1
|
Famà V, Coscujuela Tarrero L, Albanese R, Calviello L, Biffo S, Pelizzola M, Furlan M. Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle. RNA Biol 2025; 22:1-12. [PMID: 40116043 PMCID: PMC11934187 DOI: 10.1080/15476286.2025.2483001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Gene expression involves a series of consequential processes, beginning with mRNA synthesis and culminating in translation. Traditionally studied as a linear sequence of events, recent findings challenge this perspective, revealing coupling mechanisms that coordinate key steps of gene expression, even when spatially and temporally distant. In this review, we focus on translation, the final stage of gene expression, and examine its coupling with key stages of mRNA metabolism: synthesis, processing, export, and decay. For each of these processes, we provide an overview of known instances of coupling with translation. Furthermore, we discuss the role of high-throughput technologies in uncovering these intricate interactions on a genome-wide scale. Finally, we highlight key challenges and propose future directions to advance our understanding of how coupling mechanisms orchestrate robust and adaptable gene expression programs.
Collapse
Affiliation(s)
- Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
2
|
He J, Ganesamoorthy D, Chang JJY, Zhang J, Trevor SL, Gibbons KS, McPherson SJ, Kling JC, Schlapbach LJ, Blumenthal A, Coin LJM. Utilizing Nanopore direct RNA sequencing of blood from patients with sepsis for discovery of co- and post-transcriptional disease biomarkers. BMC Infect Dis 2025; 25:692. [PMID: 40355874 PMCID: PMC12070577 DOI: 10.1186/s12879-025-11078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND RNA sequencing of whole blood has been increasingly employed to find transcriptomic signatures of disease states. These studies traditionally utilize short-read sequencing of cDNA, missing important aspects of RNA expression such as differential isoform abundance and poly(A) tail length variation. METHODS We used Oxford Nanopore Technologies sequencing to sequence native mRNA extracted from whole blood from 12 patients with definite bacterial and viral sepsis and compared with results from matching Illumina short-read cDNA sequencing data. Additionally, we explored poly(A) tail length variation, novel transcript identification, and differential transcript usage. RESULTS The correlation of gene count data between Illumina cDNA- and Nanopore RNA-sequencing strongly depended on the choice of analysis pipeline; NanoCount for Nanopore and Kallisto for Illumina data yielded the highest mean Pearson's correlation of 0.927 at the gene level and 0.736 at the transcript isoform level. We identified 2 genes with differential polyadenylation, 9 genes with differential expression and 4 genes with differential transcript usage between bacterial and viral infection. Gene ontology gene set enrichment analysis of poly(A) tail length revealed enrichment of long tails in mRNA of genes involved in signaling and short tails in oxidoreductase molecular functions. Additionally, we detected 240 non-artifactual novel transcript isoforms. CONCLUSIONS Nanopore RNA- and Illumina cDNA-gene counts are strongly correlated, indicating that both platforms are suitable for discovery and validation of gene count biomarkers. Nanopore direct RNA-seq provides additional advantages by uncovering additional post- and co-transcriptional biomarkers, such as poly(A) tail length variation and transcript isoform usage.
Collapse
Affiliation(s)
- Jingni He
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Devika Ganesamoorthy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Jessie J-Y Chang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Jianshu Zhang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sharon L Trevor
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Kristen S Gibbons
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Jessica C Kling
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Lachlan J M Coin
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
3
|
Kim M, Pyo Y, Hyun SI, Jeong M, Choi Y, Kim VN. Exogenous RNA surveillance by proton-sensing TRIM25. Science 2025; 388:eads4539. [PMID: 40179174 DOI: 10.1126/science.ads4539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
Exogenous messenger RNAs (mRNAs) require cellular machinery for delivery and translation but also encounter inhibitory factors. To investigate their regulation, we performed genome-wide CRISPR screens with in vitro-transcribed mRNAs in lipid nanoparticles (LNPs). Heparan sulfate proteoglycans (HSPGs) and vacuolar adenosine triphosphatase (V-ATPase) were identified as mediators of LNP uptake and endosomal escape, respectively. TRIM25-an RNA binding E3 ubiquitin ligase-emerged as a key suppressor inducing turnover of both linear and circular mRNAs. The endoribonucleases N4BP1 and KHNYN, along with the antiviral protein ZAP, act redundantly in TRIM25-dependent surveillance. TRIM25 specifically targets mRNAs delivered by endosomes, and its RNA affinity increases at acidic pH, suggesting activation by protons released from ruptured endosomes. N1-methylpseudouridine modification reduces TRIM25's RNA binding, helping RNAs evade its suppressive effect. This study comprehensively maps cellular pathways regulating LNP-mRNAs, offering insights into RNA immunity and therapeutics.
Collapse
Affiliation(s)
- Myeonghwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngjoon Pyo
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seong-In Hyun
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
| | - Minseok Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Hayes LR, Zaepfel B, Duan L, Starner AC, Bartels MD, Rothacher RL, Martin S, French R, Zhang Z, Sinha IR, Ling JP, Sun S, Ayala YM, Coller J, Van Nostrand EL, Florea L, Kalab P. 5-ethynyluridine perturbs nuclear RNA metabolism to promote the nuclear accumulation of TDP-43 and other RNA binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646885. [PMID: 40236187 PMCID: PMC11996483 DOI: 10.1101/2025.04.02.646885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
TDP-43, an essential nucleic acid binding protein and splicing regulator, is broadly disrupted in neurodegeneration. TDP-43 nuclear localization and function depend on the abundance of its nuclear RNA targets and its recruitment into large ribonucleoprotein complexes, which restricts TDP-43 nuclear efflux. To further investigate the interplay between TDP-43 and nascent RNAs, we aimed to employ 5-ethynyluridine (5EU), a widely used uridine analog for 'click chemistry' labeling of newly transcribed RNAs. Surprisingly, 5EU induced the nuclear accumulation of TDP-43 and other RNA-binding proteins and attenuated TDP-43 mislocalization caused by disruption of the nuclear transport apparatus. RNA FISH demonstrated 5EU-induced nuclear accumulation of polyadenylated and GU-repeat-rich RNAs, suggesting increased retention of both processed and intronic RNAs. TDP-43 eCLIP confirmed that 5EU preserved TDP-43 binding at predominantly GU-rich intronic sites. RNAseq revealed significant 5EU-induced changes in alternative splicing, accompanied by an overall reduction in splicing diversity, without any major changes in RNA stability or TDP-43 splicing regulatory function. These data suggest that 5EU may impede RNA splicing efficiency and subsequent nuclear RNA processing and export. Our findings have important implications for studies utilizing 5EU and offer unexpected confirmation that the accumulation of endogenous nuclear RNAs promotes TDP-43 nuclear localization.
Collapse
|
5
|
Baptissart M, Gupta A, Poirot AC, Papas BN, Morgan M. TENT5C extends Odf1 poly(A) tail to sustain sperm morphogenesis and fertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644152. [PMID: 40196629 PMCID: PMC11974682 DOI: 10.1101/2025.03.20.644152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Changes in the poly(A) tail length of Odf1 and other transcripts critical for male fertility have been linked to translational activation during sperm formation 1-3. The mRNA poly(A) polymerase TENT5C is required for fastening the flagellum to the sperm head, but its role in shaping the poly(A) tail profile of the spermatid transcriptome remains limited 4,5. Here, we comprehensively document how changes in mRNA poly(A) tail length across the transcriptome reflect transcript metabolism in spermatids. In the absence of TENT5C polymerase activity, the poly(A) tail length of Odf1 transcripts is reduced, and the local distribution of ODF1 proteins in spermatids is disrupted. We show that mice expressing a catalytically inactive TENT5C produce headless spermatozoa with outer dense fibers detached from the axoneme, and other flagellar abnormalities associated with ODF1 deficiency 6. We propose that TENT5C poly(A) polymerase activity regulates the spatial translation of Odf1 mRNAs during spermiogenesis, a process critical for sperm morphogenesis and fertility. These findings highlight the power of poly(A) tail profiling to identify abnormal mRNA processing causative of infertility.
Collapse
Affiliation(s)
- Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Alexander C Poirot
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Brian N Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
- Corresponding and lead author
| |
Collapse
|
6
|
Torkzaban B, Zhu Y, Lopez C, Alexander JM, Ma J, Sun Y, Maschhoff KR, Hu W, Jacob MH, Lin D, Mao HQ, Martin S, Coller J. Use of polyadenosine tail mimetics to enhance mRNA expression from genes associated with haploinsufficiency disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102453. [PMID: 39967850 PMCID: PMC11834087 DOI: 10.1016/j.omtn.2025.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Polyadenosine (poly(A)) tails are nearly ubiquitous in human messenger RNA (mRNA) governing mRNA stability and translation. Crucially, the poly(A) tail regulates cytoplasmic gene expression by undergoing controlled removal upon exposure to the cytoplasm. Upon removal, mRNA ceases protein production and may subsequently be degraded or silenced. We have generated a therapeutic modality that tethers a poly(A) tail mimetic on the 3' end of specifically targeted mRNAs, thereby enhancing their expression beyond their normal utility. This technology, which we term mRNA boosters, lends itself to uses on haploinsufficiency disorders, where reduced gene expression manifests in a disease state. By polyadenylating short RNA sequences antisense to the 3' untranslated region (UTR) of specific mRNAs, we demonstrate that we can selectively and significantly enhance mRNA expression both in vitro and in vivo. We showcase the effectiveness of this technology on genes linked to autism spectrum disorders such as SYNGAP1, M E CP2, PURA, and CTNNB1, illustrating increased expression in both human cell cultures and animal models. These findings indicate that small poly(A) tail mimetics can substantially enhance mRNA expression, providing the potential to efficaciously treat haploinsufficiency disorders.
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Lopez
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongzhi Sun
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michele H. Jacob
- Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Dingchang Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
- RNA Innovation Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Chen H, Liu D, Guo J, Aditham A, Zhou Y, Tian J, Luo S, Ren J, Hsu A, Huang J, Kostas F, Wu M, Liu DR, Wang X. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat Biotechnol 2025; 43:194-203. [PMID: 38519719 PMCID: PMC11416571 DOI: 10.1038/s41587-024-02174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Although messenger RNA (mRNA) has proved effective as a vaccine, its potential as a general therapeutic modality is limited by its instability and low translation capacity. To increase the duration and level of protein expression from mRNA, we designed and synthesized topologically and chemically modified mRNAs with multiple synthetic poly(A) tails. Here we demonstrate that the optimized multitailed mRNA yielded ~4.7-19.5-fold higher luminescence signals than the control mRNA from 24 to 72 h post transfection in cellulo and 14 days detectable signal versus <7 days signal from the control in vivo. We further achieve efficient multiplexed genome editing of the clinically relevant genes Pcsk9 and Angptl3 in mouse liver at a minimal mRNA dosage. Taken together, these results provide a generalizable approach to synthesize capped branched mRNA with markedly enhanced translation capacity.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dangliang Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jianting Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abhishek Aditham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yiming Zhou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiakun Tian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuchen Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jiahao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Franklin Kostas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingrui Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Sitko AA, Frank MM, Romero GE, Hunt M, Goodrich LV. Lateral olivocochlear neurons modulate cochlear responses to noise exposure. Proc Natl Acad Sci U S A 2025; 122:e2404558122. [PMID: 39854232 PMCID: PMC11789013 DOI: 10.1073/pnas.2404558122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/04/2024] [Indexed: 01/26/2025] Open
Abstract
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium. One population of OCNs, the lateral olivocochlear (LOC) neurons, target spiral ganglion neurons (SGNs), the primary sensory neurons of the ear. LOCs alter their transmitter expression for days to weeks in response to noise exposure (NE), suggesting that they could tune SGN excitability over long time periods in response to auditory experience. To examine how LOCs affect auditory function after NE, we characterized OCN transcriptional profiles and found transient LOC-specific gene expression changes after NE, including upregulation of multiple neuropeptide-encoding genes. Next, by generating intersectional mouse lines that selectively target LOCs, we chemogenetically ablated LOCs and assayed auditory responses at baseline and after NE. Compared to controls, mice with reduced LOC innervation showed greater NE-induced functional deficits 1 d later and had worse auditory function after a 2-wk recovery period. The number of remaining presynaptic puncta at the SGN synapse with inner hair cells did not differ between control and LOC-ablated animals, suggesting that the primary role of LOCs after NE is likely not to protect but instead to compensate, ensuring that SGN function is enhanced during periods of need.
Collapse
Affiliation(s)
- Austen A. Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | | | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
10
|
Dowdle ME, Lykke-Andersen J. Cytoplasmic mRNA decay and quality control machineries in eukaryotes. Nat Rev Genet 2025:10.1038/s41576-024-00810-1. [PMID: 39870755 DOI: 10.1038/s41576-024-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation. Recent advances in structural, single-molecule and genome-wide methods have provided new insights into the central machineries that carry out mRNA turnover, the mechanisms by which mRNAs are targeted for degradation and the general principles that govern mRNA stability at a global level. This improved understanding of mRNA degradation in the cytoplasm of eukaryotic cells is finding practical applications in the design of therapeutic mRNAs.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Ranjan A, Mattijssen S, Charlly N, Gallardo IC, Pitman L, Coleman J, Conte M, Maraia R. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. Nucleic Acids Res 2025; 53:gkaf053. [PMID: 39898547 PMCID: PMC11788930 DOI: 10.1093/nar/gkaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect messenger RNAs (mRNAs) from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved and relevance had been undetermined. Here, through a combination of in-cell and in vitro methodologies, we identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and 646-656 in LARP4B) as directly binding RACK1. Consistent with these results, AlphaFold2-Multimer predicted high-confidence interaction of CR2 with RACK1 propellers 5 and 6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas PABP association was less affected, consistent with independent interactions. The CR2 mutations decreased LARP4's ability to stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) to higher degree than β-globin and GFP (green fluorescent protein) mRNAs lacking the ARE. We show LARP4 robustly increases translation of β-glo-ARE mRNA, whereas the LARP4 CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency, while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
Affiliation(s)
- Amitabh Ranjan
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sandy Mattijssen
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Nithin Charlly
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Isabel Cruz Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Leah F Pitman
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
- Messenger RNA Regulation and Decay Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States 21702
| | - Jennifer C Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Richard J Maraia
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
12
|
Sotelo-Ramírez CE, Valdés-Tovar M, Zaragoza-Hoyos JU, Ortiz-López L, Argueta J, Rosel-Vales M, Miranda-Labra RU, Camarena B. Molecular and Functional Analysis of TLR 1, 2 and 6 in Peripheral Blood Monocytes of Patients with Schizophrenia: A Pilot Study. Int J Mol Sci 2025; 26:926. [PMID: 39940697 PMCID: PMC11817014 DOI: 10.3390/ijms26030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025] Open
Abstract
Schizophrenia (SZ) is a chronic disabling mental disorder with high heritability, and several immune-regulating genes have been implicated in its pathophysiology In this study, we investigated the expression of Toll-like receptors (TLRs) 1, 2, and 6 in peripheral blood monocytes from SZ patients and healthy control subjects (HCSs) in the Mexican population, focusing on specific SZ-associated gene variants. Gene expressions were assessed by qPCR, and protein expression was measured using flow cytometry. The secretory profiles of MALP2-stimulated monocytes were evaluated through immunoproteomic arrays. Our results indicate that patients with SZ carrying the rs4833093/TLR1 GG genotype exhibited significantly lower TLR1 gene expression compared to TT carriers. Notably, HCSs with the TT genotype showed markedly higher TLR1 protein expression, while all patients with SZ exhibited significantly reduced protein levels regardless of genotype. Furthermore, monocytes from patients with SZ displayed altered secretion profiles upon TLR stimulation, with significant elevations in IL-18, uPAR, angiopoietin-2, and serpin E1, alongside reductions in MCP-1, IL-17A, IL-24, MIF, and myeloperoxidase compared to HCSs. These findings suggest a dysfunctional TLR-mediated innate immune response in SZ.
Collapse
Affiliation(s)
- Carlo E. Sotelo-Ramírez
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana (UAM)-Iztapalapa, Mexico City 09340, Mexico;
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Marcela Valdés-Tovar
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (M.V.-T.); (L.O.-L.)
| | - Julio Uriel Zaragoza-Hoyos
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Leonardo Ortiz-López
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (M.V.-T.); (L.O.-L.)
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Mauricio Rosel-Vales
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM)-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| |
Collapse
|
13
|
Eisen TJ, Ghaffari-Kashani S, Hung CL, Groves JT, Weiss A, Kuriyan J. Conditional requirement for dimerization of the membrane-binding module for BTK signaling in lymphocyte cell lines. Sci Signal 2025; 18:eado1252. [PMID: 39808693 PMCID: PMC11970436 DOI: 10.1126/scisignal.ado1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.
Collapse
Affiliation(s)
- Timothy J. Eisen
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
| | - Sam Ghaffari-Kashani
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Chien-Lun Hung
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| | - Jay T. Groves
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Arthur Weiss
- Department of Microbiology and Immunology, University of
California, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine,
University of California, San Francisco, CA, United States
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| |
Collapse
|
14
|
Wang S, Fixman B, Chen XS. Low-error RNA sequencing techniques for detecting RNA editing by APOBECs: Circular RNAseq assay and safe-sequencing system (SSS). Methods Enzymol 2025; 713:15-30. [PMID: 40250952 DOI: 10.1016/bs.mie.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Cytidine-to-Uridine (C-to-U) RNA editing is a post-transcriptional modification essential for various biological processes. APOBEC deaminases mediate C-to-U editing which play critical role in cellular function and regulation. Advances in next-generation sequencing (NGS) technologies and analytical tools have provided powerful means to assess RNA editing activities and their physiological implications. However, inherent errors in NGS workflows-including reverse transcription, PCR amplification, and sequencing-complicate the detection of actual editing events. With error rates ranging from 10-2 to 10-3 per nucleotide, these technical artifacts can obscure APOBEC-mediated editing events occurring at similar frequencies. To address these challenges, in this chapter, we describe two established and optimized RNA sequencing strategies explicitly designed to detect low-frequency RNA editing events accurately while distinguishing them from NGS-associated errors. These methods are termed "circular RNA Sequencing Assay" and "Safe-Sequencing System (SSS)" and enable the reliable identification of RNA editing events (and also somatic mutations) at or below typical error thresholds.
Collapse
Affiliation(s)
- Shanshan Wang
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Fixman
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Yang J, Bu J, Liu B, Liu Y, Zhang Z, Li Z, Lu F, Zhu B, Li Y. MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA. Nat Commun 2025; 16:248. [PMID: 39747175 PMCID: PMC11696134 DOI: 10.1038/s41467-024-55610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The mammalian early embryo development requires translation of maternal mRNA inherited from the oocyte. While poly(A) tail length influences mRNA translation efficiency during the oocyte-to-embryo transition (OET), molecular mechanisms regulating maternal RNA poly(A) tail length are not fully understood. In this study, we identified MARTRE, a previously uncharacterized protein family (MARTRE1-MARTRE6), as regulators expressed during mouse OET that modulate poly(A) tail length. MARTRE inhibits deadenylation through the direct interaction with the deadenylase CCR4-NOT, and ectopic expression of Martre stabilized mRNA by attenuating poly(A) tail shortening. Deletion of the Martre gene locus results in shortened poly(A) tails and decreased translation efficiency of actively translated mRNAs in mouse zygotes, but does not affect maternal mRNA decay. MARTRE proteins thus fine-tune maternal mRNA translation by negatively regulating the deadenylating activity of CCR4-NOT. Moreover, Martre knockout embryos show delayed 2-cell stage progression and compromised preimplantation development. Together, our findings highlight protection of long poly(A) tails from active deadenylation as an important mechanism to coordinate translation of maternal mRNA.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziyi Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Falong Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yingfeng Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Drążkowska K, Tomecki R, Tudek A. Purification of Enzymatically Active Xrn1 for Removal of Non-capped mRNAs from In Vitro Transcription Reactions and Evaluation of mRNA Decapping Status In Vivo. Methods Mol Biol 2025; 2863:81-105. [PMID: 39535706 DOI: 10.1007/978-1-0716-4176-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The cap is a 7-methylguanosine attached to the first messenger RNA (mRNA) nucleotide with a 5'-5' triphosphate bridge. This conserved eukaryotic modification confers stability to the transcripts and is essential for translation initiation. The specific mechanisms that govern transcript cytoplasmic longevity and translatability were always of substantial interest. Multiple works aimed at modeling mRNA decay mechanisms, including the onset of decapping, which is the rate-limiting step of mRNA decay. Additionally, with the recent advances in RNA-based vaccines, the importance of efficient synthesis of fully functional mRNAs has increased. Non-capped mRNAs arising during in vitro transcription are highly immunogenic, and multiple approaches were developed to reduce their levels. Efficient and low-cost methods for elimination of non-capped mRNAs in vitro are therefore essential to basic sciences and to pharmaceutical applications. Here, we present a protocol for heterologous expression and purification of catalytically active recombinant Xrn1 from Thermothelomyces (Myceliophthora) thermophilus (Tt_Xrn1). We also describe protocols needed to verify the enzyme quality.
Collapse
Affiliation(s)
- Karolina Drążkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Rafał Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
17
|
Audebert L, Saveanu C, Collart MA. Dynamic Evolution of Poly-A Tail Lengths Visualized by RNAse H Assay and Northern Blot Using Nonradioactive Probes in Yeast. Methods Mol Biol 2025; 2863:45-60. [PMID: 39535703 DOI: 10.1007/978-1-0716-4176-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Poly-A tail length dynamics have been extensively studied from yeast to human, mostly using reporter transcripts. Recent studies have been carried out genome-wide to determine the status of poly-A tails at steady state. However, poly-A tail measurement at equilibrium gives an overall length that reflects a mixture of the different poly-A tail sizes for a single transcript. New genome-scale techniques are emerging to estimate dynamic of poly-A tails lengths, but they are not yet routine and individual validation experiments are useful. In this chapter we describe a protocol for visualizing poly-A tail lengths following transcription inhibition for a reporter mRNA using denaturing poly-acrylamide gel electrophoresis and northern blot assay. This protocol is quick to set up, requires the purchase of only a few specific reagents, does not rely on radioactivity for RNA monitoring, and can be easily implemented in any molecular biology laboratory.
Collapse
Affiliation(s)
- Léna Audebert
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, Paris, France.
- Sorbonne Université, Collège doctoral, Paris, France.
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, Paris, France
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Yamazaki H, Furuichi M, Katagiri M, Kajitani R, Itoh T, Chiba K. Recycling of Uridylated mRNAs in Starfish Embryos. Biomolecules 2024; 14:1610. [PMID: 39766317 PMCID: PMC11674185 DOI: 10.3390/biom14121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation. In oocytes, uridylated maternal cyclin B mRNAs are stable without decay, and they are polyadenylated to be translated after hormonal stimulation to resume meiosis, whereas they are deadenylated and re-uridylated at the blastula stage, followed by decay. Similarly, deadenylated and uridylated maternal ribosomal protein mRNAs, Rps29 and Rpl27a, were stable and inactive after hormonal stimulation, but they had been polyadenylated and active before hormonal stimulation. At the morula stage, uridylated maternal ribosomal protein mRNAs were re-polyadenylated, rendering them translationally active. These results indicate that uridylated mRNAs in starfish exist in a poised state, allowing them to be recycled or decayed.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Megumi Furuichi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Mikoto Katagiri
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Rei Kajitani
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Takehiko Itoh
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| |
Collapse
|
19
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024; 43:6525-6554. [PMID: 39394354 PMCID: PMC11649921 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
20
|
Audebert L, Feuerbach F, Zedan M, Schürch AP, Decourty L, Namane A, Permal E, Weis K, Badis G, Saveanu C. RNA degradation triggered by decapping is largely independent of initial deadenylation. EMBO J 2024; 43:6496-6524. [PMID: 39322754 PMCID: PMC11649920 DOI: 10.1038/s44318-024-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
RNA stability, important for eukaryotic gene expression, is thought to depend on deadenylation rates, with shortened poly(A) tails triggering decapping and 5' to 3' degradation. In contrast to this view, recent large-scale studies indicate that the most unstable mRNAs have, on average, long poly(A) tails. To clarify the role of deadenylation in mRNA decay, we first modeled mRNA poly(A) tail kinetics and mRNA stability in yeast. Independent of deadenylation rates, differences in mRNA decapping rates alone were sufficient to explain current large-scale results. To test the hypothesis that deadenylation and decapping are uncoupled, we used rapid depletion of decapping and deadenylation enzymes and measured changes in mRNA levels, poly(A) length and stability, both transcriptome-wide and with individual reporters. These experiments revealed that perturbations in poly(A) tail length did not correlate with variations in mRNA stability. Thus, while deadenylation may be critical for specific regulatory mechanisms, our results suggest that for most yeast mRNAs, it is not critical for mRNA decapping and degradation.
Collapse
Affiliation(s)
- Léna Audebert
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F75005, Paris, France
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexandra P Schürch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Gwenaël Badis
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France.
| |
Collapse
|
21
|
Wu G, Rouvière JO, Schmid M, Heick Jensen T. RNA 3'end tailing safeguards cells against products of pervasive transcription termination. Nat Commun 2024; 15:10446. [PMID: 39617768 PMCID: PMC11609308 DOI: 10.1038/s41467-024-54834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/22/2024] [Indexed: 05/17/2025] Open
Abstract
Premature transcription termination yields a wealth of unadenylated (pA-) RNA. Although this can be targeted for degradation by the Nuclear EXosome Targeting (NEXT) complex, possible backup pathways remain poorly understood. Here, we find increased levels of 3' end uridylated and adenylated RNAs upon NEXT inactivation. U-tailed RNAs are mostly short and modified by the cytoplasmic tailing enzymes, TUT4/7, following their PHAX-dependent nuclear export and prior to their degradation by the cytoplasmic exosome or the exoribonuclease DIS3L2. Longer RNAs are instead adenylated redundantly by enzymes TENT2, PAPOLA and PAPOLG. These transcripts are either degraded via the nuclear Poly(A) tail eXosome Targeting (PAXT) connection or exported and removed by the cytoplasmic exosome in a translation-dependent manner. Failure to do so decreases global translation and induces cell death. We conclude that post-transcriptional 3' end modification and removal of excess pA- RNA is achieved by tailing enzymes and export factors shared with productive RNA pathways.
Collapse
Affiliation(s)
- Guifen Wu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- QIAGEN Aarhus A/S, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Steinbrecht D, Minia I, Milek M, Meisig J, Blüthgen N, Landthaler M. Subcellular mRNA kinetic modeling reveals nuclear retention as rate-limiting. Mol Syst Biol 2024; 20:1346-1371. [PMID: 39548324 PMCID: PMC11611909 DOI: 10.1038/s44320-024-00073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Eukaryotic mRNAs are transcribed, processed, translated, and degraded in different subcellular compartments. Here, we measured mRNA flow rates between subcellular compartments in mouse embryonic stem cells. By combining metabolic RNA labeling, biochemical fractionation, mRNA sequencing, and mathematical modeling, we determined the half-lives of nuclear pre-, nuclear mature, cytosolic, and membrane-associated mRNAs from over 9000 genes. In addition, we estimated transcript elongation rates. Many matured mRNAs have long nuclear half-lives, indicating nuclear retention as the rate-limiting step in the flow of mRNAs. In contrast, mRNA transcripts coding for transcription factors show fast kinetic rates, and in particular short nuclear half-lives. Differentially localized mRNAs have distinct rate constant combinations, implying modular regulation. Membrane stability is high for membrane-localized mRNA and cytosolic stability is high for cytosol-localized mRNA. mRNAs encoding target signals for membranes have low cytosolic and high membrane half-lives with minor differences between signals. Transcripts of nuclear-encoded mitochondrial proteins have long nuclear retention and cytoplasmic kinetics that do not reflect co-translational targeting. Our data and analyses provide a useful resource to study spatiotemporal gene expression regulation.
Collapse
Affiliation(s)
- David Steinbrecht
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Igor Minia
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Johannes Meisig
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany.
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany.
| |
Collapse
|
23
|
Kulkarni S, Morrissey A, Sebastian A, Giardine B, Smith C, Akinniyi OT, Keller CA, Arnaoutov A, Albert I, Mahony S, Reese JC. Human CCR4-NOT globally regulates gene expression and is a novel silencer of retrotransposon activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612038. [PMID: 39314347 PMCID: PMC11419117 DOI: 10.1101/2024.09.10.612038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CCR4-NOT regulates multiple steps in gene regulation and has been well studied in budding yeast, but much less is known about the human complex. Auxin-induced degradation was used to rapidly deplete the scaffold subunit CNOT1, and CNOT4, to characterize the functions of human CCR4-NOT in gene regulation. Depleting CNOT1 increased RNA levels and caused a widespread decrease in RNA decay. In contrast, CNOT4 depletion only modestly changed steady-state RNA levels and, surprisingly, led to a global acceleration in mRNA decay. Further, depleting either subunit resulted in a global increase in RNA synthesis. In contrast to most of the genome, the transcription of KRAB-Zinc-Finger-protein (KZNFs) genes, especially those on chromosome 19, was repressed. KZNFs are transcriptional repressors of retrotransposable elements (rTEs), and consistent with the decreased KZNFs expression, rTEs, mainly Long Interspersed Nuclear Elements (LINEs), were activated. These data establish CCR4-NOT as a global regulator of gene expression and a novel silencer of rTEs.
Collapse
|
24
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Liu J, Lu F. Beyond simple tails: poly(A) tail-mediated RNA epigenetic regulation. Trends Biochem Sci 2024; 49:846-858. [PMID: 39004583 DOI: 10.1016/j.tibs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
The poly(A) tail is an essential structural component of mRNA required for the latter's stability and translation. Recent technologies have enabled transcriptome-wide profiling of the length and composition of poly(A) tails, shedding light on their overlooked regulatory capacities. Notably, poly(A) tails contain not only adenine but also uracil, cytosine, and guanine residues. These findings strongly suggest that poly(A) tails could encode a wealth of regulatory information, similar to known reversible RNA chemical modifications. This review aims to succinctly summarize our current knowledge on the composition, dynamics, and regulatory functions of RNA poly(A) tails. Given their capacity to carry rich regulatory information beyond the genetic code, we propose the concept of 'poly(A) tail epigenetic information' as a new layer of RNA epigenetic regulation.
Collapse
Affiliation(s)
- Jingwen Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Martinek V, Martin J, Belair C, Payea M, Malla S, Alexiou P, Maragkakis M. Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics. NAR Genom Bioinform 2024; 6:lqae116. [PMID: 39211330 PMCID: PMC11358824 DOI: 10.1093/nargab/lqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
Collapse
Affiliation(s)
- Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Panagiotis Alexiou
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
27
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Wang PY, Bartel DP. The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex. Mol Cell 2024; 84:2918-2934.e11. [PMID: 39025072 PMCID: PMC11371465 DOI: 10.1016/j.molcel.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.
Collapse
Affiliation(s)
- Peter Y Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Ietswaart R, Smalec BM, Xu A, Choquet K, McShane E, Jowhar ZM, Guegler CK, Baxter-Koenigs AR, West ER, Fu BXH, Gilbert L, Floor SN, Churchman LS. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol Cell 2024; 84:2765-2784.e16. [PMID: 38964322 PMCID: PMC11315470 DOI: 10.1016/j.molcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Mohamoud Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal K Guegler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Luke Gilbert
- Arc Institute, Palo Alto, CA 94305, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94518, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Biziaev N, Shuvalov A, Salman A, Egorova T, Shuvalova E, Alkalaeva E. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 2024; 52:7792-7808. [PMID: 38874498 PMCID: PMC11260481 DOI: 10.1093/nar/gkae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The poly(A) tail plays an important role in maintaining mRNA stability and influences translation efficiency via binding with PABP. However, the impact of poly(A) tail length on mRNA translation remains incompletely understood. This study explores the effects of poly(A) tail length on human translation. We determined the translation rates in cell lysates using mRNAs with different poly(A) tails. Cap-dependent translation was stimulated by the poly(A) tail, however, it was largely independent of poly(A) tail length, with an exception observed in the case of the 75 nt poly(A) tail. Conversely, cap-independent translation displayed a positive correlation with poly(A) tail length. Examination of translation stages uncovered the dependence of initiation and termination on the presence of the poly(A) tail, but the efficiency of initiation remained unaffected by poly(A) tail extension. Further study unveiled that increased binding of eRFs to the ribosome with the poly(A) tail extension induced more efficient hydrolysis of peptidyl-tRNA. Building upon these findings, we propose a crucial role for the 75 nt poly(A) tail in orchestrating the formation of a double closed-loop mRNA structure within human cells which couples the initiation and termination phases of translation.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Wang PY, Bartel DP. The guide RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562437. [PMID: 38766062 PMCID: PMC11100590 DOI: 10.1101/2023.10.15.562437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that for different guide-RNA sequences, slicing rates of perfectly complementary, bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.
Collapse
Affiliation(s)
- Peter Y. Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Lead contact
| |
Collapse
|
32
|
Grandi C, Emmaneel M, Nelissen FHT, Roosenboom LWM, Petrova Y, Elzokla O, Hansen MMK. Decoupled degradation and translation enables noise modulation by poly(A) tails. Cell Syst 2024; 15:526-543.e7. [PMID: 38901403 DOI: 10.1016/j.cels.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Poly(A) tails are crucial for mRNA translation and degradation, but the exact relationship between tail length and mRNA kinetics remains unclear. Here, we employ a small library of identical mRNAs that differ only in their poly(A)-tail length to examine their behavior in human embryonic kidney cells. We find that tail length strongly correlates with mRNA degradation rates but is decoupled from translation. Interestingly, an optimal tail length of ∼100 nt displays the highest translation rate, which is identical to the average endogenous tail length measured by nanopore sequencing. Furthermore, poly(A)-tail length variability-a feature of endogenous mRNAs-impacts translation efficiency but not mRNA degradation rates. Stochastic modeling combined with single-cell tracking reveals that poly(A) tails provide cells with an independent handle to tune gene expression fluctuations by decoupling mRNA degradation and translation. Together, this work contributes to the basic understanding of gene expression regulation and has potential applications in nucleic acid therapeutics.
Collapse
Affiliation(s)
- Carmen Grandi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Laura W M Roosenboom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yoanna Petrova
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Omnia Elzokla
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
34
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Lee YS, Levdansky Y, Jung Y, Kim VN, Valkov E. Deadenylation kinetics of mixed poly(A) tails at single-nucleotide resolution. Nat Struct Mol Biol 2024; 31:826-834. [PMID: 38374449 PMCID: PMC11102861 DOI: 10.1038/s41594-023-01187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/24/2023] [Indexed: 02/21/2024]
Abstract
Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.
Collapse
Affiliation(s)
- Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
36
|
Janecki DM, Sen R, Szóstak N, Kajdasz A, Kordyś M, Plawgo K, Pandakov D, Philips A, Warkocki Z. LINE-1 mRNA 3' end dynamics shape its biology and retrotransposition potential. Nucleic Acids Res 2024; 52:3327-3345. [PMID: 38197223 PMCID: PMC11014359 DOI: 10.1093/nar/gkad1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors. We hypothesized that in the absence of XRN1, the major 5'→3' exoribonuclease, there would be more L1 mRNA and retrotransposition. Conversely, we observed that loss of XRN1 decreased L1 retrotransposition. This occurred despite slight stabilization of L1 mRNA, but with decreased L1 RNP formation. Similarly, loss of DCP2, the catalytic subunit of the decapping complex, lowered retrotransposition despite increased steady-state levels of L1 proteins. In both XRN1 and DCP2 depletions we observed shortening of L1 3' poly(A) tails and their increased uridylation by TUT4/7. We explain the observed reduction of L1 retrotransposition by the changed qualities of non-templated L1 mRNA 3' ends demonstrating the important role of L1 3' end dynamics in L1 biology.
Collapse
Affiliation(s)
- Damian M Janecki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Raneet Sen
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Szóstak
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Kinga Plawgo
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dmytro Pandakov
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
37
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
38
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 2024; 43:113710. [PMID: 38306272 PMCID: PMC11034814 DOI: 10.1016/j.celrep.2024.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.
Collapse
Affiliation(s)
- Katherine Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Wang L, Li H, Lei Z, Jeong DH, Cho J. The CARBON CATABOLITE REPRESSION 4A-mediated RNA deadenylation pathway acts on the transposon RNAs that are not regulated by small RNAs. THE NEW PHYTOLOGIST 2024; 241:1636-1645. [PMID: 38009859 DOI: 10.1111/nph.19435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that can impair the host genome stability and integrity. It has been well documented that activated transposons in plants are suppressed by small interfering (si) RNAs. However, transposon repression by the cytoplasmic RNA surveillance system is unknown. Here, we show that mRNA deadenylation is critical for controlling transposons in Arabidopsis. Trimming of poly(A) tail is a rate-limiting step that precedes the RNA decay and is primarily mediated by the CARBON CATABOLITE REPRESSION 4 (CCR4)-NEGATIVE ON TATA-LESS (NOT) complex. We found that the loss of CCR4a leads to strong derepression and mobilization of TEs in Arabidopsis. Intriguingly, CCR4a regulates a largely distinct set of TEs from those controlled by RNA-dependent RNA Polymerase 6 (RDR6), a key enzyme that produces cytoplasmic siRNAs. This indicates that the cytoplasmic RNA quality control mechanism targets the TEs that are poorly recognized by the previously well-characterized RDR6-mediated pathway, and thereby augments the host genome stability. Our study suggests a hitherto unknown mechanism for transposon repression mediated by RNA deadenylation and unveils a complex nature of the host's strategy to maintain the genome integrity.
Collapse
Affiliation(s)
- Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, 24252, Korea
- Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
42
|
Singh M, Kim JH. Measurement of Poly A Tail Length from Drosophila Larva Brain and Cell Line. J Vis Exp 2024:10.3791/66116. [PMID: 38284531 PMCID: PMC10954090 DOI: 10.3791/66116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Polyadenylation is a crucial posttranscriptional modification that adds poly(A) tails to the 3' end of mRNA molecules. The length of the poly(A) tail is tightly regulated by cellular processes. Dysregulation of mRNA polyadenylation has been associated with abnormal gene expression and various diseases, including cancer, neurological disorders, and developmental abnormalities. Therefore, comprehending the dynamics of polyadenylation is vital for unraveling the complexities of mRNA processing and posttranscriptional gene regulation. This paper presents a method for measuring poly(A) tail lengths in RNA samples isolated from Drosophila larval brains and Drosophila Schneider S2 cells. We employed the guanosine/inosine (G/I) tailing approach, which involves the enzymatic addition of G/I residues at the 3' end of mRNA using yeast poly(A) polymerase. This modification protects the RNA's 3' end from enzymatic degradation. The protected full-length poly(A) tails are then reverse-transcribed using a universal antisense primer. Subsequently, PCR amplification is performed using a gene-specific oligo that targets the gene of interest, along with a universal sequence oligo used for reverse transcription. This generates PCR products encompassing the poly(A) tails of the gene of interest. Since polyadenylation is not a uniform modification and results in tails of varying lengths, the PCR products display a range of sizes, leading to a smear pattern on agarose gel. Finally, the PCR products are subjected to high-resolution capillary gel electrophoresis, followed by quantification using the sizes of the poly(A) PCR products and the gene-specific PCR product. This technique offers a straightforward and reliable tool for analyzing poly(A) tail lengths, enabling us to gain deeper insights into the intricate mechanisms governing mRNA regulation.
Collapse
Affiliation(s)
- Monika Singh
- Department of Biology, University of Nevada, Reno
| | | |
Collapse
|
43
|
Pekovic F, Wahle E. In Vitro Reconstitution of the Drosophila melanogaster CCR4-NOT Complex to Assay Deadenylation. Methods Mol Biol 2024; 2723:19-45. [PMID: 37824062 DOI: 10.1007/978-1-0716-3481-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The CCR4-NOT complex is a multi-subunit poly(A)-specific 3' exoribonuclease that catalyzes the deadenylation of mRNA. In this chapter, we describe procedures to express and purify recombinant Drosophila melanogaster CCR4-NOT. Furthermore, we provide protocols for preparing radioactively labeled RNA substrates and conducting in vitro deadenylation assays.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
44
|
Levdansky Y, Valkov E. Reconstitution of Human CCR4-NOT Complex from Purified Proteins and an Assay of Its Deadenylation Activity. Methods Mol Biol 2024; 2723:1-17. [PMID: 37824061 DOI: 10.1007/978-1-0716-3481-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We describe protocols to produce and reconstitute an active human CCR4-NOT complex. Individual recombinant subunits are expressed in E. coli or baculovirus-infected insect cells, purified using column chromatography, and reconstituted into a stable complex containing all eight core subunits. In addition, we describe the biochemical assay of deadenylation using the reconstituted complex.
Collapse
Affiliation(s)
- Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
45
|
Dar SA, Malla S, Belair C, Maragkakis M. Differential Poly(A) Tail Length Analysis Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:267-283. [PMID: 37824076 DOI: 10.1007/978-1-0716-3481-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The poly(A) tail is a sequence of several adenosine nucleotides added to the 3' end of RNA molecules transcribed by polymerase II. The dynamics of poly(A) tail length play a significant role in regulating post-transcriptional gene expression by regulating the stability, translation, and decay of messenger RNAs. As a result, an accurate measurement of poly(A) tail length changes is important for understanding its regulatory function in different cellular contexts. Here, we outline a method for using nanopore sequencing and linear mixed models to analyze differences in poly(A) tail length across conditions.
Collapse
Affiliation(s)
- Showkat A Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
46
|
Liu Y, Lu F, Wang J. Sequencing of Transcriptome-Wide Poly(A) Tails by PAIso-seq. Methods Mol Biol 2024; 2723:215-232. [PMID: 37824073 DOI: 10.1007/978-1-0716-3481-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Poly(A) tails are added to most eukaryotic mRNA and have essential regulatory functions. However, due to its homopolymeric nature, the sequence information in poly(A) tails is challenging to obtain in transcriptome measurement studies. In this chapter, we describe the detailed procedures of poly(A) inclusive full-length RNA isoform-sequencing (PAIso-seq), a method that can measure transcriptome-wide poly(A) tails from as low as nanogram level of total RNA based on the PacBio HiFi sequencing platform. The accurate length and base composition of poly(A) tails can be obtained along with the full-length cDNA.
Collapse
Affiliation(s)
- Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
47
|
Iben JR, Li T, Mattijssen S, Maraia RJ. Single-Molecule Poly(A) Tail Sequencing (SM-PATseq) Using the PacBio Platform. Methods Mol Biol 2024; 2723:285-301. [PMID: 37824077 DOI: 10.1007/978-1-0716-3481-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The polyadenylation of the 3' ends of messenger RNAs is an important regulator of stability and translation. We developed the single-molecule poly(A) tail sequencing method, SM-PATseq, to assay tail lengths of the whole transcriptome at nucleotide resolution using long-read sequencing. This method generates cDNA using an oligo-dT 3' splint adaptor ligation to prime first-strand cDNA synthesis, followed by random hexamer priming for second-strand synthesis. By directly sequencing the cDNA on long-read platforms, we can resolve tail lengths at nucleotide resolution, identify non-A bases within the tail, and quantify transcript abundance analogous to traditional RNAseq methods. Here, we discuss the method for generating, sequencing, and primary analysis of poly(A) tail data from total RNA using the Pacific Biosciences Sequel platform.
Collapse
Affiliation(s)
- James R Iben
- Molecular Genetics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Tianwei Li
- Molecular Genetics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sandy Mattijssen
- Section on Molecular and Cell Biology, NICHD, NIH, Bethesda, MD, USA
| | - Richard J Maraia
- Section on Molecular and Cell Biology, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
48
|
Martinek V, Martin J, Belair C, Payea MJ, Malla S, Alexiou P, Maragkakis M. Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567581. [PMID: 38014155 PMCID: PMC10680836 DOI: 10.1101/2023.11.17.567581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Quantification of the dynamics of RNA metabolism is essential for understanding gene regulation in health and disease. Existing methods rely on metabolic labeling of nascent RNAs and physical separation or inference of labeling through PCR-generated mutations, followed by short-read sequencing. However, these methods are limited in their ability to identify transient decay intermediates or co-analyze RNA decay with cis-regulatory elements of RNA stability such as poly(A) tail length and modification status, at single molecule resolution. Here we use 5-ethynyl uridine (5EU) to label nascent RNA followed by direct RNA sequencing with nanopores. We developed RNAkinet, a deep convolutional and recurrent neural network that processes the electrical signal produced by nanopore sequencing to identify 5EU-labeled nascent RNA molecules. RNAkinet demonstrates generalizability to distinct cell types and organisms and reproducibly quantifies RNA kinetic parameters allowing the combined interrogation of RNA metabolism and cis-acting RNA regulatory elements.
Collapse
Affiliation(s)
- Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Panagiotis Alexiou
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
49
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
50
|
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander AD. Leveraging gene correlations in single cell transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532643. [PMID: 36993765 PMCID: PMC10055147 DOI: 10.1101/2023.03.14.532643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data when ground truth about biological variation is unknown (i.e., usually). RESULTS We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p-values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.
Collapse
Affiliation(s)
- Kai Silkwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Emmanuel Dollinger
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Josh Gervin
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Scott Atwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| |
Collapse
|