1
|
Hara Y, Kuraku S. Intragenomic mutational heterogeneity: structural and functional insights from gene evolution. Trends Genet 2025:S0168-9525(25)00075-7. [PMID: 40328580 DOI: 10.1016/j.tig.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Variation of mutation rates between species has been documented over decades, but the variation between different regions of a genome has been less often discussed. Recent studies using high-quality sequence data have revealed previously unknown levels of intragenomic heterogeneity of mutation rates and their association with other structural and functional features of DNA sequences. This article reviews accumulating evidence of this intragenomic heterogeneity and speculates its cause and influence on organismal phenotypes.
Collapse
Affiliation(s)
- Yuichiro Hara
- Department of Data Science, Kitasato University School of Frontier Engineering, Sagamihara, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan.
| |
Collapse
|
2
|
Marano N, Holaska JM. The role of inner nuclear membrane protein emerin in myogenesis. FASEB J 2025; 39:e70514. [PMID: 40178931 PMCID: PMC11967984 DOI: 10.1096/fj.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Emerin, a ubiquitously expressed inner nuclear membrane protein, plays a central role in maintaining nuclear structure and genomic organization, and in regulating gene expression and cellular signaling pathways. These functions are critical for proper myogenic differentiation and are closely linked to the pathology of Emery-Dreifuss muscular dystrophy 1 (EDMD1), a laminopathy caused by mutations in the EMD gene. Emerin, along with other nuclear lamina proteins, modulates chromatin organization, cell signaling, gene expression, and cellular mechanotransduction, processes essential for muscle development and homeostasis. Loss of emerin function disrupts chromatin localization, causes dysregulated gene expression, and alters nucleoskeletal organization, resulting in impaired myogenic differentiation. Recent findings suggest that emerin tethers repressive chromatin at the nuclear envelope, a process essential for robust myogenesis. This review provides an in-depth discussion of emerin's multifaceted roles in nuclear organization, gene regulation, and cellular signaling, highlighting its importance in myogenic differentiation and disease progression.
Collapse
Affiliation(s)
- Nicholas Marano
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| | - James M. Holaska
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| |
Collapse
|
3
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
4
|
Georgiou K, Sarigol F, Nimpf T, Knapp C, Filipczak D, Foisner R, Naetar N. MyoD1 localization at the nuclear periphery is mediated by association of WFS1 with active enhancers. Nat Commun 2025; 16:2614. [PMID: 40097443 PMCID: PMC11914251 DOI: 10.1038/s41467-025-57758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Spatial organization of the mammalian genome influences gene expression and cell identity. While association of genes with the nuclear periphery is commonly linked to transcriptional repression, also active, expressed genes can localize at the nuclear periphery. The transcriptionally active MyoD1 gene, a master regulator of myogenesis, exhibits peripheral localization in proliferating myoblasts, yet the underlying mechanisms remain elusive. Here, we generate a reporter cell line to demonstrate that peripheral association of the MyoD1 locus is independent of mechanisms involved in heterochromatin anchoring. Instead, we identify the nuclear envelope transmembrane protein WFS1 that tethers MyoD1 to the nuclear periphery. WFS1 primarily associates with active distal enhancer elements upstream of MyoD1, and with a subset of enhancers genome-wide, which are enriched in active histone marks and linked to expressed myogenic genes. Overall, our data identify a mechanism involved in tethering regulatory elements of active genes to the nuclear periphery.
Collapse
Affiliation(s)
- Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Tobias Nimpf
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Christian Knapp
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria.
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Zheng Q, Liu Y, Guo M, Zhang X, Zhang Q, Yu XY, Lin Z. Discovery of therapeutic targets in cardiovascular diseases using high-throughput chromosome conformation capture (Hi-C). Front Genet 2025; 16:1515010. [PMID: 40182924 PMCID: PMC11966399 DOI: 10.3389/fgene.2025.1515010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Epigenetic changes have been associated with several cardiovascular diseases. In recent years, epigenetic inheritance based on spatial changes has gradually attracted attention. Alterations in three-dimensional chromatin structures have been shown to regulate gene expression and influence disease onset and progression. High-throughput Chromosome Conformation Capture (Hi-C) is a powerful method to detect spatial chromatin conformation changes. Since its development, Hi-C technology has been widely adopted for discovering novel therapeutic targets in cardiovascular research. In this review, we summarize key targets identified by Hi-C in cardiovascular diseases and discuss their potential implications for epigenetic therapy.
Collapse
Affiliation(s)
- Quan Zheng
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ying Liu
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Minghao Guo
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Xin Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qingbin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Nakatani T. Dynamics of replication timing during mammalian development. Trends Genet 2025:S0168-9525(25)00026-5. [PMID: 40082146 DOI: 10.1016/j.tig.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
Recent developments in low-input genomics techniques have greatly advanced the analysis of the order in which DNA is replicated in the genome - that is, replication timing (RT) - and its interrelationships with other processes. RT correlates or anticorrelates with genomic-specific parameters such as gene expression, chromatin accessibility, histone modifications, and the 3D structure of the genome, but the significance of how they influence each other and how they relate to biological processes remains unclear. In this review I discuss the results of recent analyses of RT, the time at which it is remodeled and consolidated during embryogenesis, how it influences development and differentiation, and the regulatory mechanisms and factors involved.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany.
| |
Collapse
|
7
|
Shin GS, Jo AR, Kim J, Kim JY, Kim CH, An MJ, Lee HM, Park Y, Hwangbo Y, Kim JW. Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the ETS1 gene locus. Anim Cells Syst (Seoul) 2025; 29:149-162. [PMID: 39968360 PMCID: PMC11834782 DOI: 10.1080/19768354.2025.2465325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.
Collapse
Affiliation(s)
- Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ward AI, de las Heras JI, Schirmer EC, Fassati A. Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation. Front Cell Dev Biol 2025; 13:1514627. [PMID: 40018706 PMCID: PMC11866950 DOI: 10.3389/fcell.2025.1514627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background CD4+ T cells are a highly differentiated cell type that maintain enough transcriptomic plasticity to cycle between activated and memory statuses. How the 1D chromatin state and 3D chromatin architecture support this plasticity is under intensive investigation. Methods Here, we wished to test a commercially available in situ Hi-C kit (Arima Genomics Inc.) to establish whether published performance on limiting cell numbers from clonal cell lines copies across to a primary immune cell type. We achieved comparable contact matrices from 50,000, 250,000, and 1,000,000 memory CD4+ T-cell inputs. We generated multiple Hi-C and RNA-seq libraries from the same biological blood donors under three separate conditions: unstimulated fresh ex vivo, IL-2-only stimulated, and T cell receptor (TCR)+CD28+IL-2-stimulated, conferring increasingly stronger activation signals. We wished to capture the magnitude and progression of 3D chromatin shifts and correlate these to expression changes under the two stimulations. Results Although some genome organization changes occurred concomitantly with changes in gene expression, at least as many changes occurred without corresponding changes in expression. Counter to the hypothesis that topologically associated domains (TADs) are largely invariant structures providing a scaffold for dynamic looping contacts between enhancers and promotors, we found that there were at least as many dynamic TAD changes. Stimulation with IL-2 alone triggered many changes in genome organization, and many of these changes were strengthened by additional TCR and CD28 co-receptor stimulation. Conclusions This suggests a stepwise process whereby mCD4+ T cells undergo sequential buildup of 3D architecture induced by distinct or combined stimuli likely to "prime" or "deprime" them for expression responses to subsequent TCR-antigen ligation or additional cytokine stimulation.
Collapse
Affiliation(s)
- Alexander I. Ward
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariberto Fassati
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Wang B, Luo Q, Medalia O. Lamins and chromatin join forces. Adv Biol Regul 2025; 95:101059. [PMID: 39547851 DOI: 10.1016/j.jbior.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
The intricate interplay between lamins and chromatin underpins the structural integrity and functional organization of the eukaryotic nucleus. Lamins, type V intermediate filament proteins, form a robust meshwork beneath the inner nuclear membrane that is crucial for sustaining nuclear architecture through interactions with lamin-associated domains (LADs). LADs are predominantly heterochromatic regions in which compacted chromatin is enriched at the nuclear periphery, interacting with lamins and lamin-associated proteins. Disruptions of these interactions are implicated in a spectrum of diseases, including laminopathies, cancer, and age-related pathologies, highlighting the importance of lamin-LAD interactions. Thus, a detailed understanding of lamin-chromatin interactions may provide new insights into chromatin organization and shed light on the mechanism behind certain disease states. Here, we discuss the current state of knowledge of lamin-chromatin interactions from a biochemical and structural point of view.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| | - Qiang Luo
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Attar AG, Paturej J, Banigan EJ, Erbaş A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. Nucleus 2024; 15:2351957. [PMID: 38753956 PMCID: PMC11407394 DOI: 10.1080/19491034.2024.2351957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.
Collapse
Affiliation(s)
- Ali Goktug Attar
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | | | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Institute of Physics, University of Silesia, Chorzów, Poland
| |
Collapse
|
12
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
13
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Manzo SG, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten MS, Rowland BD, Brummelkamp TR, van Steensel B. Chromatin protein complexes involved in gene repression in lamina-associated domains. EMBO J 2024; 43:5260-5287. [PMID: 39322756 PMCID: PMC11535540 DOI: 10.1038/s44318-024-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.
Collapse
Affiliation(s)
- Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Abdelghani Mazouzi
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Nadia Neyazi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Marjon S van Ruiten
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Ferraioli S, Sarigol F, Prakash C, Filipczak D, Foisner R, Naetar N. LAP2alpha facilitates myogenic gene expression by preventing nucleoplasmic lamin A/C from spreading to active chromatin regions. Nucleic Acids Res 2024; 52:11500-11518. [PMID: 39228367 PMCID: PMC11514464 DOI: 10.1093/nar/gkae752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A-type lamins form a filamentous meshwork beneath the nuclear membrane that anchors large heterochromatic genomic regions at the nuclear periphery. A-type lamins also exist as a dynamic, non-filamentous pool in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Both proteins associate with largely overlapping euchromatic genomic regions in the nucleoplasm, but the functional significance of this interaction is poorly understood. Here, we report that LAP2α relocates towards regions containing myogenic genes in the early stages of muscle differentiation, possibly facilitating efficient gene regulation, while lamins A and C mostly associate with genomic regions away from these genes. Strikingly, upon depletion of LAP2α, A-type lamins spread across active chromatin and accumulate at regions of active H3K27ac and H3K4me3 histone marks in the vicinity of myogenic genes whose expression is impaired in the absence of LAP2α. Reorganization of A-type lamins on chromatin is accompanied by depletion of the active chromatin mark H3K27ac and a significantly impaired myogenic differentiation. Thus, the interplay of LAP2α and A-type lamins is crucial for proper positioning of intranuclear lamin A/C on chromatin to allow efficient myogenic differentiation.
Collapse
Affiliation(s)
- Simona Ferraioli
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Celine Prakash
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
16
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Jha A, Hristov B, Wang X, Wang S, Greenleaf WJ, Kundaje A, Aiden EL, Bertero A, Noble WS. Prediction and functional interpretation of inter-chromosomal genome architecture from DNA sequence with TwinC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613355. [PMID: 39345598 PMCID: PMC11429679 DOI: 10.1101/2024.09.16.613355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal (cis) folding and less characterized inter-chromosomal (trans) interfaces. Current predictive models of 3D genome folding can effectively infer pairwise cis-chromatin interactions from the primary DNA sequence but generally ignore trans contacts. There is an unmet need for robust models of trans-genome organization that provide insights into their underlying principles and functional relevance. We present TwinC, an interpretable convolutional neural network model that reliably predicts trans contacts measurable through genome-wide chromatin conformation capture (Hi-C). TwinC uses a paired sequence design from replicate Hi-C experiments to learn single base pair relevance in trans interactions across two stretches of DNA. The method achieves high predictive accuracy (AUROC=0.80) on a cross-chromosomal test set from Hi-C experiments in heart tissue. Mechanistically, the neural network learns the importance of compartments, chromatin accessibility, clustered transcription factor binding and G-quadruplexes in forming trans contacts. In summary, TwinC models and interprets trans genome architecture, shedding light on this poorly understood aspect of gene regulation.
Collapse
Affiliation(s)
- Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Sheng Wang
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University Stanford, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Ghosh S, Isma J, Ostano P, Mazzeo L, Toniolo A, Das M, White JR, Simon C, Paolo Dotto G. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat Commun 2024; 15:7984. [PMID: 39266569 PMCID: PMC11392952 DOI: 10.1038/s41467-024-52344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Campus, Pilani, India.
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Monalisa Das
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Joni R White
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
19
|
Czapiewski R, Schirmer EC. Enhancers on the edge - how the nuclear envelope controls gene regulatory elements. Curr Opin Genet Dev 2024; 87:102234. [PMID: 39047586 DOI: 10.1016/j.gde.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
20
|
Stephens RK, Miroshnikova YA. Nuclear periphery and its mechanical regulation in cell fate transitions. Curr Opin Struct Biol 2024; 87:102867. [PMID: 38889500 DOI: 10.1016/j.sbi.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.
Collapse
Affiliation(s)
- Rebecca K Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. https://twitter.com/BecKateStephens
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Lucini F, Petrini C, Salviato E, Pal K, Rosti V, Gorini F, Santarelli P, Quadri R, Lembo G, Graziano G, Di Patrizio Soldateschi E, Tagliaferri I, Pinatel E, Sebestyén E, Rotta L, Gentile F, Vaira V, Lanzuolo C, Ferrari F. Biochemical properties of chromatin domains define genome compartmentalization. Nucleic Acids Res 2024; 52:e54. [PMID: 38808669 PMCID: PMC11229364 DOI: 10.1093/nar/gkae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.
Collapse
Affiliation(s)
- Federica Lucini
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
| | - Cristiano Petrini
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Elisa Salviato
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Koustav Pal
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Valentina Rosti
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate 20054, Italy
| | - Francesca Gorini
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
| | - Philina Santarelli
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
| | - Roberto Quadri
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
| | - Giovanni Lembo
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Giulia Graziano
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Emanuele Di Patrizio Soldateschi
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate 20054, Italy
| | | | - Eva Pinatel
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate 20054, Italy
| | - Endre Sebestyén
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Luca Rotta
- IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Francesco Gentile
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Lanzuolo
- INGM, Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan 20122, Italy
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate 20054, Italy
| | - Francesco Ferrari
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan 20139, Italy
- IGM-CNR, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Pavia 27100, Italy
| |
Collapse
|
23
|
Doronin SA, Ilyin AA, Kononkova AD, Solovyev MA, Olenkina OM, Nenasheva VV, Mikhaleva EA, Lavrov SA, Ivannikova AY, Simonov RA, Fedotova AA, Khrameeva EE, Ulianov SV, Razin SV, Shevelyov YY. Nucleoporin Elys attaches peripheral chromatin to the nuclear pores in interphase nuclei. Commun Biol 2024; 7:783. [PMID: 38951619 PMCID: PMC11217421 DOI: 10.1038/s42003-024-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.
Collapse
Affiliation(s)
- Semen A Doronin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Artem A Ilyin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Molecular Biosciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia
| | - Mikhail A Solovyev
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Oxana M Olenkina
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Valentina V Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Elena A Mikhaleva
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Sergey A Lavrov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna Y Ivannikova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Ruslan A Simonov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna A Fedotova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Regulation of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia.
| | - Sergey V Ulianov
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey V Razin
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia.
| |
Collapse
|
24
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
25
|
Vivo M, Rosti V, Cervone S, Lanzuolo C. Chromatin plasticity in mechanotransduction. Curr Opin Cell Biol 2024; 88:102376. [PMID: 38810318 DOI: 10.1016/j.ceb.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Living organisms can detect and respond to physical forces at the cellular level. The pathways that transmit these forces to the nucleus allow cells to react quickly and consistently to environmental changes. Mechanobiology involves the interaction between physical forces and biological processes and is crucial for driving embryonic development and adapting to environmental cues during adulthood. Molecular studies have shown that cells can sense mechanical signals directly through membrane receptors linked to the cytoskeleton or indirectly through biochemical cascades that can influence gene expression for environmental adaptation. This review will explore the role of epigenetic modifications, emphasizing the 3D genome architecture and nuclear structures as responders to mechanical stimuli, which ensure cellular memory and adaptability. Understanding how mechanical cues are transduced and regulate cell functioning, governing processes such as cell programming and reprogramming, is essential for advancing our knowledge of human diseases.
Collapse
Affiliation(s)
- Maria Vivo
- Università degli Studi di Salerno, Fisciano, Italy.
| | - Valentina Rosti
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy; INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sara Cervone
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy; INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
| |
Collapse
|
26
|
Kirby TJ, Zahr HC, Fong EHH, Lammerding J. Eliminating elevated p53 signaling fails to rescue skeletal muscle defects or extend survival in lamin A/C-deficient mice. Cell Death Discov 2024; 10:245. [PMID: 38778055 PMCID: PMC11111808 DOI: 10.1038/s41420-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear intermediate filaments that provide structural support to the nucleus and contribute to chromatin organization and transcriptional regulation. LMNA mutations cause muscular dystrophies, dilated cardiomyopathy, and other diseases. The mechanisms by which many LMNA mutations result in muscle-specific diseases have remained elusive, presenting a major hurdle in the development of effective treatments. Previous studies using striated muscle laminopathy mouse models found that cytoskeletal forces acting on mechanically fragile Lmna-mutant nuclei led to transient nuclear envelope rupture, extensive DNA damage, and activation of DNA damage response (DDR) pathways in skeletal muscle cells in vitro and in vivo. Furthermore, hearts of Lmna mutant mice have elevated activation of the tumor suppressor protein p53, a central regulator of DDR signaling. We hypothesized that elevated p53 activation could present a pathogenic mechanism in striated muscle laminopathies, and that eliminating p53 activation could improve muscle function and survival in laminopathy mouse models. Supporting a pathogenic function of p53 activation in muscle, stabilization of p53 was sufficient to reduce contractility and viability in wild-type muscle cells in vitro. Using three laminopathy models, we found that increased p53 activity in Lmna-mutant muscle cells primarily resulted from mechanically induced damage to the myonuclei, and not from altered transcriptional regulation due to loss of lamin A/C expression. However, global deletion of p53 in a severe muscle laminopathy model did not reduce the disease phenotype or increase survival, indicating that additional drivers of disease must contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| | - Hind C Zahr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ern Hwei Hannah Fong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
27
|
Carlson J, Neidviecky E, Cook I, Cross B, Deng H. Interaction with B-type lamin reveals the function of Drosophila Keap1 xenobiotic response factor in nuclear architecture. Mol Biol Rep 2024; 51:556. [PMID: 38642177 PMCID: PMC11414762 DOI: 10.1007/s11033-024-09471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.
Collapse
Affiliation(s)
- Jennifer Carlson
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Emma Neidviecky
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Isabel Cook
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Bethany Cross
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
28
|
Salinas-Pena M, Rebollo E, Jordan A. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife 2024; 12:RP91306. [PMID: 38530350 DOI: 10.7554/elife.91306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.
Collapse
Affiliation(s)
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
29
|
Pujadas Liwag EM, Wei X, Acosta N, Carter LM, Yang J, Almassalha LM, Jain S, Daneshkhah A, Rao SSP, Seker-Polat F, MacQuarrie KL, Ibarra J, Agrawal V, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biol 2024; 25:77. [PMID: 38519987 PMCID: PMC10958841 DOI: 10.1186/s13059-024-03212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.
Collapse
Affiliation(s)
- Emily M Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaolong Wei
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas M Carter
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fidan Seker-Polat
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle L MacQuarrie
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joe Ibarra
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erez Lieberman Aiden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, TX, 77030, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Mazhar Adli
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. KAKU4 regulates leaf senescence through modulation of H3K27me3 deposition in the Arabidopsis genome. BMC PLANT BIOLOGY 2024; 24:177. [PMID: 38448830 PMCID: PMC10919013 DOI: 10.1186/s12870-024-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Lamins are the major components of the nuclear lamina, which regulate chromatin structure and gene expression. KAKU4 is a unique nuclear lamina component in the nuclear periphery, modulates nuclear shape and size in Arabidopsis. The knowledge about the regulatory role of KAKU4 in leaf development remains limited. Here we found that knockdown of KAKU4 resulted in an accelerated leaf senescence phenotype, with elevated levels of H2O2 and hormones, particularly SA, JA, and ABA. Our results demonstrated the importance of KAKU4 as a potential negative regulator in age-triggered leaf senescence in Arabidopsis. Furthermore, we conducted combination analyses of transcriptomic and epigenomic data for the kaku4 mutant and WT leaves. The knockdown of KAKU4 lowered H3K27me3 deposition in the up-regulated genes associated with hormone pathways, programmed cell death, and leaf senescence, including SARD1, SAG113/HAI1, PR2, and so forth. In addition, we found the functional crosstalks between KAKU4 and its associated proteins (CRWN1/4, PNET2, GBPL3, etc.) through comparing multiple transcriptome datasets. Overall, our results indicated that KAKU4 may inhibit the expression of a series of genes related to hormone signals and H2O2 metabolism by affecting the deposition of H3K27me3, thereby suppressing leaf senescence.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
32
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
33
|
Attar AG, Paturej J, Banigan EJ, Erbas A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.571697. [PMID: 38168411 PMCID: PMC10760070 DOI: 10.1101/2023.12.16.571697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Abnormalities in the shapes of mammalian cell nuclei are hallmarks of a variety of diseases, including progeria, muscular dystrophy, and various cancers. Experiments have shown that there is a causal relationship between chromatin organization and nuclear morphology. Decreases in heterochromatin levels, perturbations to heterochromatin organization, and increases in euchromatin levels all lead to misshapen nuclei, which exhibit deformations, such as nuclear blebs and nuclear ruptures. However, the polymer physical mechanisms of how chromatin governs nuclear shape and integrity are poorly understood. To investigate how heterochromatin and euchromatin, which are thought to microphase separate in vivo , govern nuclear morphology, we implemented a composite coarse-grained polymer and elastic shell model. By varying chromatin volume fraction (density), heterochromatin levels and structure, and heterochromatin-lamina interactions, we show how the spatial organization of chromatin polymer phases within the nucleus could perturb nuclear shape in some scenarios. Increasing the volume fraction of chromatin in the cell nucleus stabilizes the nuclear lamina against large fluctuations. However, surprisingly, we find that increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations in our simulations by a "wetting"-like interaction. In contrast, shape fluctuations are largely insensitive to the internal structure of the heterochromatin, such as the presence or absence of chromatin-chromatin crosslinks. Therefore, our simulations suggest that heterochromatin accumulation at the nuclear periphery could perturb nuclear morphology in a nucleus or nuclear region that is sufficiently soft, while stabilization of the nucleus via heterochromatin likely occurs through mechanisms other than chromatin microphase organization.
Collapse
|
34
|
Kim Y. The impact of altered lamin B1 levels on nuclear lamina structure and function in aging and human diseases. Curr Opin Cell Biol 2023; 85:102257. [PMID: 37806292 DOI: 10.1016/j.ceb.2023.102257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
The role of lamin B1 in human health and aging has attracted increasing attention as mounting evidence reveals its significance in diverse cellular processes. Both upregulation and downregulation of lamin B1 have been implicated in age-associated organ dysfunctions and various human diseases, including central nervous system disorders. Additionally, lamin B1 levels undergo alterations in cancer cells, and a tumor-specific association exists between lamin B1 abundance and cancer aggressiveness. Investigating the connectivity between lamin B1 abundance and human health is of utmost importance for further research. This review presents recent advancements in understanding lamin B1's role in nuclear lamina function and its implications for human health.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Integrated Biomedical Science and Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheon-an 31151, Republic of Korea.
| |
Collapse
|
35
|
Alagna NS, Thomas TI, Wilson KL, Reddy KL. Choreography of lamina-associated domains: structure meets dynamics. FEBS Lett 2023; 597:2806-2822. [PMID: 37953467 PMCID: PMC10858991 DOI: 10.1002/1873-3468.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.
Collapse
Affiliation(s)
- Nicholas S. Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tiera I. Thomas
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L. Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L. Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
37
|
Walther BK, Sears AP, Mojiri A, Avazmohammadi R, Gu J, Chumakova OV, Pandian NKR, Dominic A, Martiel JL, Yazdani SK, Cooke JP, Ohayon J, Pettigrew RI. Disrupted Stiffness Ratio Alters Nuclear Mechanosensing. MATTER 2023; 6:3608-3630. [PMID: 37937235 PMCID: PMC10627551 DOI: 10.1016/j.matt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.
Collapse
Affiliation(s)
- Brandon K. Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Adam P. Sears
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Texas A&M University, Department of Mechanical Engineering, College Station, TX 77843, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Olga V. Chumakova
- University of Texas Health Science Center, Department of Integrative Biology and Pharmacology, Houston, TX 77030, USA
| | | | - Abishai Dominic
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Saami K. Yazdani
- Wake Forest University, Department of Engineering, Winston-Salem, NC 27101, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Jacques Ohayon
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- University Grenoble Alpes, CNRS, TIMC UMR 5525, 38000 Grenoble, France
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, 73376 Le Bourget du Lac, France
| | - Roderic I. Pettigrew
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
38
|
Sakamoto T, Matsunaga S. Chromatin dynamics and subnuclear gene positioning for transcriptional regulation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102431. [PMID: 37562088 DOI: 10.1016/j.pbi.2023.102431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Plants have been found to exhibit diverse characteristics and functions of chromatin organization, showing both similarities and differences to animals. It is becoming clear how chromatin organization is linked to transcriptional regulation in response to environmental stresses. Regulation of specific chromatin positions in the nuclear space is important for transcription, and the mechanisms that enable such chromatin dynamics are gradually being unveiled. Genes move between subdomains responsible for transcriptional activation or suppression in the subnuclear space in a gene repositioning cycle. We propose a model of localized chromatin interaction in nuclear subdomains, in which the dynamics of local chromatin interactions have a more important impact on the regulation of gene expression than large-scale chromatin organization. In this mini-review, we highlight recent findings on chromatin dynamics, particularly involving transcriptional regulation, and discuss future directions in the study of chromatin organization in plants.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-0802, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
39
|
Eshghi I, Zidovska A, Grosberg AY. Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:69. [PMID: 37540478 DOI: 10.1140/epje/s10189-023-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
We solve a hydrodynamic model of active chromatin dynamics, within a confined geometry simulating the cell nucleus. Using both analytical and numerical methods, we describe the behavior of the chromatin polymer driven by the activity of motors having polar symmetry, both in the linear response regime as well as in the long-term, fully nonlinear regime of the flows. The introduction of a boundary induces a particular geometry in the flows of chromatin, which we describe using vector spherical harmonics, a tool which greatly simplifies both our analytical and numerical approaches. We find that the long-term behavior of this model in confinement is dominated by steady, transverse flows of chromatin which circulate around the spherical domain. These circulating flows are found to be robust to perturbations, and their characteristic size is set by the size of the domain. This gives us further insight into active chromatin dynamics in the cell nucleus, and provides a foundation for development of further, more complex models of active chromatin dynamics.
Collapse
Affiliation(s)
- Iraj Eshghi
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexander Y Grosberg
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
40
|
Fukuda K, Shimi T, Shimura C, Ono T, Suzuki T, Onoue K, Okayama S, Miura H, Hiratani I, Ikeda K, Okada Y, Dohmae N, Yonemura S, Inoue A, Kimura H, Shinkai Y. Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res 2023; 51:6190-6207. [PMID: 37178005 PMCID: PMC10325917 DOI: 10.1093/nar/gkad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes critical for cell type-specific gene expression and genome stability. In the mammalian nucleus, heterochromatin segregates from transcriptionally active genomic regions and exists in large, condensed, and inactive nuclear compartments. However, the mechanisms underlying the spatial organization of heterochromatin need to be better understood. Histone H3 lysine 9 trimethylation (H3K9me3) and lysine 27 trimethylation (H3K27me3) are two major epigenetic modifications that enrich constitutive and facultative heterochromatin, respectively. Mammals have at least five H3K9 methyltransferases (SUV39H1, SUV39H2, SETDB1, G9a and GLP) and two H3K27 methyltransferases (EZH1 and EZH2). In this study, we addressed the role of H3K9 and H3K27 methylation in heterochromatin organization using a combination of mutant cells for five H3K9 methyltransferases and an EZH1/2 dual inhibitor, DS3201. We showed that H3K27me3, which is normally segregated from H3K9me3, was redistributed to regions targeted by H3K9me3 after the loss of H3K9 methylation and that the loss of both H3K9 and H3K27 methylation resulted in impaired condensation and spatial organization of heterochromatin. Our data demonstrate that the H3K27me3 pathway safeguards heterochromatin organization after the loss of H3K9 methylation in mammalian cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
- School of Biosciences, The University of Melbourne, Royal Parade, 3010 Parkville, Australia
| | - Takeshi Shimi
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| | - Takao Ono
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo113-0033, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka565-0874, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima770-8503, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Japan
- Tokyo Metropolitan University, Hachioji192-0397, Japan
| | - Hiroshi Kimura
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| |
Collapse
|
41
|
Han JDJ. LncRNAs: the missing link to senescence nuclear architecture. Trends Biochem Sci 2023; 48:618-628. [PMID: 37069045 DOI: 10.1016/j.tibs.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
42
|
Ghosh S, Isma J, Mazzeo L, Toniolo A, Simon C, Dotto GP. Nuclear lamin A/C phosphorylation by loss of Androgen Receptor is a global determinant of cancer-associated fibroblast activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546870. [PMID: 37425957 PMCID: PMC10327063 DOI: 10.1101/2023.06.28.546870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alterations of nuclear structure and function, and associated impact on gene transcription, are a hallmark of cancer cells. Little is known of these alterations in Cancer-Associated Fibroblasts (CAFs), a key component of the tumor stroma. Here we show that loss of androgen receptor (AR), which triggers early steps of CAF activation in human dermal fibroblasts (HDFs), leads to nuclear membrane alterations and increased micronuclei formation, which are unlinked from induction of cellular senescence. Similar alterations occur in fully established CAFs, which are overcome by restored AR function. AR associates with nuclear lamin A/C and loss of AR results in a substantially increased lamin A/C nucleoplasmic redistribution. Mechanistically, AR functions as a bridge between lamin A/C with the protein phosphatase PPP1. In parallel with a decreased lamin-PPP1 association, AR loss results in a marked increase of lamin A/C phosphorylation at Ser 301, which is also a feature of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the transcription promoter regulatory region of several CAF effector genes, which are upregulated due to the loss of AR. More directly, expression of a lamin A/C Ser301 phosphomimetic mutant alone is sufficient to convert normal fibroblasts into tumor-promoting CAFs of the myofibroblast subtype, without an impact on senescence. These findings highlight the pivotal role of the AR-lamin A/C-PPP1 axis and lamin A/C phosphorylation at Ser 301 in driving CAF activation.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G. Paolo Dotto
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
43
|
Pujadas EM, Wei X, Acosta N, Carter L, Yang J, Almassalha L, Daneshkhah A, Rao SSP, Agrawal V, Seker-Polat F, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 alters chromatin mobility and induces differential gene expression by a mesoscale-motion dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546573. [PMID: 37425796 PMCID: PMC10326988 DOI: 10.1101/2023.06.26.546573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.
Collapse
|
44
|
Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A, Krishna A, Jacobs M, Cauer G, Pham M, Rao SSP, Dudchenko O, Omer A, Mohajeri K, Kim S, Nichols MH, Davis ES, Gkountaroulis D, Udupa D, Aiden AP, Corces VG, Phanstiel DH, Noble WS, Nir G, Di Pierro M, Seo JS, Talkowski ME, Aiden EL, Rowley MJ. Chromatin alternates between A and B compartments at kilobase scale for subgenic organization. Nat Commun 2023; 14:3303. [PMID: 37280210 PMCID: PMC10244318 DOI: 10.1038/s41467-023-38429-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF's RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.
Collapse
Affiliation(s)
- Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiya Gu
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Moshe Olshansky
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Irene Farabella
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BISB), 17 08028, Barcelona, Spain
- Integrative Nuclear Architecture Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Yossi Eliaz
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Akshay Krishna
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mozes Jacobs
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Gesine Cauer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Melanie Pham
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Suhas S P Rao
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimos Gkountaroulis
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Devika Udupa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - William Stafford Noble
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeong-Sun Seo
- Macrogen Inc, Seoul, Republic of Korea
- Asian Genome Institute, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Michael E Talkowski
- Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
45
|
Hara Y, Kuraku S. The impact of local genomic properties on the evolutionary fate of genes. eLife 2023; 12:82290. [PMID: 37223962 DOI: 10.7554/elife.82290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Functionally indispensable genes are likely to be retained and otherwise to be lost during evolution. This evolutionary fate of a gene can also be affected by factors independent of gene dispensability, including the mutability of genomic positions, but such features have not been examined well. To uncover the genomic features associated with gene loss, we investigated the characteristics of genomic regions where genes have been independently lost in multiple lineages. With a comprehensive scan of gene phylogenies of vertebrates with a careful inspection of evolutionary gene losses, we identified 813 human genes whose orthologs were lost in multiple mammalian lineages: designated 'elusive genes.' These elusive genes were located in genomic regions with rapid nucleotide substitution, high GC content, and high gene density. A comparison of the orthologous regions of such elusive genes across vertebrates revealed that these features had been established before the radiation of the extant vertebrates approximately 500 million years ago. The association of human elusive genes with transcriptomic and epigenomic characteristics illuminated that the genomic regions containing such genes were subject to repressive transcriptional regulation. Thus, the heterogeneous genomic features driving gene fates toward loss have been in place and may sometimes have relaxed the functional indispensability of such genes. This study sheds light on the complex interplay between gene function and local genomic properties in shaping gene evolution that has persisted since the vertebrate ancestor.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
46
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
47
|
Zheng X, Tran JR, Zheng Y. CscoreTool-M infers 3D sub-compartment probabilities within cell population. Bioinformatics 2023; 39:btad314. [PMID: 37166448 PMCID: PMC10206090 DOI: 10.1093/bioinformatics/btad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
MOTIVATION Computational inference of genome organization based on Hi-C sequencing has greatly aided the understanding of chromatin and nuclear organization in three dimensions (3D). However, existing computational methods fail to address the cell population heterogeneity. Here we describe a probabilistic-modeling-based method called CscoreTool-M that infers multiple 3D genome sub-compartments from Hi-C data. RESULTS The compartment scores inferred using CscoreTool-M represents the probability of a genomic region locating in a specific sub-compartment. Compared to published methods, CscoreTool-M is more accurate in inferring sub-compartments corresponding to both active and repressed chromatin. The compartment scores calculated by CscoreTool-M also help to quantify the levels of heterogeneity in sub-compartment localization within cell populations. By comparing proliferating cells and terminally differentiated non-proliferating cells, we show that the proliferating cells have higher genome organization heterogeneity, which is likely caused by cells at different cell-cycle stages. By analyzing 10 sub-compartments, we found a sub-compartment containing chromatin potentially related to the early-G1 chromatin regions proximal to the nuclear lamina in HCT116 cells, suggesting the method can deconvolve cell cycle stage-specific genome organization among asynchronously dividing cells. Finally, we show that CscoreTool-M can identify sub-compartments that contain genes enriched in housekeeping or cell-type-specific functions. AVAILABILITY AND IMPLEMENTATION https://github.com/scoutzxb/CscoreTool-M.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| |
Collapse
|
48
|
Kristiani L, Kim Y. The Interplay between Oxidative Stress and the Nuclear Lamina Contributes to Laminopathies and Age-Related Diseases. Cells 2023; 12:cells12091234. [PMID: 37174634 PMCID: PMC10177617 DOI: 10.3390/cells12091234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.
Collapse
Affiliation(s)
- Lidya Kristiani
- Department of Biomedicine, School of Life Science, Indonesia International Institute for Life Science, Jakarta 13210, Indonesia
| | - Youngjo Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
49
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Li X, An Z, Zhang W, Li F. Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes (Basel) 2023; 14:499. [PMID: 36833426 PMCID: PMC9956262 DOI: 10.3390/genes14020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The multi-level spatial chromatin organization in the nucleus is closely related to chromatin activity. The mechanism of chromatin organization and remodeling attract much attention. Phase separation describes the biomolecular condensation which is the basis for membraneless compartments in cells. Recent research shows that phase separation is a key aspect to drive high-order chromatin structure and remodeling. In addition, chromatin functional compartmentalization in the nucleus which is formed by phase separation also plays an important role in overall chromatin structure. In this review, we summarized the latest work about the role of phase separation in spatial chromatin organization, focusing on direct and indirect effects of phase separation on 3D chromatin organization and its impact on transcription regulation.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|