1
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNA mechanisms instructing Purkinje cell specification. Neuron 2025; 113:1629-1646.e15. [PMID: 40179877 DOI: 10.1016/j.neuron.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
MicroRNAs (miRNAs) are critical for brain development; however, if, when, and how miRNAs drive neuronal subtype specification remains poorly understood. To address this, we engineered technologies with vastly improved spatiotemporal resolution that allow the dissection of cell-type-specific miRNA-target networks. Fast and reversible miRNA loss of function showed that miRNAs are necessary for Purkinje cell (PC) differentiation, which previously appeared to be miRNA independent, and identified distinct critical miRNA windows for dendritogenesis and climbing fiber synaptogenesis, structural features defining PC identity. Using new mouse models that enable miRNA-target network mapping in rare cell types, we uncovered PC-specific post-transcriptional programs. Manipulation of these programs revealed that the PC-enriched miR-206 and targets Shank3, Prag1, En2, and Vash1, which are uniquely repressed in PCs, are critical regulators of PC-specific dendritogenesis and synaptogenesis, with miR-206 knockdown and target overexpression partially phenocopying miRNA loss of function. Our results suggest that gene expression regulation by miRNAs, beyond transcription, is critical for neuronal subtype specification.
Collapse
Affiliation(s)
- Norjin Zolboot
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica X Du
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marwan M Ghanem
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Su Yeun Choi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Miranda J Junn
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Federico Zampa
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zeyi Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Hofacker DT, Kalkuhl S, Schmid JF, Singh S, Stafforst T. A Simplified Guide RNA Synthesis Protocol for SNAP- and Halo-Tag-Based RNA Editing Tools. Molecules 2025; 30:1049. [PMID: 40076283 PMCID: PMC11901542 DOI: 10.3390/molecules30051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
SNAP-tag and Halo-tag have been employed to achieve targeted RNA editing by directing the deaminase domain of human ADAR to specific sites in the transcriptome. This targeting is facilitated by short guide RNAs (gRNAs) complementary to the target transcript, which are chemically modified with benzylguanine or chloroalkane moieties to enable covalent binding to the respective self-labeling enzymes. However, broad application of this approach has been limited by challenges such as low scalability, the requirement for specialized chemical expertise and equipment, and labor-intensive protocols. In this study, we introduce streamlined, efficient protocols for the synthesis and purification of these linkers, suitable for SNAP-tag and Halo-tag applications, without the need for advanced chemical equipment. Our methods enable linker coupling in a kit-like manner and support the high-yield production of modified gRNAs. We demonstrate that the newly synthesized linkers and gRNA designs perform similarly to previously published constructs with regard to RNA editing efficiency. Moreover, large-scale production of modified gRNAs facilitates their use in studies involving cellular uptake and in vivo experiments.
Collapse
Affiliation(s)
| | - Sebastian Kalkuhl
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Jana Franziska Schmid
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Shubhangi Singh
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Lobo V, Nowak I, Fernandez C, Correa Muler AI, Westholm J, Huang HC, Fabrik I, Huynh HT, Shcherbinina E, Poyraz M, Härtlova A, Benhalevy D, Angeletti D, Sarshad AA. Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference. Nucleic Acids Res 2024; 52:9917-9935. [PMID: 38994560 PMCID: PMC11381323 DOI: 10.1093/nar/gkae589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
Collapse
Affiliation(s)
- Vivian Lobo
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Iwona Nowak
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Carola Fernandez
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ana Iris Correa Muler
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jakub O Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Hsiang-Chi Huang
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ivo Fabrik
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hang T Huynh
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Evgeniia Shcherbinina
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Melis Poyraz
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Daniel Benhalevy
- Lab of Cellular RNA Biology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
6
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
7
|
Shamustakimova AO. Halo-RPD: searching for RNA-binding protein targets in plants. Vavilovskii Zhurnal Genet Selektsii 2024; 28:74-79. [PMID: 38465250 PMCID: PMC10917663 DOI: 10.18699/vjgb-24-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 03/12/2024] Open
Abstract
Study of RNA-protein interactions and identification of RNA targets are among the key aspects of understanding RNA biology. Currently, various methods are available to investigate these interactions with, RNA immunoprecipitation (RIP) being the most common. The search for RNA targets has largely been conducted using antibodies to an endogenous protein or to GFP-tag directly. Having to be dependent on the expression level of the target protein and having to spend time selecting highly specific antibodies make immunoprecipitation complicated. Expression of the GFP-fused protein can lead to cytotoxicity and, consequently, to improper recognition or degradation of the chimeric protein. Over the past few years, multifunctional tags have been developed. SNAP-tag and HaloTag allow the target protein to be studied from different perspectives. Labeling of the fusion protein with custom-made fluorescent dyes makes it possible to study protein expression and to localize it in the cell or the whole organism. A high-affinity substrate has been created to allow covalent binding by chimeric proteins, minimizing protein loss during protein isolation. In this paper, a HaloTag-based method, which we called Halo-RPD (HaloTag RNA PullDown), is presented. The proposed protocol uses plants with stable fusion protein expression and Magne® HaloTag® magnetic beads to capture RNA-protein complexes directly from the cytoplasmic lysate of transgenic Arabidopsis thaliana plants. The key stages described in the paper are as follows: (1) preparation of the magnetic beads; (2) tissue homogenization and collection of control samples; (3) precipitation and wash of RNA-protein complexes; (4) evaluation of protein binding efficiency; (5) RNA isolation; (6) analysis of the RNA obtained. Recommendations for better NGS assay designs are provided.
Collapse
Affiliation(s)
- A O Shamustakimova
- All-Russian Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
8
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNAs are necessary for the emergence of Purkinje cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560023. [PMID: 37808721 PMCID: PMC10557743 DOI: 10.1101/2023.09.28.560023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.
Collapse
|
9
|
Shi CY, Elcavage LE, Chivukula RR, Stefano J, Kleaveland B, Bartel DP. ZSWIM8 destabilizes many murine microRNAs and is required for proper embryonic growth and development. Genome Res 2023; 33:1482-1496. [PMID: 37532519 PMCID: PMC10620050 DOI: 10.1101/gr.278073.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
MicroRNAs (miRNAs) pair to sites in mRNAs to direct the degradation of these RNA transcripts. Conversely, certain RNA transcripts can direct the degradation of particular miRNAs. This target-directed miRNA degradation (TDMD) requires the ZSWIM8 E3 ubiquitin ligase. Here, we report the function of ZSWIM8 in the mouse embryo. Zswim8 -/- embryos were smaller than their littermates and died near the time of birth. This highly penetrant perinatal lethality was apparently caused by a lung sacculation defect attributed to failed maturation of alveolar epithelial cells. Some mutant individuals also had heart ventricular septal defects. These developmental abnormalities were accompanied by aberrant accumulation of more than 50 miRNAs observed across 12 tissues, which often led to enhanced repression of their mRNA targets. These ZSWIM8-sensitive miRNAs were preferentially produced from genomic miRNA clusters, and in some cases, ZSWIM8 caused a switch in the dominant strand or isoform that accumulated from a miRNA hairpin-observations suggesting that TDMD provides a mechanism to uncouple coproduced miRNAs from each other. Overall, our findings indicate that the regulatory influence of ZSWIM8, and presumably TDMD, in mammalian biology is widespread and consequential, and posit the existence of many yet-unidentified transcripts that trigger miRNA degradation.
Collapse
Affiliation(s)
- Charlie Y Shi
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lara E Elcavage
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Raghu R Chivukula
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Joanna Stefano
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin Kleaveland
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA;
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Stalnecker CA, Der CJ. KRAS regulation of miRNA: Stepping on the brake to go faster. Mol Cell 2023; 83:2390-2392. [PMID: 37478822 PMCID: PMC11301403 DOI: 10.1016/j.molcel.2023.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
In this issue of Molecular Cell, Shui et al.1 use a systems biology approach to unravel a paradoxical role of microRNA in oncogenic KrasG12D regulation of gene and protein expression.
Collapse
Affiliation(s)
- Clint A Stalnecker
- University of North Carolina at Chapel Hill, Department of Pharmacology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.
| | - Channing J Der
- University of North Carolina at Chapel Hill, Department of Pharmacology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Shui B, Beyett TS, Chen Z, Li X, La Rocca G, Gazlay WM, Eck MJ, Lau KS, Ventura A, Haigis KM. Oncogenic K-Ras suppresses global miRNA function. Mol Cell 2023; 83:2509-2523.e13. [PMID: 37402366 PMCID: PMC10527862 DOI: 10.1016/j.molcel.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.
Collapse
Affiliation(s)
- Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Program in Biological and Biomedical Sciences, Division of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William M Gazlay
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, Estoppey D, Nigsch F, Reece-Hoyes J, Hoepfner D, Großhans H. Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 2023:S1097-2765(23)00423-9. [PMID: 37369201 DOI: 10.1016/j.molcel.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alison Goulois
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marlena J Wisser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - John Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Chen J, Han C. In vivo functions of miRNAs in mammalian spermatogenesis. Front Cell Dev Biol 2023; 11:1154938. [PMID: 37215089 PMCID: PMC10196063 DOI: 10.3389/fcell.2023.1154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis mainly because spermatogenesis is more or less disrupted when genes encoding key enzymes for miRNA biogenesis are mutated. However, it is challenging to study the functions of individual miRNAs due to their family-wise high sequence similarities and the clustered genomic distributions of their genes, both of which expose difficulties in using genetic methods. Accumulating evidence shows that a number of miRNAs indeed play important roles in mammalian spermatogenesis and the underlying mechanisms start to be understood. In this mini review, we focus on highlighting the roles of miRNAs in mammalian spermatogenesis elucidated mainly by using in vivo genetic methods and on discussing the underlying mechanisms. We propose that studies on the roles of miRNAs in spermatogenesis should and can be conducted in a more fruitful way given the progress in traditional methods and the birth of new technologies.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Mufteev M, Rodrigues DC, Yuki KE, Narula A, Wei W, Piekna A, Liu J, Pasceri P, Rissland OS, Wilson MD, Ellis J. Transcriptional buffering and 3'UTR lengthening are shaped during human neurodevelopment by shifts in mRNA stability and microRNA load. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530249. [PMID: 36909614 PMCID: PMC10002768 DOI: 10.1101/2023.03.01.530249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The contribution of mRNA half-life is commonly overlooked when examining changes in mRNA abundance during development. mRNA levels of some genes are regulated by transcription rate only, but others may be regulated by mRNA half-life only shifts. Furthermore, transcriptional buffering is predicted when changes in transcription rates have compensating shifts in mRNA half-life resulting in no change to steady-state levels. Likewise, transcriptional boosting should result when changes in transcription rate are accompanied by amplifying half-life shifts. During neurodevelopment there is widespread 3'UTR lengthening that could be shaped by differential shifts in the stability of existing short or long 3'UTR transcript isoforms. We measured transcription rate and mRNA half-life changes during induced human Pluripotent Stem Cell (iPSC)-derived neuronal development using RATE-seq. During transitions to progenitor and neuron stages, transcriptional buffering occurred in up to 50%, and transcriptional boosting in up to 15%, of genes with changed transcription rates. The remaining changes occurred by transcription rate only or mRNA half-life only shifts. Average mRNA half-life decreased two-fold in neurons relative to iPSCs. Short gene isoforms were more destabilized in neurons and thereby increased the average 3'UTR length. Small RNA sequencing captured an increase in microRNA copy number per cell during neurodevelopment. We propose that mRNA destabilization and 3'UTR lengthening are driven in part by an increase in microRNA load in neurons. Our findings identify mRNA stability mechanisms in human neurodevelopment that regulate gene and isoform level abundance and provide a precedent for similar post-transcriptional regulatory events as other tissues develop.
Collapse
Affiliation(s)
- Marat Mufteev
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kyoko E Yuki
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ashrut Narula
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jiajie Liu
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Olivia S Rissland
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - James Ellis
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023; 12:306. [PMID: 36672241 PMCID: PMC9856966 DOI: 10.3390/cells12020306] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile, post-transcriptional regulators of gene expression. Canonical miRNAs are generated through the two-step DROSHA- and DICER-mediated processing of primary miRNA (pri-miRNA) transcripts with optimal or suboptimal features for DROSHA and DICER cleavage and loading into Argonaute (AGO) proteins, whereas multiple hairpin-structured RNAs are encoded in the genome and could be a source of non-canonical miRNAs. Recent advances in miRNA biogenesis research have revealed details of the structural basis of miRNA processing and cluster assistance mechanisms that facilitate the processing of suboptimal hairpins encoded together with optimal hairpins in polycistronic pri-miRNAs. In addition, a deeper investigation of miRNA-target interaction has provided insights into the complexity of target recognition with distinct outcomes, including target-mediated miRNA degradation (TDMD) and cooperation in target regulation by multiple miRNAs. Therefore, the coordinated or network regulation of both miRNA biogenesis and miRNA-target interaction is prevalent in miRNA biology. Alongside recent advances in the mechanistic investigation of miRNA functions, this review summarizes recent findings regarding the ordered regulation of miRNA biogenesis and miRNA-target interaction.
Collapse
Affiliation(s)
- Shintaro Komatsu
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Mauro M, Berretta M, Palermo G, Cavalieri V, La Rocca G. The Multiplicity of Argonaute Complexes in Mammalian Cells. J Pharmacol Exp Ther 2023; 384:1-9. [PMID: 35667689 PMCID: PMC9827513 DOI: 10.1124/jpet.122.001158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Massimiliano Berretta
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Giuseppe Palermo
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Vincenzo Cavalieri
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Gaspare La Rocca
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| |
Collapse
|
17
|
Studying miRNA-mRNA Interactions: An Optimized CLIP-Protocol for Endogenous Ago2-Protein. Methods Protoc 2022; 5:mps5060096. [PMID: 36548138 PMCID: PMC9781880 DOI: 10.3390/mps5060096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Transcriptome-wide analysis of RNA-binding partners is commonly achieved using UV crosslinking and immunoprecipitation (CLIP). Individual-nucleotide-resolution CLIP (iCLIP)enables identification of the specific position of the protein-RNA interaction. In addition to RNA-binding proteins (RBPs), microRNA (miRNA)-mRNA interactions also play a crucial role in the regulation of gene expression. Argonaute-2 (Ago2) mediates miRNA binding to a multitude of mRNA target sites, enabling the identification of miRNA-mRNA interactions by employing modified Ago2-CLIP protocols. Here, we describe an Ago2-specific CLIP protocol optimized for the use of small quantities of cell material, targeting endogenous Ago2 while avoiding possible methodological biases such as metabolic labeling or Ago2 overexpression and applying the latest advances in CLIP library preparation, the iCLIP2 protocol. In particular, we focus on the optimization of lysis conditions and improved radioactive labeling of the 5' end of the miRNA.
Collapse
|
18
|
Amini AP, Kirkpatrick JD, Wang CS, Jaeger AM, Su S, Naranjo S, Zhong Q, Cabana CM, Jacks T, Bhatia SN. Multiscale profiling of protease activity in cancer. Nat Commun 2022; 13:5745. [PMID: 36192379 PMCID: PMC9530178 DOI: 10.1038/s41467-022-32988-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model of Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer.
Collapse
Affiliation(s)
- Ava P Amini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Biophysics, Harvard University, Boston, MA, USA
- Microsoft Research New England, Cambridge, MA, USA
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cathy S Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Santiago Naranjo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Cabana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Wyss Institute at Harvard University, Boston, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
19
|
Schaefer M, Nabih A, Spies D, Hermes V, Bodak M, Wischnewski H, Stalder P, Ngondo RP, Liechti LA, Sajic T, Aebersold R, Gatfield D, Ciaudo C. Global and precise identification of functional
miRNA
targets in
mESCs
by integrative analysis. EMBO Rep 2022; 23:e54762. [PMID: 35899551 PMCID: PMC9442311 DOI: 10.15252/embr.202254762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA‐mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA‐depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO‐binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell‐specific miR‐290‐295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA‐mRNA functional interactions.
Collapse
Affiliation(s)
- Moritz Schaefer
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Amena Nabih
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Daniel Spies
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Harry Wischnewski
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Tatjana Sajic
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - Ruedi Aebersold
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - David Gatfield
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| |
Collapse
|
20
|
Krueger A, Łyszkiewicz M, Heissmeyer V. Post-transcriptional control of T-cell development in the thymus. Immunol Lett 2022; 247:1-12. [DOI: 10.1016/j.imlet.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
|
21
|
CHEN W, YOUNIS MH, ZHAO Z, CAI W. Recent biomedical advances enabled by HaloTag technology. BIOCELL 2022; 46:1789-1801. [PMID: 35601815 PMCID: PMC9119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.
Collapse
Affiliation(s)
- Weiyu CHEN
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Muhsin H. YOUNIS
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA
| | - Zhongkuo ZHAO
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| | - Weibo CAI
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| |
Collapse
|
22
|
Du SW, Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci 2021; 45:78-90. [PMID: 34753606 DOI: 10.1016/j.tins.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs are short, evolutionarily conserved noncoding RNAs that are critical for the control of normal cellular physiology. In the retina, photoreceptors are highly specialized neurons that transduce light into electrical signals. Photoreceptors, however, are unable to process visual stimuli without the support of the retinal pigment epithelium (RPE). The RPE performs numerous functions to aid the retina, including the generation of visual chromophore and metabolic support. Recent work has underscored how microRNAs enable vision through their contributions to RPE functions. This review focuses on the biogenesis and control of microRNAs in rodents and humans, the roles microRNAs play in RPE function and degeneration, and how microRNAs could serve as potential therapeutics and biomarkers for visual diseases.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA
| | - Krzysztof Palczewski
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, CA, USA; Department of Chemistry, University of California, Irvine School of Medicine, CA, USA.
| |
Collapse
|
23
|
Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev 2021; 304:111-125. [PMID: 34523719 PMCID: PMC8616848 DOI: 10.1111/imr.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.
Collapse
Affiliation(s)
- Timothy C. Borbet
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Marcus J. Hines
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Sergei B. Koralov
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| |
Collapse
|
24
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
25
|
Song W, Zheng C, Liu M, Xu Y, Qian Y, Zhang Z, Su H, Li X, Wu H, Gong P, Li Y, Fan H. TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p. Mol Ther 2021; 29:2601-2616. [PMID: 33839325 DOI: 10.1016/j.ymthe.2021.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies and has an unfavorable prognosis. The hepatitis B virus-encoded X (HBx) protein is closely associated with hepatocarcinogenesis. Sorafenib is a unique targeted oral kinase inhibitor for advanced HCC. Long noncoding RNAs (lncRNAs) mediate HCC progression and therapeutic resistance by acting as competing endogenous RNAs (ceRNAs). However, the ceRNA regulatory mechanisms underlying sorafenib resistance in HBx-associated HCC remain largely unknown. In this study, we found that translation regulatory lncRNA 1 (TRERNA1) upregulation by HBx not only promoted HCC cell proliferation by regulating the cell cycle in vitro and in vivo but also correlated positively with poor prognosis in HCC. Importantly, TRERNA1 enhanced sorafenib resistance in HCC cells. RNA sequencing (RNA-seq) analysis indicated that NRAS proto-oncogene (NRAS) is a potential target of TRERNA1 that mediates aspects of hepatocellular carcinogenesis. TRERNA1 acts as a ceRNA to regulate NRAS expression by sponging microRNA (miR)-22-3p. In summary, we show that increased TRERNA1 expression induced by HBx reduces HCC cell sensitivity to sorafenib by activating the RAS/Raf/MEK/ERK signaling pathway. We reveal a novel regulatory mode by which the TRERNA1/miR-22-3p/NRAS axis mediates HCC progression and indicates that TRERNA1 might constitute a powerful tumor biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Wei Song
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China; School of Life Science, Southeast University, Nanjing 210018, China; Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Min Liu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Ying Xu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hongmeng Su
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Xinxiu Li
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Huazhang Wu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Pihai Gong
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Yiping Li
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
26
|
Biasini A, Abdulkarim B, de Pretis S, Tan JY, Arora R, Wischnewski H, Dreos R, Pelizzola M, Ciaudo C, Marques AC. Translation is required for miRNA-dependent decay of endogenous transcripts. EMBO J 2021; 40:e104569. [PMID: 33300180 PMCID: PMC7849302 DOI: 10.15252/embj.2020104569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Baroj Abdulkarim
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Stefano de Pretis
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | - Jennifer Y Tan
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Rajika Arora
- Institute of Molecular Health SciencesETHZZurichSwitzerland
| | | | - Rene Dreos
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Mattia Pelizzola
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | | | - Ana Claudia Marques
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
27
|
Ross CJ, Rom A, Spinrad A, Gelbard-Solodkin D, Degani N, Ulitsky I. Uncovering deeply conserved motif combinations in rapidly evolving noncoding sequences. Genome Biol 2021; 22:29. [PMID: 33430943 PMCID: PMC7798263 DOI: 10.1186/s13059-020-02247-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Animal genomes contain thousands of long noncoding RNA (lncRNA) genes, a growing subset of which are thought to be functionally important. This functionality is often mediated by short sequence elements scattered throughout the RNA sequence that correspond to binding sites for small RNAs and RNA binding proteins. Throughout vertebrate evolution, the sequences of lncRNA genes changed extensively, so that it is often impossible to obtain significant alignments between sequences of lncRNAs from evolutionary distant species, even when synteny is evident. This often prohibits identifying conserved lncRNAs that are likely to be functional or prioritizing constrained regions for experimental interrogation. RESULTS We introduce here LncLOOM, a novel algorithmic framework for the discovery and evaluation of syntenic combinations of short motifs. LncLOOM is based on a graph representation of the input sequences and uses integer linear programming to efficiently compare dozens of sequences that have thousands of bases each and to evaluate the significance of the recovered motifs. We show that LncLOOM is capable of identifying specific, biologically relevant motifs which are conserved throughout vertebrates and beyond in lncRNAs and 3'UTRs, including novel functional RNA elements in the CHASERR lncRNA that are required for regulation of CHD2 expression. CONCLUSIONS We expect that LncLOOM will become a broadly used approach for the discovery of functionally relevant elements in the noncoding genome.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Aviv Rom
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amit Spinrad
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Dikla Gelbard-Solodkin
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Neta Degani
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|