1
|
Bruzeau C, Martin O, Pollet J, Thomas M, Ba Z, Roulois D, Pinaud E, Le Noir S. Core enhancers of the 3'RR optimize IgH nuclear position and loop conformation for successful oriented class switch recombination. Nucleic Acids Res 2024; 52:12281-12294. [PMID: 39413158 PMCID: PMC11551739 DOI: 10.1093/nar/gkae867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
In B lymphocytes, class switch recombination (CSR) is an essential process that adapts immunoglobulin (Ig) subtypes to antigen response. Taking place within the Ig heavy chain (IgH) locus, CSR needs controlled transcription of targeted regions governed by the IgH 3' regulatory region (3'RR). This super-enhancer is composed of four core enhancers surrounded by inverted repeated sequences, forming a quasi-palindrome. In addition to transcription, nuclear organization appears to be an important level in CSR regulation. While it is now established that chromatin loop extrusion takes place within IgH locus to facilitate CSR by bringing the donor and acceptor switch regions closer together, the underlying mechanism that triggers CSR loop formation remains partially understood. Here, by combining DNA 3D fluorescence in situhybridization with various high-throughput approaches, we deciphered critical functions for the 3'RR core enhancer element in nuclear addressing, accessibility and chromatin looping of the IgH locus. We conclude that the 3'RR core enhancers are necessary and sufficient to pre-organize the position and conformation of IgH loci in resting B-cell nuclei to enable the deletional recombination events required for productive successful CSR in activated B-cell nuclei.
Collapse
Affiliation(s)
- Charlotte Bruzeau
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| | - Ophélie Martin
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| | - Justine Pollet
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| | - Morgane Thomas
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| | - Zhaoqing Ba
- National Institute of Biological Sciences, 37WH+XG9, Changping District, Beijing 102206, China
| | - David Roulois
- Honeycomb team, Equipe Labellisée par la Ligue Nationale contre le Cancer, UMR 1236, Université de Rennes, INSERM, Établissement Français du Sang Bretagne, 2 avenue du professeur Léon Bernard, F-35043, Rennes, France
| | - Eric Pinaud
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| | - Sandrine Le Noir
- UMR CNRS7276, Inserm1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B Cell Nuclear Architecture, Immunoglobulin Genes and Oncogenes, 2, rue du Dr. Marcland, 87025 Limoges, France
| |
Collapse
|
2
|
Leifer VP, Fang F, Song L, Kim J, Papanikolaou JF, Smeeton J, Thomopoulos S. Single-cell RNA-sequencing analysis of immune and mesenchymal cell crosstalk in the developing enthesis. Sci Rep 2024; 14:26839. [PMID: 39500962 PMCID: PMC11538517 DOI: 10.1038/s41598-024-77958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autoimmunity underlies many painful disorders, such as enthesopathies, which localize to the enthesis. From infiltration of the synovium and axial skeleton by B cells, to disturbances in the ratio of M1/M2 enthesis macrophages, to CD8 + T cell mediated inflammation, autoimmune dysregulation is becoming increasingly well characterized in enthesopathies. Tissue resident B cells, macrophages, neutrophils, and T cells have also been localized in healthy human entheses. However, the potential developmental origins, presence, and role of immune cells (ICs) in enthesis development is not known. Here, we use single-cell RNA-sequencing analysis to describe IC subtypes present in the enthesis before, during, and after mineralization, and to infer regulatory interactions between ICs and mesenchymal cells (MCs). We report the presence of nine phenotypically distinct IC subtypes, including B cells, macrophages, neutrophils, and T cells. We find that specific IC subtypes may promote MC-proliferation and differentiation, and that MCs may regulate IC phenotype and autoimmunity. Our findings suggest that bidirectional regulatory interactions between ICs and MCs may be important to enthesis mineralization, and suggest that progenitor MCs have a unique ability to limit autoimmunity during development.
Collapse
Affiliation(s)
- Valia P Leifer
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Fei Fang
- Department Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Jieon Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - John F Papanikolaou
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Joanna Smeeton
- Department of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Qin Y, Meng FL. Taming AID mutator activity in somatic hypermutation. Trends Biochem Sci 2024; 49:622-632. [PMID: 38614818 DOI: 10.1016/j.tibs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by introducing base substitutions into antibody genes, a process enabling antibody affinity maturation in immune response. How a mutator is tamed to precisely and safely generate programmed DNA lesions in a physiological process remains unsettled, as its dysregulation drives lymphomagenesis. Recent research has revealed several hidden features of AID-initiated mutagenesis: preferential activity on flexible DNA substrates, restrained activity within chromatin loop domains, unique DNA repair factors to differentially decode AID-caused lesions, and diverse consequences of aberrant deamination. Here, we depict the multifaceted regulation of AID activity with a focus on emerging concepts/factors and discuss their implications for the design of base editors (BEs) that install somatic mutations to correct deleterious genomic variants.
Collapse
Affiliation(s)
- Yining Qin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences; Shanghai 200031, China
| | - Fei-Long Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences; Shanghai 200031, China.
| |
Collapse
|
4
|
Ye T, Mishra AK, Banday S, Li R, Hu K, Coleman MM, Shan Y, Chowdhury SR, Zhou L, Pak ML, Simone TM, Malonia SK, Zhu LJ, Kelliher MA, Green MR. Identification of WNK1 as a therapeutic target to suppress IgH/MYC expression in multiple myeloma. Cell Rep 2024; 43:114211. [PMID: 38722741 DOI: 10.1016/j.celrep.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Tianyi Ye
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Alok K Mishra
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kai Hu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Madison M Coleman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yi Shan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shreya Roy Chowdhury
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Magnolia L Pak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tessa M Simone
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K Malonia
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michelle A Kelliher
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Gothwal SK, Refaat AM, Nakata M, Stanlie A, Honjo T, Begum N. BRD2 promotes antibody class switch recombination by facilitating DNA repair in collaboration with NIPBL. Nucleic Acids Res 2024; 52:4422-4439. [PMID: 38567724 PMCID: PMC11077081 DOI: 10.1093/nar/gkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.
Collapse
Affiliation(s)
- Santosh K Gothwal
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Andre Stanlie
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Dauba A, Näser E, Andrieux D, Cogné M, Denizot Y, Khamlichi AA. The immunoglobulin heavy chain super enhancer controls class switch recombination in developing B cells. Sci Rep 2024; 14:7370. [PMID: 38548819 PMCID: PMC10979011 DOI: 10.1038/s41598-024-57576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to replace the initial IgM by another antibody class (IgG, IgE or IgA). CSR is preceded by transcription of the IgH constant genes and is controlled by the super-enhancer 3' regulatory region (3'RR) in an activation-specific manner. The 3'RR is composed of four enhancers (hs3a, hs1-2, hs3b and hs4). In mature B cells, 3'RR activity correlates with transcription of its enhancers. CSR can also occur in primary developing B cells though at low frequency, but in contrast to mature B cells, the transcriptional elements that regulate the process in developing B cells are ill-known. In particular, the role of the 3'RR in the control of constant genes' transcription and CSR has not been addressed. Here, by using a mouse line devoid of the 3'RR and a culture system that highly enriches in pro-B cells, we show that the 3'RR activity is indeed required for switch transcription and CSR, though its effect varies in an isotype-specific manner and correlates with transcription of hs4 enhancer only.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie Et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), CNRS UMR5089, 205 Route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Emmanuelle Näser
- Institut de Pharmacologie Et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), CNRS UMR5089, 205 Route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Dylan Andrieux
- Institut de Pharmacologie Et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), CNRS UMR5089, 205 Route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Michel Cogné
- MOBIDIC, INSERM U1236, Université de Rennes 1, Rennes, France
| | - Yves Denizot
- UMR CNRS 7276, INSERM U1262, Université de Limoges, CBRS, Limoges, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie Et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), CNRS UMR5089, 205 Route de Narbonne, BP 64182, 31077, Toulouse, France.
| |
Collapse
|
7
|
Liang Y, Wang H, Seija N, Lin YH, Tung LT, Di Noia JM, Langlais D, Nijnik A. B-cell intrinsic regulation of antibody mediated immunity by histone H2A deubiquitinase BAP1. Front Immunol 2024; 15:1353138. [PMID: 38529289 PMCID: PMC10961346 DOI: 10.3389/fimmu.2024.1353138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.
Collapse
Affiliation(s)
- Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Malzl D, Peycheva M, Rahjouei A, Gnan S, Klein KN, Nazarova M, Schoeberl UE, Gilbert DM, Buonomo SCB, Di Virgilio M, Neumann T, Pavri R. RIF1 regulates early replication timing in murine B cells. Nat Commun 2023; 14:8049. [PMID: 38081811 PMCID: PMC10713614 DOI: 10.1038/s41467-023-43778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.
Collapse
Affiliation(s)
- Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Ali Rahjouei
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Stefano Gnan
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Kyle N Klein
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - Ursula E Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Sara C B Buonomo
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Michela Di Virgilio
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
- Quantro Therapeutics, Vienna Biocenter, 1030, Vienna, Austria.
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
9
|
New insight of human-IgH 3'regulatory regions in immunoglobulins switch. Gene 2023; 862:147254. [PMID: 36764340 DOI: 10.1016/j.gene.2023.147254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Several studies in animal models have demonstrated the role of the 3' Regulatory Region (3'RR) in the B cell maturation in mammals. In healthy humans, the concentration of each class of circulating immunoglobulins (Igs) has stable but different levels, due to several control mechanisms that also involve a duplicated version of the 3'RR on the chromosome 14 (chr14). The classes' equilibrium can be altered during infections and in other pathological conditions. MATERIAL AND METHODS We studied the concentrations of IgA, IgM, IgG classes and IgG subclasses in a cohort of 1235 people having immunoglobulin concentrations within normal range to determine the presence of any correlation between the Igs serum concentrations, age and ratio among Ig classes and IgG subclasses in healthy humans. Furthermore, we assessed the concentrations of IgE and the allelic frequency of 3'RR1 hs1.2 enhancer in a group of 115 subjects with high levels of circulating IgE due to acute exacerbation of allergic asthma and in a control group of 118 healthy subjects. RESULTS In both children and adult subjects, the concentrations of the four IgG subclasses decreased from IgG1 to IgG4. Furthermore, the 3'RR1 enhancer hs1.2 alleles contribute to the control of the IgG subclasses levels, but it does not affect the IgE levels. CONCLUSION The 3'RR1 controls IgG and IgE through different mechanisms, only in the IgG case involving the hs1.2 alleles. Thus, considering the IgH constant genes loci on the chromosome 14 and the multiple steps of switch that rearrange the whole region, we found that in humans the classes of Igs are modulated by mechanisms involving a complex interaction and transition between 3'RR1 and 3'RR2, also in physiological conditions.
Collapse
|
10
|
A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination. Mol Cell 2023; 83:681-697.e7. [PMID: 36736317 DOI: 10.1016/j.molcel.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.
Collapse
|
11
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
Haque F, Honjo T, Begum NA. XLID syndrome gene Med12 promotes Ig isotype switching through chromatin modification and enhancer RNA regulation. SCIENCE ADVANCES 2022; 8:eadd1466. [PMID: 36427307 PMCID: PMC9699684 DOI: 10.1126/sciadv.add1466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptional coactivator Med12 regulates gene expression through its kinase module. Here, we show a kinase module-independent function of Med12 in CSR. Med12 is essential for super-enhancer activation by collaborating with p300-Jmjd6/Carm1 coactivator complexes. Med12 loss decreases H3K27 acetylation and eRNA transcription with concomitant impairment of AID-induced DNA breaks, S-S synapse formation, and 3'RR-Eμ interaction. CRISPR-dCas9-mediated enhancer activation reestablishes the epigenomic and transcriptional hallmarks of the super-enhancer and fully restores the Med12 depletion defects. Moreover, 3'RR-derived eRNAs are critical for promoting S region epigenetic regulation, synapse formation, and recruitment of Med12 and AID to the IgH locus. We find that XLID syndrome-associated Med12 mutations are defective in both 3'RR eRNA transcription and CSR, suggesting that B and neuronal cells may have cell-specific super-enhancer dysfunctions. We conclude that Med12 is essential for IgH 3'RR activation/eRNA transcription and plays a central role in AID-induced antibody gene diversification and genomic instability in B cells.
Collapse
Affiliation(s)
- Farazul Haque
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Hussainy M, Korsching SI, Tresch A. Pseudotime analysis reveals novel regulatory factors for multigenic onset and monogenic transition of odorant receptor expression. Sci Rep 2022; 12:16183. [PMID: 36171231 PMCID: PMC9519747 DOI: 10.1038/s41598-022-20106-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
During their maturation from horizontal basal stem cells, olfactory sensory neurons (OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and express it on their surface, a process called monogenic selection. Monogenic expression is preceded by a multigenic phase during which several OR genes are expressed in a single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of murine olfactory epithelium to precisely align the multigenic and monogenic expression phases with the cell types occurring during OSN differentiation. In combination with motif analysis of OR gene cluster-associated enhancer regions, we identify known and novel transcription (co-)factors (Ebf1, Lhx2, Ldb1, Fos and Ssbp2) and chromatin remodelers (Kdm1a, Eed and Zmynd8) associated with OR expression. The inferred temporal order of their activity suggests novel mechanisms contributing to multigenic OR expression and monogenic selection.
Collapse
Affiliation(s)
- Mohammad Hussainy
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
An L, Cao Z, Nie P, Zhang H, Tong Z, Chen F, Tang Y, Han Y, Wang W, Zhao Z, Zhao Q, Yang Y, Xu Y, Fang G, Shi L, Xu H, Ma H, Jiao S, Zhou Z. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J Clin Invest 2022; 132:e155468. [PMID: 35290241 PMCID: PMC9057599 DOI: 10.1172/jci155468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yi Han
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingya Zhao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Balasubramanian S, Andreani M, Andrade JG, Saha T, Sundaravinayagam D, Garzón J, Zhang W, Popp O, Hiraga SI, Rahjouei A, Rosen DB, Mertins P, Chait BT, Donaldson AD, Di Virgilio M. Protection of nascent DNA at stalled replication forks is mediated by phosphorylation of RIF1 intrinsically disordered region. eLife 2022; 11:e75047. [PMID: 35416772 PMCID: PMC9007588 DOI: 10.7554/elife.75047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease. How these RIF1 activities are regulated at the post-translational level has not yet been elucidated. Here, we identified a cluster of conserved ATM/ATR consensus SQ motifs within the intrinsically disordered region (IDR) of mouse RIF1 that are phosphorylated in proliferating B lymphocytes. We found that phosphorylation of the conserved IDR SQ cluster is dispensable for the inhibition of DSB resection by RIF1, but is essential to counteract DNA2-dependent degradation of nascent DNA at stalled replication forks. Therefore, our study identifies a key molecular feature that enables the genome-protective function of RIF1 during DNA replication stress.
Collapse
Affiliation(s)
- Sandhya Balasubramanian
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Freie Universität BerlinBerlinGermany
| | - Matteo Andreani
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Freie Universität BerlinBerlinGermany
| | - Júlia Goncalves Andrade
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Tannishtha Saha
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Freie Universität BerlinBerlinGermany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Javier Garzón
- Institute of Medical Sciences, University of Aberdeen, ForesterhillAberdeenUnited Kingdom
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Oliver Popp
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of HealthBerlinGermany
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, ForesterhillAberdeenUnited Kingdom
| | - Ali Rahjouei
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Daniel B Rosen
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of HealthBerlinGermany
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, ForesterhillAberdeenUnited Kingdom
| | - Michela Di Virgilio
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Charité-Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
16
|
Dauba A, Khamlichi AA. Long-Range Control of Class Switch Recombination by Transcriptional Regulatory Elements. Front Immunol 2021; 12:738216. [PMID: 34594340 PMCID: PMC8477019 DOI: 10.3389/fimmu.2021.738216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays a crucial role in adaptive immune responses through a change of the effector functions of antibodies and is triggered by T-cell-dependent as well as T-cell-independent antigens. Signals generated following encounter with each type of antigen direct CSR to different isotypes. At the genomic level, CSR occurs between highly repetitive switch sequences located upstream of the constant gene exons of the immunoglobulin heavy chain locus. Transcription of switch sequences is mandatory for CSR and is induced in a stimulation-dependent manner. Switch transcription takes place within dynamic chromatin domains and is regulated by long-range regulatory elements which promote alignment of partner switch regions in CSR centers. Here, we review recent work and models that account for the function of long-range transcriptional regulatory elements and the chromatin-based mechanisms involved in the control of CSR.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Cao Z, Budinich KA, Huang H, Ren D, Lu B, Zhang Z, Chen Q, Zhou Y, Huang YH, Alikarami F, Kingsley MC, Lenard AK, Wakabayashi A, Khandros E, Bailis W, Qi J, Carroll MP, Blobel GA, Faryabi RB, Bernt KM, Berger SL, Shi J. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol Cell 2021; 81:3604-3622.e10. [PMID: 34358447 PMCID: PMC8932643 DOI: 10.1016/j.molcel.2021.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.
Collapse
Affiliation(s)
- Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krista A Budinich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Huang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhen Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fatemeh Alikarami
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Molly C Kingsley
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra K Lenard
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aoi Wakabayashi
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Martin P Carroll
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Morrish R, Yim KHW, Pagliara S, Palombo F, Chahwan R, Stone N. Single Cell Label-Free Probing of Chromatin Dynamics During B Lymphocyte Maturation. Front Cell Dev Biol 2021; 9:646616. [PMID: 33842468 PMCID: PMC8033168 DOI: 10.3389/fcell.2021.646616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 01/11/2023] Open
Abstract
Large-scale intracellular signaling during developmental growth or in response to environmental alterations are largely orchestrated by chromatin within the cell nuclei. Chemical and conformational modifications of the chromatin architecture are critical steps in the regulation of differential gene expression and ultimately cell fate determination. Therefore, establishing chemical properties of the nucleus could provide key markers for phenotypic characterization of cellular processes on a scale of individual cells. Raman microscopy is a sensitive technique that is capable of probing single cell chemical composition—and sub-cellular regions—in a label-free optical manner. As such, it has great potential in both clinical and basic research. However, perceived limitations of Raman spectroscopy such as low signal intensity and the difficulty in linking alterations in vibrational signals directly with ensuing biological effects have hampered advances in the field. Here we use immune B lymphocyte development as a model to assess chromatin and transcriptional changes using confocal Raman microscopy in combination with microfluidic devices and correlative transcriptomics, thereby linking changes in chemical and structural properties to biological outcomes. Live B lymphocytes were assessed before and after maturation. Multivariate analysis was applied to distinguish cellular components within each cell. The spectral differences between non-activated and activated B lymphocytes were then identified, and their correlation with known intracellular biological changes were assessed in comparison to conventional RNA-seq analysis. Our data shows that spectral analysis provides a powerful tool to study gene activation that can complement conventional molecular biology techniques and opens the way for mapping the dynamics in the biochemical makeup of individual cells.
Collapse
Affiliation(s)
- Rikke Morrish
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom.,Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Kevin Ho Wai Yim
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefano Pagliara
- Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Delgado-Benito V, Berruezo-Llacuna M, Altwasser R, Winkler W, Sundaravinayagam D, Balasubramanian S, Caganova M, Graf R, Rahjouei A, Henke MT, Driesner M, Keller L, Prigione A, Janz M, Akalin A, Di Virgilio M. PDGFA-associated protein 1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification. J Exp Med 2021; 217:151913. [PMID: 32609329 PMCID: PMC7537392 DOI: 10.1084/jem.20200137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.
Collapse
Affiliation(s)
- Verónica Delgado-Benito
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wiebke Winkler
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marieta Caganova
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robin Graf
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marie-Thérèse Henke
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Madlen Driesner
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lisa Keller
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Janz
- Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Serresi M, Kertalli S, Li L, Schmitt MJ, Dramaretska Y, Wierikx J, Hulsman D, Gargiulo G. Functional antagonism of chromatin modulators regulates epithelial-mesenchymal transition. SCIENCE ADVANCES 2021; 7:7/9/eabd7974. [PMID: 33627422 PMCID: PMC7904264 DOI: 10.1126/sciadv.abd7974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to modulate proliferation, migration, and stress response. Whereas kinase signaling is believed to be an EMT driver, the molecular mechanisms underlying epithelial-mesenchymal interconversion are incompletely understood. Here, we show that the impact of chromatin regulators on EMT interconversion is broader than that of kinases. By combining pharmacological modulation of EMT, synthetic genetic tracing, and CRISPR interference screens, we uncovered a minority of kinases and several chromatin remodelers, writers, and readers governing homeostatic EMT in lung cancer cells. Loss of ARID1A, DOT1L, BRD2, and ZMYND8 had nondeterministic and sometimes opposite consequences on epithelial-mesenchymal interconversion. Together with RNAPII and AP-1, these antagonistic gatekeepers control chromatin of active enhancers, including pan-cancer-EMT signature genes enabling supraclassification of anatomically diverse tumors. Thus, our data uncover general principles underlying transcriptional control of cancer cell plasticity and offer a platform to systematically explore chromatin regulators in tumor-state-specific therapy.
Collapse
Affiliation(s)
- Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Lifei Li
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Jikke Wierikx
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, Netherlands
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
21
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
22
|
Sundaravinayagam D, Rahjouei A, Andreani M, Tupiņa D, Balasubramanian S, Saha T, Delgado-Benito V, Coralluzzo V, Daumke O, Di Virgilio M. 53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Rep 2020; 28:1389-1399.e6. [PMID: 31390554 PMCID: PMC6693562 DOI: 10.1016/j.celrep.2019.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023] Open
Abstract
Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector functions of antibodies. CSR occurs via the formation and non-homologous end joining (NHEJ) repair of programmed DNA double-strand breaks (DSBs) at the immunoglobulin heavy chain locus. The DNA repair factors 53BP1 and Rif1 promote NHEJ and CSR by protecting DSBs against resection. However, to what extent repression of DNA end resection contributes to CSR is unknown. Here, we show that B lymphocytes devoid of 53BP1-Rif1-dependent DSB end protection activity undergo robust CSR. Inactivation of specific sets of phospho-sites within 53BP1 N-terminal SQ/TQ motifs abrogates Rif1 recruitment and inhibition of resection but only mildly reduces CSR. Furthermore, mutations within 53BP1 oligomerization domain abolish CSR without substantially affecting DNA end processing. Thus, inhibition of DNA end resection does not correlate with CSR efficiency, indicating that regulation of DSB processing is not a key determinant step in CSR. 53BP1 oligomerization is largely dispensable for inhibition of DSB resection 53BP1 higher order oligomerization is a pre-requisite for CSR B lymphocytes devoid of 53BP1-Rif1 DSB end protection activity undergo robust CSR 53BP1-mediated DSB end mobility is dispensable for CSR
Collapse
Affiliation(s)
- Devakumar Sundaravinayagam
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Ali Rahjouei
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Matteo Andreani
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Dagnija Tupiņa
- Laboratory of Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Tannishtha Saha
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Verónica Delgado-Benito
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Violeta Coralluzzo
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Oliver Daumke
- Laboratory of Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
23
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
24
|
Yen WF, Sharma R, Cols M, Lau CM, Chaudhry A, Chowdhury P, Yewdell WT, Vaidyanathan B, Sun A, Coffre M, Pucella JN, Chen CC, Jasin M, Sun JC, Rudensky AY, Koralov SB, Chaudhuri J. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep 2020; 27:1472-1486.e5. [PMID: 31042474 PMCID: PMC6527137 DOI: 10.1016/j.celrep.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
The immunoglobulin heavy chain (Igh) locus features a dynamic chromatin landscape to promote class switch recombination (CSR), yet the mechanisms that regulate this landscape remain poorly understood. CHD4, a component of the chromatin remodeling NuRD complex, directly binds H3K9me3, an epigenetic mark present at the Igh locus during CSR. We find that CHD4 is essential for early B cell development but is dispensable for the homeostatic maintenance of mature, naive B cells. However, loss of CHD4 in mature B cells impairs CSR because of suboptimal targeting of AID to the Igh locus. Additionally, we find that CHD4 represses p53 expression to promote B cell proliferation. This work reveals distinct roles for CHD4 in B cell development and CSR and links the H3K9me3 epigenetic mark with AID recruitment to the Igh locus. Yen et al. demonstrate that CHD4, a component of the NuRD remodeling complex, is essential for early B cell development, represses p53 expression in mature B cells, and influences the recruitment of AID to DNA during class switch recombination.
Collapse
Affiliation(s)
- Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Joseph N Pucella
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Chun-Chin Chen
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
25
|
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2020; 117:11624-11635. [PMID: 32385154 DOI: 10.1073/pnas.1921115117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.
Collapse
|
26
|
Chen J, He Q, Wu P, Fu J, Xiao Y, Chen K, Xie D, Zhang X. ZMYND8 expression combined with pN and pM classification as a novel prognostic prediction model for colorectal cancer: Based on TCGA and GEO database analysis. Cancer Biomark 2020; 28:201-211. [PMID: 32224527 DOI: 10.3233/cbm-191261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8 (ZMYND8) is closely correlated with tumor proliferation and invasiveness. However, its prognostic value has not been estimated in colorectal cancer (CRC). OBJECTIVE We aimed to elucidate the prognostic significance of ZMYND8 expression and the pN and pM classification supplemented by its expression in CRCs. METHODS The candidate gene ZMYND8 is identified by TCGA database and GEO database, and then we retrospectively evaluated the status and prognostic significance of ZMYND8 expression of 174 patients with CRC. RESULTS Online data showed high expression of ZMYND8 is closely correlated with worse overall survival. Our study revealed high expression of ZMYND8 in CRC patients was significantly associated with worse overall and disease-free survival (P< 0.05), and was an independently adverse prognostic factor for overall survival (P< 0.001) and disease-free survival (P= 0.001) by univariate and multivariate analysis. C-index to combined prognostic model containing the pN, pM classification supplemented by the status of ZMYND8 expression showed improved predictive ability comparing with the pN and pM classification model (C-index of 0.597 vs. 0.545, respectively). CONCLUSION The combined prognostic model could improve the ability to determine the clinical outcome of patients with CRC.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingmei He
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Peishan Wu
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianchang Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongbo Xiao
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Keming Chen
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinke Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Santos JM, Oudinet C, Schöne L, Dauba A, Khamlichi AA. Essential role of the initial activation signal in isotype selection upon deletion of a transcriptionally committed promoter. Sci Rep 2019; 9:18543. [PMID: 31811188 PMCID: PMC6898632 DOI: 10.1038/s41598-019-54929-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
Class switch recombination (CSR), which targets exclusively the constant region of the immunoglobulin heavy chain (IgH) locus, plays an important role in humoral immunity by generating different antibody effector functions. The IgH constant locus contains multiple genes controlled by isotype (I) promoters induced by extracellular signals that activate specific I promoters, leading to B cell commitment. However, it is unknown whether after initial commitment to one promoter, non-responsive I promoters are irreversibly silent or if they can be activated after exposure to their specific inducers. Here, we studied the murine cell line CH12, which is committed to produce IgA in response to TGF-β. We show that, although other promoters than Iα are transcriptionally inactive, they are not irreversibly silent. Following deletion of the committed Iα promoter by CRISPR/Cas9, other I promoters display a complex transcriptional pattern largely dependent on the initial committing signal.
Collapse
Affiliation(s)
- Joana M Santos
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Lisa Schöne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.
| |
Collapse
|
28
|
Chen J, Liu J, Chen X, Li Y, Li Z, Shen C, Chen K, Zhang X. Low expression of ZMYND8 correlates with aggressive features and poor prognosis in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:7835-7843. [PMID: 31692588 PMCID: PMC6713802 DOI: 10.2147/cmar.s210305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose ZMYND8 is closely correlated with cancerous proliferation and invasiveness. However, its prognostic value has not been estimated in a nasopharyngeal carcinoma (NPC). The purpose of this study was to elucidate the status of ZMYND8 expression and its prognostic significance in NPCs. Methods The status of ZMYND8 expression was investigated by immunohistochemistry for NPC samples in the study. The cutoff value of ZMYND8 expression was confirmed in NPCs using ROC-curve analysis. Correlations between ZMYND8 expression and clinicopathological variables and patient prognosis were analyzed by various statistical methods. Results Our study showed that low expression of ZMYND8 strongly correlated with late T stage in NPCs (P<0.05). Kaplan–Meier survival analysis revealed a significant association between low ZMYND8 expression and worse overall survival (P<0.05). Most importantly, Cox regression analysis confirmed ZMYND8 expression in NPC could be an independent prognostic factor. Conclusion Low expression of ZMYND8 could be of importance, due to its displaying more aggressive behavior in NPC. Therefore, ZMYND8 expression might serve as an independent prediction factor in patients with NPCs.
Collapse
Affiliation(s)
- Jiewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaoting Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zizi Li
- Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Chengchao Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Keming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|