1
|
Quezada E, Knoch KP, Vasiljevic J, Seiler A, Pal A, Gunasekaran A, Münster C, Friedland D, Schöniger E, Sönmez A, Roch P, Wegbrod C, Ganß K, Kipke N, Alberti S, Nano R, Piemonti L, Aust D, Weitz J, Distler M, Solimena M. Aldolase-regulated G3BP1/2 + condensates control insulin mRNA storage in beta cells. EMBO J 2025:10.1038/s44318-025-00448-7. [PMID: 40355555 DOI: 10.1038/s44318-025-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/13/2025] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Upregulation of insulin mRNA translation upon hyperglycemia in pancreatic islet β-cells involves several RNA-binding proteins. Here, we found that G3BP1, a stress granule marker downregulated in islets of subjects with type 2 diabetes, binds to insulin mRNA in glucose concentration-dependent manner. We show in mouse insulinoma MIN6-K8 cells exposed to fasting glucose levels that G3BP1 and its paralog G3BP2 colocalize to cytosolic condensates with eIF3b, phospho-AMPKαThr172 and Ins1/2 mRNA. Glucose stimulation dissolves G3BP1+/2+ condensates with cytosolic redistribution of their components. The aldolase inhibitor aldometanib prevents the glucose- and pyruvate-induced dissolution of G3BP1+/2+ condensates, increases phospho-AMPKαThr172 levels and reduces those of phospho-mTORSer2448. G3BP1 or G3BP2 depletion precludes condensate assembly. KO of G3BP1 decreases Ins1/2 mRNA abundance and translation as well as proinsulin levels, and impaires glucose-stimulated insulin secretion. Further, other insulin secretagogues such as exendin-4 and palmitate, but not high KCl, prompts the dissolution of G3BP1+/2+ condensates. G3BP1+/2+/Ins mRNA+ condensates are also found in primary mouse and human β-cells. Hence, G3BP1+/2+ condensates represent a conserved glycolysis/aldolase-regulated compartment for the physiological storage and protection of insulin mRNA in resting β-cells.
Collapse
Affiliation(s)
- Esteban Quezada
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jovana Vasiljevic
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Annika Seiler
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Akshaye Pal
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Abishek Gunasekaran
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Daniela Friedland
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Eyke Schöniger
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Anke Sönmez
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Pascal Roch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Carolin Wegbrod
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nicole Kipke
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Daniela Aust
- Department of Pathology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden Germany, TU Dresden, Dresden, Germany
| | - Jürgen Weitz
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marius Distler
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
2
|
Murakami S, Olarerin-George AO, Liu JF, Zaccara S, Hawley B, Jaffrey SR. m 6A alters ribosome dynamics to initiate mRNA degradation. Cell 2025:S0092-8674(25)00455-6. [PMID: 40328256 DOI: 10.1016/j.cell.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Degradation of mRNA containing N6-methyladenosine (m6A) is essential for cell growth, differentiation, and stress responses. Here, we show that m6A markedly alters ribosome dynamics and that these alterations mediate the degradation effect of m6A on mRNA. We find that m6A is a potent inducer of ribosome stalling, and these stalls lead to ribosome collisions that form a unique conformation unlike those seen in other contexts. We find that the degree of ribosome stalling correlates with m6A-mediated mRNA degradation, and increasing the persistence of collided ribosomes correlates with enhanced m6A-mediated mRNA degradation. Ribosome stalling and collision at m6A is followed by recruitment of YTHDF m6A reader proteins to promote mRNA degradation. We show that mechanisms that reduce ribosome stalling and collisions, such as translation suppression during stress, stabilize m6A-mRNAs and increase their abundance, enabling stress responses. Overall, our study reveals the ribosome as the initial m6A sensor for beginning m6A-mRNA degradation.
Collapse
Affiliation(s)
- Shino Murakami
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Anthony O Olarerin-George
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Ben Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
3
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. Genes Dev 2025; 39:617-633. [PMID: 40169231 PMCID: PMC12047659 DOI: 10.1101/gad.352389.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2∼Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48 specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48 specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1∼Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin, suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Alexander G Bulakhov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
4
|
Penchev I, Gumbin S, Scavone F, Berninghausen O, Becker T, Kopito R, Beckmann R. UFMylation orchestrates spatiotemporal coordination of RQC at the ER. SCIENCE ADVANCES 2025; 11:eadv0435. [PMID: 40315331 PMCID: PMC12047416 DOI: 10.1126/sciadv.adv0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Degradation of arrest peptides from endoplasmic reticulum (ER) translocon-bound 60S ribosomal subunits via the ribosome-associated quality control (ER-RQC) pathway requires covalent modification of RPL26/uL24 on 60S ribosomal subunits with UFM1. However, the underlying mechanism that coordinates the UFMylation and RQC pathways remains elusive. Structural analysis of ER-RQC intermediates revealed concomitant binding and direct interaction of the UFMylation and RQC machineries on the 60S. In the presence of an arrested peptidyl-transfer RNA, the RQC factor NEMF and the UFM1 E3 ligase (E3UFM1) form a direct interaction via the UFL1 subunit of E3UFM1, and UFL1 adopts a conformation distinct from that previously observed for posttermination 60S. While this concomitant binding occurs on translocon-bound 60S, LTN1 recruitment and arrest peptide degradation require UFMylation-dependent 60S dissociation from the translocon. These data reveal a mechanism by which the UFMylation cycle orchestrates ER-RQC.
Collapse
Affiliation(s)
- Ivan Penchev
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Samantha Gumbin
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ron Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| |
Collapse
|
5
|
Zilio E, Schlegel T, Zaninello M, Rugarli EI. The role of mitochondrial mRNA translation in cellular communication. J Cell Sci 2025; 138:jcs263753. [PMID: 40326563 DOI: 10.1242/jcs.263753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Mitochondria are dynamic and heterogeneous organelles that rewire their network and metabolic functions in response to changing cellular needs. To this end, mitochondria integrate a plethora of incoming signals to influence cell fate and survival. A crucial and highly regulated node of cell-mitochondria communication is the translation of nuclear-encoded mitochondrial mRNAs. By controlling and monitoring the spatio-temporal translation of these mRNAs, cells can rapidly adjust mitochondrial function to meet metabolic demands, optimise ATP production and regulate organelle biogenesis and turnover. In this Review, we focus on how RNA-binding proteins that recognise nuclear-encoded mitochondrial mRNAs acutely modulate the rate of translation in response to nutrient availability. We further discuss the relevance of localised translation of these mRNAs for subsets of mitochondria in polarised cells. Finally, we highlight quality control mechanisms that monitor the translation process at the mitochondrial surface and their connections to mitophagy and stress responses. We propose that these processes collectively contribute to mitochondrial specialisation and signalling function.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Tim Schlegel
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Marta Zaninello
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
6
|
Liu J, Nagy N, Ayala-Torres C, Bleuse S, Aguilar-Alonso F, Larsson O, Masucci MG. The Epstein-Barr virus deubiquitinase BPLF1 regulates stress-induced ribosome UFMylation and reticulophagy. Autophagy 2025; 21:996-1018. [PMID: 39842454 PMCID: PMC12013442 DOI: 10.1080/15548627.2024.2440846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The synthesis of membrane and secreted proteins is safeguarded by an endoplasmic reticulum-associated ribosome quality control (ER-RQC) that promotes the disposal of defective translation products by the proteasome or via a lysosome-dependent pathway involving the degradation of portions of the ER by macroautophagy (reticulophagy). The UFMylation of RPL26 on ER-stalled ribosomes is essential for activating the ER-RQC and reticulophagy. Here, we report that the viral deubiquitinase (vDUB) encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein BPLF1 hinders the UFMylation of RPL26 on ribosomes that stall at the ER, promotes the stabilization of ER-RQC substrates, and inhibits reticulophagy. The vDUB did not act as a de-UFMylase or interfere with the UFMylation of the ER membrane protein CYB5R3 by the UFL1 ligase. Instead, it copurified with ribosomes in sucrose gradients and abrogated a ZNF598- and LTN1-independent ubiquitination event required for RPL26 UFMylation. Physiological levels of BPLF1 impaired the UFMylation of RPL26 in productively EBV-infected cells, pointing to an important role of the enzyme in regulating the translation quality control that allows the efficient synthesis of viral proteins and the production of infectious virus.Abbreviation: BPLF1, BamH1 P fragment left open readingframe-1; CDK5RAP3, CDK5regulatory subunit associated protein 3; ChFP, mCherry fluorescent protein; DDRGK1, DDRGKdomain containing 1; EBV, Epstein-Barr virus; eGFP, enhancedGFP; ER-RQC, endoplasmicreticulum-associated ribosome quality control; LCL, EBV-carryinglymphoblastoid cell line; GFP, green fluorescent protein; RQC, ribosome quality control; SRP, signal recognition particle; UFM1, ubiquitin fold modifier 1; UFL1, UFM1 specific ligase 1.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Solenne Bleuse
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Jayakumar P, Jiang T, Huang H, Deng M. An off-target effect of class A CpG-oligonucleotides on suppressing the cyclic GMP-AMP synthase signaling in fibroblastic reticular cells. Front Pharmacol 2025; 16:1576151. [PMID: 40337520 PMCID: PMC12055788 DOI: 10.3389/fphar.2025.1576151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background Class A CpG-oligonucleotides (ODNs), a Toll-like receptor 9 (TLR9) agonist, have been applied for treating inflammatory diseases and cancer in preclinical studies and clinical trials. A recent study has reported that class A ODNs can activate the Cyclic GMP-AMP synthase (cGAS) signaling to regulate the inflammatory response in human monocytes. However, it remains unknown whether class A ODNs can activate the cGAS pathways in other cell types, such as fibroblastic reticular cells (FRC), which play critical roles in modulating the immune environments during inflammatory diseases and cancer. Methods To understand the role of class A ODN in regulating the cGAS signaling in FRC, we treated mouse FRC and human fibroblast with class A ODN, a cGAS agonist (HT-DNA), and combined class A and HT-DNA. Results Unexpectedly, we found that class A ODNs suppress the cGAS level and downstream signaling in human and murine FRC. The class A ODN-induced suppression effect on cGAS is limited in FRC, but not other immune cell types, and is independent of TLR9. Performing pulldown assay and Mass spectrum, we found that class A ODNs regulate the cGAS level post translationally by interacting with cGAS and ZNF598, an E3 ubiquitin ligase. Conclusion Our data reveal an unrecognized off-target effect of class A ODN on suppressing the cGAS signaling in FRCs, which should be considered when designing class A ODN regimens for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
| | - Ting Jiang
- Tsinghua University School of Medicine, Beijing, China
| | - Hai Huang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
- Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| | - Meihong Deng
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
- Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| |
Collapse
|
8
|
Warrick JE, Attili D, van Eeuwen T, Hoffmann-Weitsman SE, Forsyth NC, Barmada SJ, Kearse MG. An autism spectrum disorder mutation in Topoisomerase 3β causes accumulation of covalent mRNA intermediates by disrupting metal binding within the zinc finger domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.647616. [PMID: 40370956 PMCID: PMC12077875 DOI: 10.1101/2025.04.11.647616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The loss and mutation of Topoisomerase 3β (TOP3B), the only known eukaryotic topoisomerase with the ability to catalyze RNA strand passage reactions, is linked to schizophrenia, autism, and intellectual disability. Uniquely, TOP3B primarily localizes to the cytoplasm and has been shown to regulate translation and stability of a subset of mRNA transcripts. Three neurological disease-linked de novo TOP3B point mutations outside of the active site have been identified but their impact on TOP3B activity in cells remains poorly understood. Upon establishing a new Neuro2A cell-based TOP3B activity assay, we provide genetic and biochemical evidence that the autism-linked C666R mutation causes accumulation of unresolved TOP3B•mRNA covalent intermediates by directly disrupting metal coordination via an atypical D1C3-type metal binding motif within the zinc finger domain. Furthermore, we show that primary neurons are sensitive to high levels of TOP3B•mRNA covalent intermediates and that such adducts are capable of causing ribosome collisions. Together, these data identify a previously underappreciated role of the zinc finger domain and how non-active site disease-linked mutations affect TOP3B activity.
Collapse
Affiliation(s)
- Julia E. Warrick
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Durga Attili
- Department of Neurology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Sarah E. Hoffmann-Weitsman
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas C. Forsyth
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sami J. Barmada
- Department of Neurology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Madern MF, Yang S, Witteveen O, Segeren HA, Bauer M, Tanenbaum ME. Long-term imaging of individual ribosomes reveals ribosome cooperativity in mRNA translation. Cell 2025; 188:1896-1911.e24. [PMID: 39892379 DOI: 10.1016/j.cell.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The genetic information stored in mRNAs is decoded by ribosomes during mRNA translation. mRNAs are typically translated by multiple ribosomes simultaneously, but it is unclear whether and how the activity of different ribosomes on an mRNA is coordinated. Here, we develop an imaging approach based on stopless-ORF circular RNAs (socRNAs) to monitor translation of individual ribosomes in either monosomes or polysomes with very high resolution. Using experiments and simulations, we find that translating ribosomes frequently undergo transient collisions. However, unlike persistent collisions, such transient collisions escape detection by cellular quality control pathways. Rather, transient ribosome collisions promote productive translation by reducing ribosome pausing on problematic sequences, a process we term ribosome cooperativity. Ribosome cooperativity also reduces recycling of ribosomes by quality control pathways, thus enhancing processive translation. Together, our single-ribosome imaging approach reveals that ribosomes cooperate during translation to ensure fast and efficient translation.
Collapse
Affiliation(s)
- Maximilian F Madern
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sora Yang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Olivier Witteveen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrika A Segeren
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
10
|
Ford PW, Garshott DM, Narasimhan M, Ge X, Jordahl EM, Subramanya S, Bennett EJ. RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation. Cell Rep 2025; 44:115371. [PMID: 40022732 PMCID: PMC12008924 DOI: 10.1016/j.celrep.2025.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
The initiation-specific ribosome-associated quality control pathway (iRQC) is activated when translation initiation complexes fail to transition to elongation-competent 80S ribosomes. Upon iRQC activation, RNF10 ubiquitylates the 40S proteins uS3 and uS5, which leads to 40S decay. How iRQC is activated in the absence of pharmacological translation inhibitors and what mechanisms govern iRQC capacity and activity remain unanswered questions. Here, we demonstrate that altering 60S:40S stoichiometry by disrupting 60S biogenesis triggers iRQC activation and 40S decay. Depleting the critical scanning helicase eIF4A1 impairs 40S ubiquitylation and degradation, indicating mRNA engagement is required for iRQC. We show that amino acid starvation conditions also stimulate iRQC-dependent 40S decay. We identify RIOK3 as a crucial iRQC factor that interacts with ubiquitylated 40S subunits to mediate degradation. Both RNF10 and RIOK3 protein levels increase upon iRQC pathway activation, establishing a feedforward mechanism that regulates iRQC capacity and subsequent 40S decay.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle M Garshott
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric M Jordahl
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shubha Subramanya
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Baymiller M, Helton NS, Dodd B, Moon SL. tRNA synthetase activity is required for stress granule and P-body assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642431. [PMID: 40161773 PMCID: PMC11952412 DOI: 10.1101/2025.03.10.642431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In response to stress, translation initiation is suppressed and ribosome runoff via translation elongation drives mRNA assembly into ribonucleoprotein (RNP) granules including stress granules and P-bodies. Defects in translation elongation activate the integrated stress response. If and how stalled ribosomes are removed from mRNAs during translation elongation stress to drive RNP granule assembly is not clear. We demonstrate the integrated stress response is induced upon tRNA synthetase inhibition in part via ribosome collision sensing. However, saturating levels of tRNA synthetase inhibitors do not induce stress granules or P-bodies and prevent RNP granule assembly upon exogenous stress. The loss of tRNA synthetase activity causes persistent ribosome stalls that can be released with puromycin but are not rescued by ribosome-associated quality control pathways. Therefore, tRNA synthetase activity is required for ribosomes to run off mRNAs during stress to scaffold cytoplasmic RNP granules. Our findings suggest ribosome stalls can persist in human cells and uniquely uncouple ribonucleoprotein condensate assembly from the integrated stress response.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah S. Helton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Dodd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Campbell A, Esser HF, Burroughs AM, Berninghausen O, Aravind L, Becker T, Green R, Beckmann R, Buskirk AR. The RNA helicase HrpA rescues collided ribosomes in E. coli. Mol Cell 2025; 85:999-1007.e7. [PMID: 39922193 PMCID: PMC11890964 DOI: 10.1016/j.molcel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although many antibiotics inhibit bacterial ribosomes, the loss of known factors that rescue stalled ribosomes does not lead to robust antibiotic sensitivity in E. coli, suggesting the existence of additional mechanisms. Here, we show that the RNA helicase HrpA rescues stalled ribosomes in E. coli. Acting selectively on ribosomes that have collided, HrpA uses ATP hydrolysis to split stalled ribosomes into subunits. Cryoelectron microscopy (cryo-EM) structures reveal how HrpA simultaneously binds to two collided ribosomes, explaining its selectivity, and how its helicase module engages downstream mRNA such that, by exerting a pulling force on the mRNA, it would destabilize the stalled ribosome. These studies show that ribosome splitting is a conserved mechanism that allows proteobacteria to tolerate ribosome-targeting antibiotics.
Collapse
Affiliation(s)
- Annabelle Campbell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanna F Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - A Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - L Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Ogawa A, Izumikawa K, Tate S, Isoyama S, Mori M, Fujiwara K, Watanabe S, Ohga T, Jo U, Taniyama D, Kitajima S, Tanaka S, Onji H, Kageyama SI, Yamamoto G, Saito H, Morita TY, Okada M, Natsumeda M, Nagahama M, Kobayashi J, Ohashi A, Sasanuma H, Higashiyama S, Dan S, Pommier Y, Murai J. SLFN11-mediated ribosome biogenesis impairment induces TP53-independent apoptosis. Mol Cell 2025; 85:894-912.e10. [PMID: 39909041 PMCID: PMC11890970 DOI: 10.1016/j.molcel.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Impairment of ribosome biogenesis (RiBi) triggered by inhibition of ribosomal RNA (rRNA) synthesis and processing leads to various biological effects. We report that Schlafen 11 (SLFN11) induces TP53-independent apoptosis through RiBi impairment. Upon replication stress, SLFN11 inhibits rRNA synthesis with RNA polymerase I accumulation and increased chromatin accessibility in the ribosomal DNA (rDNA) genes. SLFN11-dependent RiBi impairment preferentially depletes short-lived proteins, particularly MCL1, leading to apoptosis in response to replication stress. SLFN11's Walker B motif (E669), DNA-binding site (K652), dephosphorylation site for single-strand DNA binding (S753), and RNase sites (E209/E214) are all required for the SLFN11-mediated RiBi impairment. Comparable effects were obtained with direct RNA polymerase I inhibitors and other RiBi inhibitory conditions regardless of SLFN11. These findings were extended across 34 diverse human cancer cell lines. Thus, we demonstrate that RiBi impairment is a robust inactivator of MCL1 and an additional proapoptotic mechanism by which SLFN11 sensitizes cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Akane Ogawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Keiichi Izumikawa
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Sota Tate
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Kohei Fujiwara
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Soyoka Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Takayuki Ohga
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Daiki Taniyama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Soichiro Tanaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hiroshi Onji
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Gaku Yamamoto
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hitoshi Saito
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Tomoko Yamamori Morita
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Tokyo 286-0048, Japan
| | - Akihiro Ohashi
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Osaka 103-0027, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA.
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2025; 292:936-959. [PMID: 38949989 PMCID: PMC11880988 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
- Department of Biology, Faculty of ScienceAnkara UniversityTurkey
| | | |
Collapse
|
15
|
Maduka AO, Manohar S, Foster MW, Silva GM. Localized K63 Ubiquitin Signaling Is Regulated by VCP/p97 During Oxidative Stress. Mol Cell Proteomics 2025; 24:100920. [PMID: 39880084 PMCID: PMC11894314 DOI: 10.1016/j.mcpro.2025.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied. Here, we show that K63-linked polyubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in noncytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of noncytosolic compartments expanded 2.5-fold the pool of proteins (2,494) and provided a comprehensive number of sites (10,157) known to be ubiquitinated during arsenite stress, suggesting their involvement in a myriad of cellular pathways. Moreover, subcellular proteome analyses revealed proteins that are recruited to noncytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase valosin-containing protein (VCP) that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to noncytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of noncytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.
Collapse
Affiliation(s)
- Austin O Maduka
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sandhya Manohar
- Department of Biology, Institute for Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Matthew W Foster
- Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
16
|
Cordes J, Zhao S, Engel CM, Stingele J. Cellular responses to RNA damage. Cell 2025; 188:885-900. [PMID: 39983673 DOI: 10.1016/j.cell.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
RNA plays a central role in protein biosynthesis and performs diverse regulatory and catalytic functions, making it essential for all processes of life. Like DNA, RNA is constantly subjected to damage from endogenous and environmental sources. However, while the DNA damage response has been extensively studied, it was long assumed that RNA lesions are relatively inconsequential due to the transient nature of most RNA molecules. Here, we review recent studies that challenge this view by revealing complex RNA damage responses that determine survival when cells are exposed to nucleic acid-damaging agents and promote the resolution of RNA lesions.
Collapse
Affiliation(s)
- Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; College of Basic Medical Sciences, Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Carla M Engel
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
17
|
Huang Z, Diehl FF, Wang M, Li Y, Song A, Chen FX, Rosa-Mercado NA, Beckmann R, Green R, Cheng J. RIOK3 mediates the degradation of 40S ribosomes. Mol Cell 2025; 85:802-814.e12. [PMID: 39947183 DOI: 10.1016/j.molcel.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Cells tightly regulate ribosome homeostasis to adapt to changing environments. Ribosomes are degraded during stress, but the mechanisms responsible remain unclear. Here, we show that starvation induces the selective depletion of 40S ribosomes following their ubiquitylation by the E3 ligase RNF10. The atypical kinase RIOK3 specifically recognizes these ubiquitylated 40S ribosomes through a unique ubiquitin-interacting motif, visualized by cryoelectron microscopy (cryo-EM). RIOK3 binding and ubiquitin recognition are essential for 40S ribosome degradation during starvation. RIOK3 induces the degradation of ubiquitylated 40S ribosomes through progressive decay of their 18S rRNA beginning at the 3' end, as revealed by cryo-EM structures of degradation intermediates. Together, these data define a pathway and mechanism for stress-induced degradation of 40S ribosomes, directly connecting ubiquitylation to regulation of ribosome homeostasis.
Collapse
MESH Headings
- Ubiquitination
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cryoelectron Microscopy
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Proteolysis
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Humans
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/ultrastructure
- Ubiquitin/metabolism
- Protein Binding
- RNA Stability
Collapse
Affiliation(s)
- Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Frances F Diehl
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Aixia Song
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Fei Xavier Chen
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China.
| |
Collapse
|
18
|
Liu W, Li J, Sun J, Liu C, Yan B, Zhou C, Li S, Song X, Yan W, Yang Y, Cao X. The E3 ligase OsHel2 impedes readthrough of stalled mRNAs to regulate male fertility in thermosensitive genic male sterile rice. PLANT COMMUNICATIONS 2025; 6:101192. [PMID: 39539018 PMCID: PMC11897441 DOI: 10.1016/j.xplc.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Heterosis is extensively used in the 2-line hybrid breeding system. Photosensitive/thermosensitive genic male sterile (P/TGMS) lines are key components of 2-line hybrid rice, and TGMS lines containing tms5 have significantly advanced 2-line hybrid rice breeding. We cloned the TMS5 gene and found that TMS5 is a tRNA cyclic phosphatase that can remove 2',3'-cyclic phosphate (cP) from cP-ΔCCA-tRNAs for efficient repair to ensure maintenance of mature tRNA levels. tms5 mutation causes increased levels of cP-ΔCCA-tRNAs and reduced levels of mature tRNAs, leading to male sterility at restrictive temperatures. However, the regulatory network of tms5-mediated TGMS remains to be clarified. Here, we demonstrate that the E3 ligase OsHel2 cooperates with TMS5 to regulate TGMS at restrictive temperatures. Consistently, both the accumulation of cP-ΔCCA-tRNAs and the reduction in mature tRNAs in the tms5 mutant are largely recovered in the tms5 oshel2-1 mutant. A lesion in OsHel2 results in partial readthrough of the stalled sequences, thereby enabling evasion of ribosome-associated protein quality control (RQC) surveillance. Our findings reveal a mechanism by which OsHel2 impedes readthrough of stalled mRNA sequences to regulate male fertility in TGMS rice, providing a paradigm for investigating how disorders in components of the RQC pathway impair cellular functions and lead to diseases or defects in other organisms.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ji Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bin Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shengdong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Yan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yuanzhu Yang
- Yuan Longping High-tech Agriculture Company, Changsha 410125, Hunan, China; State Key Laboratory of Hybrid Rice, Changsha 410125, Hunan, China; Key Laboratory of Rice Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Changsha 410001, Hunan, China.
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
19
|
Scazzari M, Zhang Y, Moddemann A, Rospert S. Stalled disomes marked by Hel2-dependent ubiquitin chains undergo Ubp2/Ubp3-mediated deubiquitination upon translational run-off. Commun Biol 2025; 8:132. [PMID: 39875504 PMCID: PMC11775340 DOI: 10.1038/s42003-025-07569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways. Recent studies have revealed high concentrations of disomes and trisomes in unstressed cells, raising the question of whether and how Hel2 selects long-term stalled disomes and trisomes. This study presents quantitative analysis of in vivo-formed Hel2•ribosome complexes and the dynamics of Hel2-dependent Rps20 ubiquitination and Ubp2/Ubp3-dependent deubiquitination. Our findings show that Hel2 occupancy progressively increases from translating monosomes to disomes and trisomes. We demonstrate that disomes and trisomes with mono- or di-ubiquitinated Rps20 resolve independently of the RQC component Slh1, while those with tri- and tetra-ubiquitinated Rps20 do not. Based on the results, we propose a model in which Hel2 translates the duration of ribosome stalling into polyubiquitin chain length. This mechanism allows for the distinction between transient and long-term stalling, providing the RQC machinery with a means to select fatally stalled ribosomes over transiently stalled ones.
Collapse
Affiliation(s)
- Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Moddemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Dowdle ME, Lykke-Andersen J. Cytoplasmic mRNA decay and quality control machineries in eukaryotes. Nat Rev Genet 2025:10.1038/s41576-024-00810-1. [PMID: 39870755 DOI: 10.1038/s41576-024-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation. Recent advances in structural, single-molecule and genome-wide methods have provided new insights into the central machineries that carry out mRNA turnover, the mechanisms by which mRNAs are targeted for degradation and the general principles that govern mRNA stability at a global level. This improved understanding of mRNA degradation in the cytoplasm of eukaryotic cells is finding practical applications in the design of therapeutic mRNAs.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
22
|
Chen X, Chowdhury MN, Jin H. An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. J Mol Biol 2025; 437:168884. [PMID: 39617253 DOI: 10.1016/j.jmb.2024.168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear. In this study, using an abundant RNA-binding protein, Sbp1, with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how an RNA binding protein with IDR modulates mRNA storage and translation. Using genomic and molecular approaches, we show that Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stacking or aggregation. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under the electron microscope, likely to be an intermediate slow translation state between actively translating polysomes and the translation-sequestered RNA granule. Moreover, the binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins, many are functionally important for general protein synthesis in the cell. Finally, post-translational modifications at the arginine in the RGG motif change the Sbp1 protein interactome and play important roles in directing cellular mRNAs to either translation or storage. Taken together, our study demonstrates that under physiological conditions, intrinsically disordered RNA binding proteins promote polysome aggregation and regulate mRNA translation and storage using multiple distinctive mechanisms. This research also establishes a framework with which functions of other IDR-containing proteins can be investigated and defined.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Mashiat N Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
23
|
Hassan A, Pinkas M, Yaeshima C, Ishino S, Uchiumi T, Ito K, Demo G. Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization. Nucleic Acids Res 2025; 53:gkae1324. [PMID: 39797736 PMCID: PMC11724365 DOI: 10.1093/nar/gkae1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Matyas Pinkas
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Chiaki Yaeshima
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
24
|
Schneider-Poetsch T, Dang Y, Iwasaki W, Arata M, Shichino Y, Al Mourabit A, Moriou C, Romo D, Liu JO, Ito T, Iwasaki S, Yoshida M. Girolline is a sequence context-selective modulator of eIF5A activity. Nat Commun 2025; 16:223. [PMID: 39794322 PMCID: PMC11724050 DOI: 10.1038/s41467-024-54838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown. The data we present here suggests that girolline is a sequence-selective modulator of translation factor eIF5A. Girolline interferes with ribosome-eIF5A interaction and induces ribosome stalling where translational progress is impeded, including on AAA-encoded lysine. Our data furthermore indicate that eIF5A plays a physiological role in ribosome-associated quality control and in maintaining the efficiency of translational progress. Girolline helped to deepen our understanding of the interplay between protein production and quality control in a physiological setting and offers a potent chemical tool to selectively modulate gene expression.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mayumi Arata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Ali Al Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Celine Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
25
|
Zaher HS, Mosammaparast N. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:433-457. [PMID: 39476409 DOI: 10.1146/annurev-pathmechdis-111523-023516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
26
|
Ford PW, Narasimhan M, Bennett EJ. Ubiquitin-dependent translation control mechanisms: Degradation and beyond. Cell Rep 2024; 43:115050. [PMID: 39661518 PMCID: PMC11756260 DOI: 10.1016/j.celrep.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Translation control mechanisms connect the largely static genome to the highly dynamic proteome. At each step in the translation cycle, multiple layers of regulation enable efficient protein biogenesis under optimal conditions and mediate responses to acute environmental challenges. Recent research has demonstrated that individual ribosomal protein ubiquitylation events act as molecular signals to specify quality control pathway outcomes. Here, we synthesize current knowledge of ubiquitin-mediated translation control mechanisms and highlight key outstanding questions. We compare and contrast ubiquitin-dependent mechanisms that regulate ribosome-associated quality control pathways at several steps in the translation cycle. We also explore how distinct ribosome ubiquitylation events on specific ribosomal proteins impact translation activity and how defects in specific ubiquitin-mediated regulatory steps impact physiology and health.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
28
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
29
|
Zhou Y, Ćorović M, Hoch-Kraft P, Meiser N, Mesitov M, Körtel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlík A, Busch A, Dieterich C, Vaňáčová Š, Hengesbach M, Zarnack K, König J. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 2024; 84:4576-4593.e12. [PMID: 39577428 DOI: 10.1016/j.molcel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
N6-Methyladenosine (m6A) is the predominant internal RNA modification in eukaryotic messenger RNAs (mRNAs) and plays a crucial role in mRNA stability. Here, using human cells, we reveal that m6A sites in the coding sequence (CDS) trigger CDS-m6A decay (CMD), a pathway that is distinct from previously reported m6A-dependent degradation mechanisms. Importantly, CDS m6A sites act considerably faster and more efficiently than those in the 3' untranslated region, which to date have been considered the main effectors. Mechanistically, CMD depends on translation, whereby m6A deposition in the CDS triggers ribosome pausing and transcript destabilization. The subsequent decay involves the translocation of the CMD target transcripts to processing bodies (P-bodies) and recruitment of the m6A reader protein YT521-B homology domain family protein 2 (YTHDF2). Our findings highlight CMD as a previously unknown pathway, which is particularly important for controlling the expression of developmental regulators and retrogenes.
Collapse
Affiliation(s)
- You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Miona Ćorović
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany
| | | | - Nadine Körtel
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Hannah Back
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kritika Katti
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany; Institute for Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julian König
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
30
|
Ishibashi K, Shichino Y, Han P, Wakabayashi K, Mito M, Inada T, Kimura S, Iwasaki S, Mishima Y. Translation of zinc finger domains induces ribosome collision and Znf598-dependent mRNA decay in zebrafish. PLoS Biol 2024; 22:e3002887. [PMID: 39636823 PMCID: PMC11620358 DOI: 10.1371/journal.pbio.3002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs. However, the impact of RQC and NGD on maintaining the translational homeostasis of endogenous mRNAs has remained unclear. In this study, we investigated the endogenous substrate mRNAs of NGD during the maternal-to-zygotic transition (MZT) of zebrafish development. RNA-Seq analysis of zebrafish znf598 mutant embryos revealed that Znf598 down-regulates mRNAs encoding the C2H2-type zinc finger domain (C2H2-ZF) during the MZT. Reporter assays and disome profiling indicated that ribosomes stall and collide while translating tandem C2H2-ZFs, leading to mRNA degradation by Znf598. Our results suggest that NGD maintains the quality of the translatome by mitigating the risk of ribosome collision at the abundantly present C2H2-ZF sequences in the vertebrate genome.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Peixun Han
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Kimi Wakabayashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Toshifumi Inada
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
31
|
Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell 2024; 84:4334-4349.e7. [PMID: 39488212 DOI: 10.1016/j.molcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
Collapse
Affiliation(s)
- Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mi-Jeong Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kian Hua Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Young-Jun Choe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
32
|
Rosa-Mercado NA, Buskirk AR, Green R. Translation elongation inhibitors stabilize select short-lived transcripts. RNA (NEW YORK, N.Y.) 2024; 30:1572-1585. [PMID: 39293933 PMCID: PMC11571809 DOI: 10.1261/rna.080138.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here, we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state, and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Allen R Buskirk
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
33
|
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Harris Snell P, McGirr T, Sawant TN, Dang K, Stoichkova Z, Azam Y, Saunders M, Braun M, Alain T, Tuschl T, McDade S, Longley D, Gkogkas C, Adrain C, Knight JP, Jafarnejad SM. Ribosome Quality Control mitigates the cytotoxicity of ribosome collisions induced by 5-Fluorouracil. Nucleic Acids Res 2024; 52:12534-12548. [PMID: 39351862 PMCID: PMC11551743 DOI: 10.1093/nar/gkae849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024] Open
Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
Collapse
Affiliation(s)
- Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nicole Simms
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Angela Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kelsey Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tanvi Nitin Sawant
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kexin Dang
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Zornitsa Vasileva Stoichkova
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Yumna Azam
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Mark P Saunders
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Michael Braun
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Colin Adrain
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - John R P Knight
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| |
Collapse
|
34
|
Kolakada D, Fu R, Biziaev N, Shuvalov A, Lore M, Campbell AE, Cortázar MA, Sajek MP, Hesselberth JR, Mukherjee N, Alkalaeva E, Coban Akdemir ZH, Jagannathan S. Systematic analysis of nonsense variants uncovers peptide release rate as a novel modifier of nonsense-mediated mRNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575080. [PMID: 38260612 PMCID: PMC10802582 DOI: 10.1101/2024.01.10.575080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonsense variants underlie many genetic diseases. The phenotypic impact of nonsense variants is determined by nonsense-mediated mRNA decay (NMD), which degrades transcripts with premature termination codons (PTCs). Despite its clinical importance, the factors controlling transcript-specific and context-dependent variation in NMD activity remain poorly understood. Through analysis of human genetic datasets, we discovered that the amino acid preceding the PTC strongly influences NMD activity. Notably, glycine codons promote robust NMD efficiency and show striking enrichment before PTCs but depletion before normal termination codons (NTCs). This glycine-PTC enrichment is particularly pronounced in genes tolerant to loss-of-function variants, suggesting evolutionary selection or neutrality conferred by efficient elimination of truncated proteins from non-essential genes. Using biochemical assays and massively parallel reporter analysis, we demonstrated that the peptide release rate during translation termination varies substantially with the identity of the preceding amino acid and serves as the primary determinant of NMD activity. We propose a "window of opportunity" model where translation termination kinetics modulate NMD efficiency. By revealing how sequence context shapes NMD activity through translation termination dynamics, our findings provide a mechanistic framework for improved clinical interpretation of nonsense variants.
Collapse
Affiliation(s)
- Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortázar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marcin P. Sajek
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Lead contact
| |
Collapse
|
35
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024; 635:237-242. [PMID: 39385025 PMCID: PMC11540850 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
36
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618946. [PMID: 39464025 PMCID: PMC11507960 DOI: 10.1101/2024.10.17.618946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2~Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48-specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48-specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1~Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexander G. Bulakhov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
37
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
38
|
Douglas T, Zhang J, Wu Z, Abdallah K, McReynolds M, Gilbert WV, Iwai K, Peng J, Young LH, Crews CM. An atypical E3 ligase safeguards the ribosome during nutrient stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617692. [PMID: 39416039 PMCID: PMC11482868 DOI: 10.1101/2024.10.10.617692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic stress must be effectively mitigated for the survival of cells and organisms. Ribosomes have emerged as signaling hubs that sense metabolic perturbations and coordinate responses that either restore homeostasis or trigger cell death. As yet, the mechanisms governing these cell fate decisions are not well understood. Here, we report an unexpected role for the atypical E3 ligase HOIL-1 in safeguarding the ribosome. We find HOIL-1 mutations associated with cardiomyopathy broadly sensitize cells to nutrient and translational stress. These signals converge on the ribotoxic stress sentinel ZAKα. Mechanistically, mutant HOIL-1 excludes a ribosome quality control E3 ligase from its functional complex and remodels the ribosome ubiquitin landscape. This quality control failure renders glucose starvation ribotoxic, precipitating a ZAKα-ATF4-xCT-driven noncanonical cell death. We further show HOIL-1 loss exacerbates cardiac dysfunction under pressure overload. These data reveal an unrecognized ribosome signaling axis and a molecular circuit controlling cell fate during nutrient stress.
Collapse
|
39
|
Sehgal E, Wohlenberg C, Soukup EM, Viscardi MJ, Serrão VHB, Arribere JA. High-resolution reconstruction of a C. elegans ribosome sheds light on evolutionary dynamics and tissue specificity. RNA (NEW YORK, N.Y.) 2024; 30:1513-1528. [PMID: 39209556 PMCID: PMC11482609 DOI: 10.1261/rna.080103.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.
Collapse
Affiliation(s)
- Enisha Sehgal
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Chloe Wohlenberg
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Evan M Soukup
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Marcus J Viscardi
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vitor Hugo Balasco Serrão
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Biomolecular Cryoelectron Microscopy Facility, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Joshua A Arribere
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- RNA Center, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
40
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
41
|
Campbell A, Esser HF, Maxwell Burroughs A, Berninghausen O, Aravind L, Becker T, Green R, Beckmann R, Buskirk AR. The RNA helicase HrpA rescues collided ribosomes in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612461. [PMID: 39314269 PMCID: PMC11419001 DOI: 10.1101/2024.09.11.612461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although many antibiotics inhibit bacterial ribosomes, loss of known factors that rescue stalled ribosomes does not lead to robust antibiotic sensitivity in E. coli, suggesting the existence of additional mechanisms. Here, we show that the RNA helicase HrpA rescues stalled ribosomes in E. coli. Acting selectively on ribosomes that have collided, HrpA uses ATP hydrolysis to split stalled ribosomes into subunits. Cryo-EM structures reveal how HrpA simultaneously binds to two collided ribosomes, explaining its selectivity, and how its helicase module engages downstream mRNA, such that by exerting a pulling force on the mRNA, it would destabilize the stalled ribosome. These studies show that ribosome splitting is a conserved mechanism that allows proteobacteria to tolerate ribosome-targeting antibiotics.
Collapse
Affiliation(s)
- Annabelle Campbell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
| | - Hanna F. Esser
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - A. Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health; Bethesda, United States
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - L. Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health; Bethesda, United States
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine; Baltimore, United States
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
| |
Collapse
|
42
|
Hung HC, Costas-Insua C, Holbrook SE, Stauffer JE, Martin PB, Müller TA, Schroeder DG, Kigoshi-Tansho Y, Xu H, Rudolf R, Cox GA, Joazeiro CAP. Poly-alanine-tailing is a modifier of neurodegeneration caused by Listerin mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.608776. [PMID: 39229065 PMCID: PMC11370587 DOI: 10.1101/2024.08.24.608776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The surveillance of translation is critical for the fitness of organisms from bacteria to humans. Ribosome-associated Quality Control (RQC) is a surveillance mechanism that promotes the elimination of truncated polypeptides, byproducts of ribosome stalling during translation. In canonical mammalian RQC, NEMF binds to the large ribosomal subunit and recruits the E3 ubiquitin ligase Listerin, which marks the nascent-chains for proteasomal degradation. NEMF additionally extends the nascent-chain's C-terminus with poly-alanine ('Ala-tail'), exposing lysines in the ribosomal exit tunnel for ubiquitination. In an alternative, Listerin-independent RQC pathway, released nascent-chains are targeted by Ala-tail-binding E3 ligases. While mutations in Listerin or in NEMF selectively elicit neurodegeneration in mice and humans, the physiological significance of Ala-tailing and its role in disease have remained unknown. Here, we report the analysis of mice in which NEMF's Ala-tailing activity was selectively impaired. Whereas the Nemf homozygous mutation did not affect lifespan and only led to mild motor defects, genetic interaction analyses uncovered its synthetic lethal phenotype when combined with the lister neurodegeneration-causing mutation. Conversely, the lister phenotype was markedly improved when Ala-tailing capacity was partially reduced by a heterozygous Nemf mutation. Providing a plausible mechanism for this striking switch from early neuroprotection to subsequent neurotoxicity, we found that RQC substrates that evade degradation form amyloid-like aggregates in an Ala-tail dependent fashion. These findings uncover a critical role for Ala-tailing in mammalian proteostasis, and deepen our molecular understanding of pathophysiological roles of RQC in neurodegeneration.
Collapse
Affiliation(s)
- Hao-Chih Hung
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carlos Costas-Insua
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | - Tina A. Müller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Haifei Xu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | | | - Claudio A. P. Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
43
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the fragile X protein, FMRP. J Biol Chem 2024; 300:107540. [PMID: 38971316 PMCID: PMC11338112 DOI: 10.1016/j.jbc.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal noncanonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not poly(A)-binding protein, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of four putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes but only stimulates NGD of a small select set of transcripts, revealing a minor role of FMRP that would be misregulated in fragile X syndrome.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
44
|
Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS NEXUS 2024; 3:pgae321. [PMID: 39161732 PMCID: PMC11330866 DOI: 10.1093/pnasnexus/pgae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Rimal
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xingjun Wang
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunil Bhurtel
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yen-Chi Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Nguyen H, Nguyen HL, Li MS. Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation. J Phys Chem B 2024; 128:7033-7042. [PMID: 39007765 DOI: 10.1021/acs.jpcb.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Quang Trung Software City, Life Science Lab, Institute for Computational Science and Technology, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam
| |
Collapse
|
46
|
Horvath A, Janapala Y, Woodward K, Mahmud S, Cleynen A, Gardiner E, Hannan R, Eyras E, Preiss T, Shirokikh N. Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress. Nucleic Acids Res 2024; 52:7925-7946. [PMID: 38721779 PMCID: PMC11260467 DOI: 10.1093/nar/gkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Collapse
Affiliation(s)
- Attila Horvath
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Yoshika Janapala
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Alice Cleynen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral Centre, The Australian National University, Canberra, ACT 2601, Australia
| | - Ross D Hannan
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia
| | - Eduardo Eyras
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical Sciences, The Australian National University, Canberra, ACT 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
47
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
48
|
Sinha NK, McKenney C, Yeow ZY, Li JJ, Nam KH, Yaron-Barir TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Regot S, Green R. The ribotoxic stress response drives UV-mediated cell death. Cell 2024; 187:3652-3670.e40. [PMID: 38843833 PMCID: PMC11246228 DOI: 10.1016/j.cell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey J Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
49
|
Fu Y, Jiang F, Zhang X, Pan Y, Xu R, Liang X, Wu X, Li X, Lin K, Shi R, Zhang X, Ferrandon D, Liu J, Pei D, Wang J, Wang T. Perturbation of METTL1-mediated tRNA N 7- methylguanosine modification induces senescence and aging. Nat Commun 2024; 15:5713. [PMID: 38977661 PMCID: PMC11231295 DOI: 10.1038/s41467-024-49796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.
Collapse
Affiliation(s)
- Yudong Fu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Jiang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingyi Pan
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of pediatrics, Foshan maternal and children's hospital affiliated to southern medical university, 528000, Foshan, Guangdong, China
| | - Xiu Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaofen Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | | | - Kaixuan Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Ruona Shi
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- Joint School of Lifesciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China, Guangzhou Medical University, 511436, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duanqing Pei
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China.
- Joint School of Lifesciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China, Guangzhou Medical University, 511436, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Zheng W, Zhang Y, Wang J, Wang S, Chai P, Bailey EJ, Guo W, Devarkar SC, Wu S, Lin J, Zhang K, Liu J, Lomakin IB, Xiong Y. Visualizing the translation landscape in human cells at high resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601723. [PMID: 39005351 PMCID: PMC11244987 DOI: 10.1101/2024.07.02.601723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Obtaining comprehensive structural descriptions of macromolecules within their natural cellular context holds immense potential for understanding fundamental biology and improving health. Here, we present the landscape of protein synthesis inside human cells in unprecedented detail obtained using an approach which combines automated cryo-focused ion beam (FIB) milling and in situ single-particle cryo-electron microscopy (cryo-EM). With this in situ cryo-EM approach we resolved a 2.19 Å consensus structure of the human 80S ribosome and unveiled its 21 distinct functional states, nearly all higher than 3 Å resolution. In contrast to in vitro studies, we identified protein factors, including SERBP1, EDF1 and NAC/3, not enriched on purified ribosomes. Most strikingly, we observed that SERBP1 binds to the ribosome in almost all translating and non-translating states to bridge the 60S and 40S ribosomal subunits. These newly observed binding sites suggest that SERBP1 may serve an important regulatory role in translation. We also uncovered a detailed interface between adjacent translating ribosomes which can form the helical polysome structure. Finally, we resolved high-resolution structures from cells treated with homoharringtonine and cycloheximide, and identified numerous polyamines bound to the ribosome, including a spermidine that interacts with cycloheximide bound at the E site of the ribosome, underscoring the importance of high-resolution in situ studies in the complex native environment. Collectively, our work represents a significant advancement in detailed structural studies within cellular contexts.
Collapse
|