1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Xue L, Spahn CMT, Schacherl M, Mahamid J. Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells. Nat Struct Mol Biol 2025; 32:257-267. [PMID: 39668257 PMCID: PMC11832420 DOI: 10.1038/s41594-024-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Ribosome-targeting antibiotics represent an important class of antimicrobial drugs. Chloramphenicol (Cm) is a well-studied ribosomal peptidyl transferase center (PTC) binder and growing evidence suggests that its inhibitory action depends on the sequence of the nascent peptide. How such selective inhibition on the molecular scale manifests on the cellular level remains unclear. Here, we use cryo-electron tomography to analyze the impact of Cm inside the bacterium Mycoplasma pneumoniae. By resolving the Cm-bound ribosomes to 3.0 Å, we elucidate Cm's coordination with natural nascent peptides and transfer RNAs in the PTC. We find that Cm leads to the accumulation of a number of translation elongation states, indicating ongoing futile accommodation cycles, and to extensive ribosome collisions. We, thus, suggest that, beyond its direct inhibition of protein synthesis, the action of Cm may involve the activation of cellular stress responses. This work exemplifies how in-cell structural biology can expand the understanding of mechanisms of action for extensively studied antibiotics.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magdalena Schacherl
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
3
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
4
|
Qureshi NS, Duss O. Tracking transcription-translation coupling in real time. Nature 2025; 637:487-495. [PMID: 39633055 PMCID: PMC11711091 DOI: 10.1038/s41586-024-08308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled1-4. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process5-10, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory. Here we reconstitute a complete and active transcription-translation system and develop multi-colour single-molecule fluorescence microscopy experiments to directly and simultaneously track transcription elongation, translation elongation and the physical and functional coupling between the ribosome and the RNAP in real time. Our data show that physical coupling between ribosome and RNAP can occur over hundreds of nucleotides of intervening mRNA by mRNA looping, a process facilitated by NusG. We detect active transcription elongation during mRNA looping and show that NusA-paused RNAPs can be activated by the ribosome by long-range physical coupling. Conversely, the ribosome slows down while colliding with the RNAP. We hereby provide an alternative explanation for how the ribosome can efficiently rescue RNAP from frequent pausing without requiring collisions by a closely trailing ribosome. Overall, our dynamic data mechanistically highlight an example of how two central macromolecular machineries, the ribosome and RNAP, can physically and functionally cooperate to optimize gene expression.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
5
|
Moraes AS, Tatara JM, da Rosa RL, Siqueira FM, Domingues G, Berger M, Guimarães JA, Barth AL, Barth PO, Yates JR, Beys-da-Silva WO, Santi L. Metabolic Reprogramming of Klebsiella pneumoniae Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance. J Proteome Res 2024; 23:4896-4906. [PMID: 39360742 PMCID: PMC11536433 DOI: 10.1021/acs.jproteome.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.
Collapse
Affiliation(s)
- Amanda
Naiara Silva Moraes
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Juliana Miranda Tatara
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Rafael Lopes da Rosa
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Franciele Maboni Siqueira
- Faculty
of Veterinary, Federal University of Rio
Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil
| | | | - Markus Berger
- Center
of Experimental Research, Clinical Hospital
of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
- Tick-Pathogen
Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 20892, United States
| | - Jorge Almeida Guimarães
- Center
of Experimental Research, Clinical Hospital
of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Afonso Luís Barth
- Bacterial
Resistance Research Laboratory, Clinical
Hospital of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Patricia Orlandi Barth
- Bacterial
Resistance Research Laboratory, Clinical
Hospital of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - John R. Yates
- Department
of Molecular Medicine, Scripps Research, La Jolla, California 92037, United States
| | - Walter Orlando Beys-da-Silva
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty
of Pharmacy, Federal University of Rio Grande
do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Lucélia Santi
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty
of Pharmacy, Federal University of Rio Grande
do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
6
|
Delbeau M, Froom R, Landick R, Darst SA, Campbell EA. The yin and yang of the universal transcription factor NusG. Curr Opin Microbiol 2024; 81:102540. [PMID: 39226817 PMCID: PMC11421859 DOI: 10.1016/j.mib.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life. NusG is a multifunctional protein: its N-terminal domain (NGN) binds to RNAP, and its C-terminal KOW domain in bacteria interacts with transcription regulators such as ribosomes and termination factors. In Escherichia coli, NusG acts as an antipausing factor. However, recent studies have revealed that NusG has distinct transcriptional regulatory roles specific to bacterial clades with clinical implications. Here, we focus on NusG's dual roles in the regulation of pausing.
Collapse
Affiliation(s)
- Madeleine Delbeau
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Chauvier A, Dandpat SS, Romero R, Walter NG. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. Nat Commun 2024; 15:3955. [PMID: 38729929 PMCID: PMC11087558 DOI: 10.1038/s41467-024-48409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Intel Corporation, Hillsboro, OR, USA
| | - Rosa Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Bao Y, Cao X, Landick R. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations. Nucleic Acids Res 2024; 52:4556-4574. [PMID: 38554114 PMCID: PMC11077087 DOI: 10.1093/nar/gkae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Transcriptional pausing aids gene regulation by cellular RNA polymerases (RNAPs). A surface-exposed domain inserted into the catalytic trigger loop (TL) of Escherichia coli RNAP, called SI3, modulates pausing and is essential for growth. Here we describe a viable E. coli strain lacking SI3 enabled by a suppressor TL substitution (β'Ala941→Thr; ΔSI3*). ΔSI3* increased transcription rate in vitro relative to ΔSI3, possibly explaining its viability, but retained both positive and negative effects of ΔSI3 on pausing. ΔSI3* inhibited pauses stabilized by nascent RNA structures (pause hairpins; PHs) but enhanced other pauses. Using NET-seq, we found that ΔSI3*-enhanced pauses resemble the consensus elemental pause sequence whereas sequences at ΔSI3*-suppressed pauses, which exhibited greater association with PHs, were more divergent. ΔSI3*-suppressed pauses also were associated with apparent pausing one nucleotide upstream from the consensus sequence, often generating tandem pause sites. These '-2 pauses' were stimulated by pyrophosphate in vitro and by addition of apyrase to degrade residual NTPs during NET-seq sample processing. We propose that some pauses are readily reversible by pyrophosphorolysis or single-nucleotide cleavage. Our results document multiple ways that SI3 modulates pausing in vivo and may explain discrepancies in consensus pause sequences in some NET-seq studies.
Collapse
Affiliation(s)
- Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. Nat Commun 2024; 15:3186. [PMID: 38622114 PMCID: PMC11018626 DOI: 10.1038/s41467-024-47439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tim Luca Selinger
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin, Germany.
| |
Collapse
|
10
|
Zuber PK, Said N, Hilal T, Wang B, Loll B, González-Higueras J, Ramírez-Sarmiento CA, Belogurov GA, Artsimovitch I, Wahl MC, Knauer SH. Concerted transformation of a hyper-paused transcription complex and its reinforcing protein. Nat Commun 2024; 15:3040. [PMID: 38589445 PMCID: PMC11001881 DOI: 10.1038/s41467-024-47368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a β-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.
Collapse
Affiliation(s)
- Philipp K Zuber
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nelly Said
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| | - Stefan H Knauer
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany.
- Bristol-Myers Squibb GmbH & Co. KGaA, Munich, Germany.
| |
Collapse
|
11
|
El Sayyed H, Pambos OJ, Stracy M, Gottesman ME, Kapanidis AN. Single-molecule tracking reveals the functional allocation, in vivo interactions, and spatial organization of universal transcription factor NusG. Mol Cell 2024; 84:926-937.e4. [PMID: 38387461 DOI: 10.1016/j.molcel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
During transcription elongation, NusG aids RNA polymerase by inhibiting pausing, promoting anti-termination on rRNA operons, coupling transcription with translation on mRNA genes, and facilitating Rho-dependent termination. Despite extensive work, the in vivo functional allocation and spatial distribution of NusG remain unknown. Using single-molecule tracking and super-resolution imaging in live E. coli cells, we found NusG predominantly in a chromosome-associated population (binding to RNA polymerase in elongation complexes) and a slowly diffusing population complexed with the 30S ribosomal subunit; the latter provides a "30S-guided" path for NusG into transcription elongation. Only ∼10% of NusG is fast diffusing, with its mobility suggesting non-specific interactions with DNA for >50% of the time. Antibiotic treatments and deletion mutants revealed that chromosome-associated NusG participates mainly in rrn anti-termination within phase-separated transcriptional condensates and in transcription-translation coupling. This study illuminates the multiple roles of NusG and offers a guide on dissecting multi-functional machines via in vivo imaging.
Collapse
Affiliation(s)
- Hafez El Sayyed
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
| | - Oliver J Pambos
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford, UK
| | - Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Achillefs N Kapanidis
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
| |
Collapse
|
12
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
13
|
Walter N, Chauvier A, Dandpat S, Romero R. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. RESEARCH SQUARE 2024:rs.3.rs-3849447. [PMID: 38352525 PMCID: PMC10862961 DOI: 10.21203/rs.3.rs-3849447/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single molecule and bulk approaches, we discovered how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the paradigmatic Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
|
14
|
Jensen D, Ruiz Manzano A, Rector M, Tomko E, Record M, Galburt E. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2023; 51:e99. [PMID: 37739412 PMCID: PMC10602862 DOI: 10.1093/nar/gkad761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α-32P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - M Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| |
Collapse
|
15
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555460. [PMID: 37693585 PMCID: PMC10491184 DOI: 10.1101/2023.08.30.555460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Our electron microscopic structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions, and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirmed that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses revealed that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ would be lethal.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Bing Wang
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tim Luca Selinger
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Irina Artsimovitch
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| |
Collapse
|
16
|
Warner BR, Bundschuh R, Fredrick K. Roles of the leader-trailer helix and antitermination complex in biogenesis of the 30S ribosomal subunit. Nucleic Acids Res 2023; 51:5242-5254. [PMID: 37102690 PMCID: PMC10250234 DOI: 10.1093/nar/gkad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA. Sequences flanking the rRNAs are complementary and form long helices known as leader-trailer helices. Here, we employed an orthogonal translation system to interrogate the functional roles of these RNA elements in 30S subunit biogenesis in Escherichia coli. Mutations that disrupt the leader-trailer helix caused complete loss of translation activity, indicating that this helix is absolutely essential for active subunit formation in the cell. Mutations of boxA also reduced translation activity, but by only 2- to 3-fold, suggesting a smaller role for the antitermination complex. Similarly modest drops in activity were seen upon deletion of either or both of two leader helices, termed here hA and hB. Interestingly, subunits formed in the absence of these leader features exhibited defects in translational fidelity. These data suggest that the antitermination complex and precursor RNA elements help to ensure quality control during ribosome biogenesis.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus,OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Gor K, Duss O. Emerging Quantitative Biochemical, Structural, and Biophysical Methods for Studying Ribosome and Protein-RNA Complex Assembly. Biomolecules 2023; 13:866. [PMID: 37238735 PMCID: PMC10216711 DOI: 10.3390/biom13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosome assembly is one of the most fundamental processes of gene expression and has served as a playground for investigating the molecular mechanisms of how protein-RNA complexes (RNPs) assemble. A bacterial ribosome is composed of around 50 ribosomal proteins, several of which are co-transcriptionally assembled on a ~4500-nucleotide-long pre-rRNA transcript that is further processed and modified during transcription, the entire process taking around 2 min in vivo and being assisted by dozens of assembly factors. How this complex molecular process works so efficiently to produce an active ribosome has been investigated over decades, resulting in the development of a plethora of novel approaches that can also be used to study the assembly of other RNPs in prokaryotes and eukaryotes. Here, we review biochemical, structural, and biophysical methods that have been developed and integrated to provide a detailed and quantitative understanding of the complex and intricate molecular process of bacterial ribosome assembly. We also discuss emerging, cutting-edge approaches that could be used in the future to study how transcription, rRNA processing, cellular factors, and the native cellular environment shape ribosome assembly and RNP assembly at large.
Collapse
Affiliation(s)
- Kavan Gor
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany;
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany;
| |
Collapse
|
18
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
19
|
Hadjeras L, Bouvier M, Canal I, Poljak L, Morin-Ogier Q, Froment C, Burlet-Schlitz O, Hamouche L, Girbal L, Cocaign-Bousquet M, Carpousis AJ. Attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA in ribosome assembly intermediates. PLoS Biol 2023; 21:e3001942. [PMID: 36603027 PMCID: PMC9848016 DOI: 10.1371/journal.pbio.3001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (β- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Marie Bouvier
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Isabelle Canal
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Leonora Poljak
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | | | - Carine Froment
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Odile Burlet-Schlitz
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Agamemnon J. Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
20
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
21
|
Qiu Y, Chu AJ, Tsang TF, Zheng Y, Lam NM, Li KSL, Ip M, Yang X, Ma C. Synthesis and biological evaluation of nusbiarylin derivatives as bacterial rRNA synthesis inhibitor with potent antimicrobial activity against MRSA and VRSA. Bioorg Chem 2022; 124:105863. [DOI: 10.1016/j.bioorg.2022.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/09/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
22
|
Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci 2022; 47:710-724. [DOI: 10.1016/j.tibs.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023]
|
23
|
Fluorogenic RNA aptamers to probe transcription initiation and co-transcriptional RNA folding by multi-subunit RNA polymerases. Methods Enzymol 2022; 675:207-233. [DOI: 10.1016/bs.mie.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Misal SA, Zhao B, Reilly JP. Interpretation of Anomalously Long Crosslinks in Ribosome Crosslinking reveals the ribosome interaction in stationary phase E. coli. RSC Chem Biol 2022; 3:886-894. [PMID: 35866168 PMCID: PMC9257603 DOI: 10.1039/d2cb00101b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Crosslinking mass spectrometry (XL-MS) of bacterial ribosomes revealed the dynamic intra and intermolecular interactions within the ribosome structure. It has been also extended to capture the interactions of ribosome binding...
Collapse
Affiliation(s)
- Santosh A Misal
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Bingqing Zhao
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - James P Reilly
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
25
|
Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc Natl Acad Sci U S A 2021; 118:2109026118. [PMID: 34782462 DOI: 10.1073/pnas.2109026118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.
Collapse
|
26
|
Qayyum MZ, Molodtsov V, Renda A, Murakami KS. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J Biol Chem 2021; 297:101404. [PMID: 34774797 PMCID: PMC8666675 DOI: 10.1016/j.jbc.2021.101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA–RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Renda
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
27
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
28
|
Rodgers ML, Woodson SA. A roadmap for rRNA folding and assembly during transcription. Trends Biochem Sci 2021; 46:889-901. [PMID: 34176739 PMCID: PMC8526401 DOI: 10.1016/j.tibs.2021.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.
Collapse
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
29
|
Abstract
Cellular life depends on transcription of DNA by RNA polymerase to express genetic information. RNA polymerase has evolved not just to read information from DNA and write it to RNA but also to sense and process information from the cellular and extracellular environments. Much of this information processing occurs during transcript elongation, when transcriptional pausing enables regulatory decisions. Transcriptional pauses halt RNA polymerase in response to DNA and RNA sequences and structures at locations and times that help coordinate interactions with small molecules and transcription factors important for regulation. Four classes of transcriptional pause signals are now evident after decades of study: elemental pauses, backtrack pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In this review, I describe current understanding of the molecular mechanisms of these four classes of pause signals, remaining questions about how RNA polymerase responds to pause signals, and the many exciting directions now open to understand pausing and the regulation of transcript elongation on a genome-wide scale. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
30
|
Bergkessel M. Bacterial transcription during growth arrest. Transcription 2021; 12:232-249. [PMID: 34486930 PMCID: PMC8632087 DOI: 10.1080/21541264.2021.1968761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.
Collapse
|
31
|
Mandell ZF, Oshiro RT, Yakhnin AV, Vishwakarma R, Kashlev M, Kearns DB, Babitzke P. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 2021; 10:e61880. [PMID: 33835023 PMCID: PMC8060035 DOI: 10.7554/elife.61880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Reid T Oshiro
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Rishi Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Daniel B Kearns
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
32
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
33
|
Manceau A, Nagy KL, Glatzel P, Bourdineaud JP. Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in Escherichia coli and Bacillus subtilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3612-3623. [PMID: 33629845 DOI: 10.1021/acs.est.0c05202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, MC-186, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Jean-Paul Bourdineaud
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS, UMR 5234, 2 rue Escarpit, 33607 Pessac, France
| |
Collapse
|
34
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Said N, Hilal T, Sunday ND, Khatri A, Bürger J, Mielke T, Belogurov GA, Loll B, Sen R, Artsimovitch I, Wahl MC. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science 2021; 371:eabd1673. [PMID: 33243850 PMCID: PMC7864586 DOI: 10.1126/science.abd1673] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nicholas D Sunday
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ajay Khatri
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Jörg Bürger
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institute of Medical Physics und Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| |
Collapse
|
36
|
Stringer AM, Baniulyte G, Lasek-Nesselquist E, Seed KD, Wade JT. Transcription termination and antitermination of bacterial CRISPR arrays. eLife 2020; 9:e58182. [PMID: 33124980 PMCID: PMC7665894 DOI: 10.7554/elife.58182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of CRISPR-Cas immunity systems is the CRISPR array, a genomic locus consisting of short, repeated sequences ('repeats') interspersed with short, variable sequences ('spacers'). CRISPR arrays are transcribed and processed into individual CRISPR RNAs that each include a single spacer, and direct Cas proteins to complementary sequences in invading nucleic acid. Most bacterial CRISPR array transcripts are unusually long for untranslated RNA, suggesting the existence of mechanisms to prevent premature transcription termination by Rho, a conserved bacterial transcription termination factor that rapidly terminates untranslated RNA. We show that Rho can prematurely terminate transcription of bacterial CRISPR arrays, and we identify a widespread antitermination mechanism that antagonizes Rho to facilitate complete transcription of CRISPR arrays. Thus, our data highlight the importance of transcription termination and antitermination in the evolution of bacterial CRISPR-Cas systems.
Collapse
Affiliation(s)
- Anne M Stringer
- Wadsworth Center, New York State Department of HealthAlbanyUnited States
| | - Gabriele Baniulyte
- Department of Biomedical Sciences, School of Public Health, University at AlbanyAlbanyUnited States
| | | | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph T Wade
- Wadsworth Center, New York State Department of HealthAlbanyUnited States
- Department of Biomedical Sciences, School of Public Health, University at AlbanyAlbanyUnited States
| |
Collapse
|
37
|
Yakhnin AV, Kashlev M, Babitzke P. NusG-dependent RNA polymerase pausing is a frequent function of this universally conserved transcription elongation factor. Crit Rev Biochem Mol Biol 2020; 55:716-728. [PMID: 33003953 DOI: 10.1080/10409238.2020.1828261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in Bacillus subtilis. B. NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in B. subtilis. We describe how pausing in 5' leader regions contributes to regulating the expression of B. subtilis genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|