.1186/s12957-023-03155-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 09/25/2023] Open
Abstract
PURPOSE Oral adenoid cystic carcinoma (OACC) has high rates of both local-regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. EXPERIMENTAL DESIGN: We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC-MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein-protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. RESULTS Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. CONCLUSIONS AND CLINICAL RELEVANCE Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC.
Collapse
Affiliation(s)
- Sining Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Hongliang Xie
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Jianming Tang
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Shengyou Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
- Comprehensive health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou, 318000, China.
- Department of Organ Transplantation, No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guilin, 541002, China.
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
42
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
43
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
44
|
Gao J, Sheng X, Du J, Zhang D, Han C, Chen Y, Wang C, Zhao Y. Identification of 113 new histone marks by CHiMA, a tailored database search strategy. SCIENCE ADVANCES 2023; 9:eadf1416. [PMID: 37018393 PMCID: PMC10075957 DOI: 10.1126/sciadv.adf1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Shotgun proteomics has been widely used to identify histone marks. Conventional database search methods rely on the "target-decoy" strategy to calculate the false discovery rate (FDR) and distinguish true peptide-spectrum matches (PSMs) from false ones. This strategy has a caveat of inaccurate FDR caused by the small data size of histone marks. To address this challenge, we developed a tailored database search strategy, named "Comprehensive Histone Mark Analysis (CHiMA)." Instead of target-decoy-based FDR, this method uses "50% matched fragment ions" as the key criterion to identify high-confidence PSMs. CHiMA identified twice as many histone modification sites as the conventional method in benchmark datasets. Reanalysis of our previous proteomics data using CHiMA led to the identification of 113 new histone marks for four types of lysine acylations, almost doubling the number of previously reported marks. This tool not only offers a valuable approach for identifying histone modifications but also greatly expands the repertoire of histone marks.
Collapse
Affiliation(s)
- Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xinlei Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jianfeng Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chang Han
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Chu Wang
- Peking–Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Xie F, Zhang H, Zhu K, Jiang C, Zhang X, Chang H, Qiao Y, Sun M, Wang J, Wang M, Tan J, Wang T, Zhao L, Zhang Y, Lin J, Zhang C, Liu S, Zhao J, Luo C, Zhang S, Shan C. PRMT5 promotes ovarian cancer growth through enhancing Warburg effect by methylating ENO1. MedComm (Beijing) 2023; 4:e245. [PMID: 36999124 PMCID: PMC10044308 DOI: 10.1002/mco2.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a major type II enzyme responsible for symmetric dimethylation of arginine (SDMA), and plays predominantly roles in human cancers, including in ovarian cancer. However, the exactly roles and underlying mechanisms of PRMT5 contributing to the progression of ovarian cancer mediated by reprogramming cell metabolism remain largely elusive. Here, we report that PRMT5 is highly expressed and correlates with poor survival in ovarian cancer. Knockdown or pharmaceutical inhibition of PRMT5 is sufficient to decrease glycolysis flux, attenuate tumor growth, and enhance the antitumor effect of Taxol. Mechanistically, we find that PRMT5 symmetrically dimethylates alpha-enolase (ENO1) at arginine 9 to promotes active ENO1 dimer formation, which increases glycolysis flux and accelerates tumor growth. Moreover, PRMT5 signals high glucose to increase the methylation modification of ENO1. Together, our data reveal a novel role of PRMT5 in promoting ovarian cancer growth by controlling glycolysis flux mediated by methylating ENO1, and highlights that PRMT5 may represent a promising therapeutic target for treating ovarian cancer.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Kongkai Zhu
- Advanced Medical Research InstituteShandong UniversityJinanChina
| | - Cheng‐Shi Jiang
- School of Biological Science and TechnologyUniversity of JinanJinanChina
| | - Xiaoya Zhang
- Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongChina
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yaya Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Junzhen Tan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulationTianjin Central Hospital of Obstetrics and GynecologyTianjinChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yuan Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanGuangdongChina
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical CenterNankai UniversityTianjinChina
| | - Shuangping Liu
- Department of Pathology, Medical SchoolDalian UniversityDalianLiaoningChina
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulationTianjin Central Hospital of Obstetrics and GynecologyTianjinChina
| | - Cheng Luo
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shuai Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| |
Collapse
|
46
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
47
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
48
|
CircAMOTL1 RNA and AMOTL1 Protein: Complex Functions of AMOTL1 Gene Products. Int J Mol Sci 2023; 24:ijms24032103. [PMID: 36768425 PMCID: PMC9916871 DOI: 10.3390/ijms24032103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The complexity of the cellular proteome facilitates the control of a wide range of cellular processes. Non-coding RNAs, including microRNAs and long non-coding RNAs, greatly contribute to the repertoire of tools used by cells to orchestrate various functions. Circular RNAs (circRNAs) constitute a specific class of non-coding RNAs that have recently emerged as a widely generated class of molecules produced from many eukaryotic genes that play essential roles in regulating cellular processes in health and disease. This review summarizes current knowledge about circRNAs and focuses on the functions of AMOTL1 circRNAs and AMOTL1 protein. Both products from the AMOTL1 gene have well-known functions in physiology, cancer, and other disorders. Using AMOTL1 as an example, we illustrate how focusing on both circRNAs and proteins produced from the same gene contributes to a better understanding of gene functions.
Collapse
|
49
|
Zhao W, Ren TH, Zhou YZ, Liu SB, Huang XY, Ning TY, Li G. Proteomic analysis of protein lysine 2-hydroxyisobutyrylation (K hib) in soybean leaves. BMC PLANT BIOLOGY 2023; 23:23. [PMID: 36631736 PMCID: PMC9835227 DOI: 10.1186/s12870-022-04033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Protein lysine 2-hydroxyisobutyrylation (Khib) is a novel post-translational modification (PTM) discovered in cells or tissues of animals, microorganisms and plants in recent years. Proteome-wide identification of Khib-modified proteins has been performed in several plant species, suggesting that Khib-modified proteins are involved in a variety of biological processes and metabolic pathways. However, the protein Khib modification in soybean, a globally important legume crop that provides the rich source of plant protein and oil, remains unclear. RESULTS In this study, the Khib-modified proteins in soybean leaves were identified for the first time using affinity enrichment and high-resolution mass spectrometry-based proteomic techniques, and a systematic bioinformatics analysis of these Khib-modified proteins was performed. Our results showed that a total of 4251 Khib sites in 1532 proteins were identified as overlapping in three replicates (the raw mass spectrometry data are available via ProteomeXchange with the identifier of PXD03650). These Khib-modified proteins are involved in a wide range of cellular processes, particularly enriched in biosynthesis, central carbon metabolism and photosynthesis, and are widely distributed in subcellular locations, mainly in chloroplasts, cytoplasm and nucleus. In addition, a total of 12 sequence motifs were extracted from all identified Khib peptides, and a basic amino acid residue (K), an acidic amino acid residue (E) and three aliphatic amino acid residues with small side chains (G/A/V) were found to be more preferred around the Khib site. Furthermore, 16 highly-connected clusters of Khib proteins were retrieved from the global PPI network, which suggest that Khib modifications tend to occur in proteins associated with specific functional clusters. CONCLUSIONS These findings suggest that Khib modification is an abundant and conserved PTM in soybean and that this modification may play an important role in regulating physiological processes in soybean leaves. The Khib proteomic data obtained in this study will help to further elucidate the regulatory mechanisms of Khib modification in soybean in the future.
Collapse
Affiliation(s)
- Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Ting-Hu Ren
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Yan-Zheng Zhou
- Jining Academy of Agricultural Sciences, Jining, Shandong 272075 People’s Republic of China
| | - Sheng-Bo Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Xin-Yang Huang
- Jining Academy of Agricultural Sciences, Jining, Shandong 272075 People’s Republic of China
| | - Tang-Yuan Ning
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| |
Collapse
|
50
|
Wang J, Ju HJ, Zhang F, Tian H, Wang WG, Ma YL, Xu WS, Wang YH. A novel NSUN5/ENO3 pathway promotes the Warburg effect and cell growth in clear cell renal cell carcinoma by 5-methylcytosine-stabilized ENO3 mRNA. Am J Transl Res 2023; 15:878-895. [PMID: 36915728 PMCID: PMC10006748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Clear cell renal cell carcinoma (ccRCC) cells often reprogram their metabolisms. Enolase 3 (ENO3) is closely related to the Warburg effect observed in cells during tumor progression. However, the expression and function of ENO3 in ccRCC cells remain unclear. Therefore, this study investigated the expression and functional significance of ENO3 in the Warburg effect observed in ccRCC cells. METHODS In this study, B-mode and microflow imaging ultrasound examinations were performed to evaluate patients with ccRCC. The extracellular acidification rate test and glucose uptake and lactate production assays were used to examine the Warburg effect in ccRCC cells. Western blotting, quantitative reverse transcription polymerase chain reaction, and immunochemistry were used to detect the expression of ENO3 and NOP2/Sun RNA methyltransferase 5 (NSUN5). RESULTS ENO3 upregulation in ccRCC tumor tissues was accompanied by an increase in tumor size. Importantly, ENO3 participated in the Warburg effect observed in ccRCC cells, and high levels of ENO3 indicated a poor prognosis for patients. Loss of ENO3 reduced glucose uptake, lactate production, and extracellular acidification rate as well as inhibited ccRCC cell proliferation. Furthermore, NSUN5 was involved in the ENO3-regulated Warburg effect and ccRCC cell progression. Mechanically, NSUN5 was upregulated in ccRCC tissues, and NSUN5 upregulation mediated 5-methylcytosine modification of messenger RNA (mRNA) in ccRCC cells to promote mRNA stability and ENO3 expression. CONCLUSIONS Collectively, the destruction of the NSUN5/ENO3 axis prevents ccRCC growth in vivo and in vitro, and targeting this pathway may be an effective strategy against ccRCC progression.
Collapse
Affiliation(s)
- Juan Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Hong-Juan Ju
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Fan Zhang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Hui Tian
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Wen-Gang Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Yu-Lin Ma
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Wen-Sheng Xu
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Yue-Heng Wang
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|