1
|
Liu S, Vivona ES, Kurre P. Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models. Bioessays 2025; 47:e2400191. [PMID: 39460396 DOI: 10.1002/bies.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E S Vivona
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Gohil D, Roy R. Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging. Int J Mol Sci 2024; 25:13616. [PMID: 39769376 PMCID: PMC11728164 DOI: 10.3390/ijms252413616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway. This study briefly explores the roles of XPF in different pathways to emphasize the importance of XPF in DNA repair. XPF deficiency manifests in various diseases, including cancer, neurodegeneration, and aging-related disorders; it is also associated with conditions such as Xeroderma pigmentosum and fertility issues. By examining the molecular mechanisms and pathological consequences linked to XPF dysfunction, this study aims to elucidate the crucial role of XPF in genomic stability as a repair protein in BER and provide perspectives regarding its potential as a therapeutic target in related diseases.
Collapse
Affiliation(s)
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
3
|
Li L. Transcription reprogramming and endogenous DNA damage. DNA Repair (Amst) 2024; 142:103754. [PMID: 39232366 DOI: 10.1016/j.dnarep.2024.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.
Collapse
Affiliation(s)
- Lei Li
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
4
|
Lu Y, Travnickova J, Badonyi M, Rambow F, Coates A, Khan Z, Marques J, Murphy LC, Garcia-Martinez P, Marais R, Louphrasitthiphol P, Chan AHY, Schofield CJ, von Kriegsheim A, Marsh JA, Pavet V, Sansom OJ, Illingworth RS, Patton EE. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep 2024; 43:114406. [PMID: 38963759 PMCID: PMC11290356 DOI: 10.1016/j.celrep.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.
Collapse
Affiliation(s)
- Yuting Lu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; University of Duisburg-Essen, 45141 Essen, Germany
| | - Andrea Coates
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Zaid Khan
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jair Marques
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pablo Garcia-Martinez
- Insitute of Genetics and Cancer, The Univeristy of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Oncodrug Ltd, Alderley Park, Macclesfield SK10 4TG, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alex H Y Chan
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Valeria Pavet
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
5
|
Woo AYH, Jia L. ALDH2 mutations and defense against genotoxic aldehydes in cancer and inherited bone marrow failure syndromes. Mutat Res 2024; 829:111870. [PMID: 38944932 DOI: 10.1016/j.mrfmmm.2024.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Reactive aldehydes, for instance, formaldehyde and acetaldehyde, are important endogenous or environmental mutagens by virtue of their abilities to produce a DNA lesion called interstrand crosslink (ICL). Aldehyde-metabolizing enzymes such as aldehyde dehydrogenases (ALDHs) and the Fanconi anemia (FA) pathway constitute the main defense lines against aldehyde-induced genotoxicity. Biallelic mutations of genes in any one of the FA complementation groups can impair the ICL repair mechanism and cause FA, a heterogeneous disorder manifested by bone marrow failure (BMF), congenital abnormality and a strong predisposition to cancer. The defective ALDH2 polymorphism rs671 (ALDH2*2) is a known risk and prognostic factor for alcohol drinking-associated cancers. Recent studies suggest that it also promotes BMF and cancer development in FA, and its combination with alcohol dehydrogenase 5 (ADH5) mutations causes aldehyde degradation deficiency syndrome (ADDS), also known by its symptoms as aplastic anemia, mental retardation, and dwarfism syndrome. ALDH2*2 and another pathogenic variant in the alcohol-metabolizing pathway, ADH1B1*1, is prevalent among East Asians. Also, other ALDH2 genotypes with disease-modifying potentials have lately been identified in different populations. Therefore, it would be appropriate to summarize current knowledge of genotoxic aldehydes and defense mechanisms against them to shed new light on the pathogenic effects of ALDH2 variants together with other genetic and environmental modifiers on cancer and inherited BMF syndromes. Lastly, we also presented potential treatment strategies for FA, ADDS and cancer based on the manipulation of aldehyde-induced genotoxicity.
Collapse
Affiliation(s)
- Anthony Yiu-Ho Woo
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Lina Jia
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
6
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
7
|
Mu A, Hira A, Mori M, Okamoto Y, Takata M. Fanconi anemia and Aldehyde Degradation Deficiency Syndrome: Metabolism and DNA repair protect the genome and hematopoiesis from endogenous DNA damage. DNA Repair (Amst) 2023; 130:103546. [PMID: 37572579 DOI: 10.1016/j.dnarep.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
We have identified a set of Japanese children with hypoplastic anemia caused by combined defects in aldehyde degrading enzymes ADH5 and ALDH2. Their clinical characteristics overlap with a hereditary DNA repair disorder, Fanconi anemia. Our discovery of this disorder, termed Aldehyde Degradation Deficiency Syndrome (ADDS), reinforces the notion that endogenously generated aldehydes exert genotoxic effects; thus, the coupled actions of metabolism and DNA repair are required to maintain proper hematopoiesis and health.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Middelkamp S, Manders F, Peci F, van Roosmalen MJ, González DM, Bertrums EJ, van der Werf I, Derks LL, Groenen NM, Verheul M, Trabut L, Pleguezuelos-Manzano C, Brandsma AM, Antoniou E, Reinhardt D, Bierings M, Belderbos ME, van Boxtel R. Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox. CELL GENOMICS 2023; 3:100389. [PMID: 37719152 PMCID: PMC10504672 DOI: 10.1016/j.xgen.2023.100389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023]
Abstract
Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Flavia Peci
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Diego Montiel González
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eline J.M. Bertrums
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Inge van der Werf
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L.M. Derks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Niels M. Groenen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Arianne M. Brandsma
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
9
|
Tang X, Zhao S, Liu J, Liu X, Sha X, Huang C, Hu L, Sun S, Gao Y, Chen H, Zhang Z, Wang D, Gu Y, Chen S, Wang L, Gu A, Chen F, Pu J, Chen X, Yu B, Xie L, Huang Z, Han Y, Ji Y. Mitochondrial GSNOR Alleviates Cardiac Dysfunction via ANT1 Denitrosylation. Circ Res 2023; 133:220-236. [PMID: 37377022 DOI: 10.1161/circresaha.123.322654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Jieqiong Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xiameng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xinqi Sha
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Changgao Huang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Lulu Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Yuexi Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital (S.C.), Nanjing Medical University, Jiangsu, China
| | - Liansheng Wang
- Department of Cardiology (L.W.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health (A.G.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Forensic Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, China (J.P.)
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital (X.C.), Nanjing Medical University, Jiangsu, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Ministry of Education (B.Y.), Harbin Medical University, Heilongjiang, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Yi Han
- Department of Geriatrics (Y.H.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| |
Collapse
|
10
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
11
|
Feurstein S. Emerging bone marrow failure syndromes- new pieces to an unsolved puzzle. Front Oncol 2023; 13:1128533. [PMID: 37091189 PMCID: PMC10119586 DOI: 10.3389/fonc.2023.1128533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Inherited bone marrow failure (BMF) syndromes are genetically diverse - more than 100 genes have been associated with those syndromes and the list is rapidly expanding. Risk assessment and genetic counseling of patients with recently discovered BMF syndromes is inherently difficult as disease mechanisms, penetrance, genotype-phenotype associations, phenotypic heterogeneity, risk of hematologic malignancies and clonal markers of disease progression are unknown or unclear. This review aims to shed light on recently described BMF syndromes with sparse concise data and with an emphasis on those associated with germline variants in ADH5/ALDH2, DNAJC21, ERCC6L2 and MECOM. This will provide important data that may help to individualize and improve care for these patients.
Collapse
|
12
|
Li N, Xu Y, Chen H, Chen L, Zhang Y, Yu T, Yao R, Chen J, Fu Q, Zhou J, Wang J. NEIL3 contributes to the Fanconi anemia/BRCA pathway by promoting the downstream double-strand break repair step. Cell Rep 2022; 41:111600. [PMID: 36351389 DOI: 10.1016/j.celrep.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Interstrand crosslinks (ICLs) repair by the canonical Fanconi anemia (FA) pathway generates double-strand breaks (DSBs), which are subsequently repaired by the homologous recombination (HR) pathway. Recent studies show that the NEIL3 DNA glycosylase repairs psoralen-ICLs by direct unhooking. However, whether and how NEIL3 regulates MMC and cisplatin-ICL repair remains unclear. Here we show that NEIL3 participates in DSB repair step of ICL repair by promoting HR pathway. Mechanistically, NEIL3 is recruited to the DSB sites through its GRF zinc finger motifs. NEIL3 interacts with the DSB resection machinery, including CtIP, the MRE11-RAD50-NBS1 (MRN) complex, and DNA2, which is mediated by the GRF zinc finger motifs. In addition, NEIL3 is necessary for the chromatin recruitment of the resection machinery, and depletion of NEIL3 decreases end resection and compromises HR. Taken together, our results show that NEIL3 plays an important role in MMC/cisplatin-ICL repair by promoting the HR step in FA/BRCA pathway.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongzhu Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| |
Collapse
|
13
|
Mori T, Okamoto Y, Mu A, Ide Y, Yoshimura A, Senda N, Inagaki‐Kawata Y, Kawashima M, Kitao H, Tokunaga E, Miyoshi Y, Ohsumi S, Tsugawa K, Ohta T, Katagiri T, Ohtsuru S, Koike K, Ogawa S, Toi M, Iwata H, Nakamura S, Matsuo K, Takata M. Lack of impact of the
ALDH2
rs671 variant on breast cancer development in Japanese
BRCA1
/2‐mutation carriers. Cancer Med 2022; 12:6594-6602. [PMID: 36345163 PMCID: PMC10067083 DOI: 10.1002/cam4.5430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The aldehyde degrading function of the ALDH2 enzyme is impaired by Glu504Lys polymorphisms (rs671, termed A allele), which causes alcohol flushing in east Asians, and elevates the risk of esophageal cancer among habitual drinkers. Recent studies suggested that the ALDH2 variant may lead to higher levels of DNA damage caused by endogenously generated aldehydes. This can be a threat to genome stability and/or cell viability in a synthetic manner in DNA repair-defective settings such as Fanconi anemia (FA). FA is an inherited bone marrow failure syndrome caused by defects in any one of so far identified 22 FANC genes including hereditary breast and ovarian cancer (HBOC) genes BRCA1 and BRCA2. We have previously reported that the progression of FA phenotypes is accelerated with the ALDH2 rs671 genotype. Individuals with HBOC are heterozygously mutated in either BRCA1 or BRCA2, and the cancer-initiating cells in these patients usually undergo loss of the wild-type BRCA1/2 allele, leading to homologous recombination defects. Therefore, we hypothesized that the ALDH2 genotypes may impact breast cancer development in BRCA1/2 mutant carriers. We genotyped ALDH2 in 103 HBOC patients recruited from multiple cancer centers in Japan. However, we were not able to detect any significant differences in clinical stages, histopathological classification, or age at clinical diagnosis across the ALDH2 genotypes. Unlike the effects in hematopoietic cells of FA, our current data suggest that there is no impact of the loss of ALDH2 function in cancer initiation and development in breast epithelium of HBOC patients.
Collapse
Affiliation(s)
- Tomoharu Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies Radiation Biology Center Graduate School of Biostudies, Kyoto University Kyoto Japan
- Department of Primary Care and Emergency Medicine Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies Radiation Biology Center Graduate School of Biostudies, Kyoto University Kyoto Japan
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies Radiation Biology Center Graduate School of Biostudies, Kyoto University Kyoto Japan
| | - Yoshimi Ide
- Division of Breast Surgical Oncology Showa University School of Medicine Tokyo Japan
- Department of Breast Surgery Kikuna Memorial Hospital Yokohama Japan
| | - Akiyo Yoshimura
- Department of Breast Oncology Aichi Cancer Center Hospital Nagoya Japan
| | - Noriko Senda
- Department of Breast Surgery Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yukiko Inagaki‐Kawata
- Department of Breast Surgery Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masahiro Kawashima
- Department of Breast Surgery Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka Japan
| | - Eriko Tokunaga
- Department of Breast Oncology National Hospital Organization Kyushu Cancer Center Fukuoka Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery Department of Surgery, Hyogo College of Medicine Hyogo Japan
| | - Shozo Ohsumi
- Department of Breast Oncology National Hospital Organization Shikoku Cancer Center Matsuyama Ehime Japan
| | - Koichiro Tsugawa
- Division of Breast and Endocrine Surgery, Department of Surgery St. Marianna University School of Medicine Kawasaki Kanagawa Japan
| | - Tomohiko Ohta
- Department of Translational Oncology St. Marianna University Graduate School of Medicine Kawasaki Kanagawa Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine Institute of Advanced Medical Sciences Tokushima University Tokushima Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Kaoru Koike
- Department of Primary Care and Emergency Medicine Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology Graduate School of Medicine Kyoto University Kyoto Japan
- Department of Medicine Center for Hematology and Regenerative Medicine Karolinska Institute Solna Sweden
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi) Kyoto University Kyoto Japan
| | - Masakazu Toi
- Department of Breast Surgery Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hiroji Iwata
- Department of Breast Oncology Aichi Cancer Center Hospital Nagoya Japan
| | - Seigo Nakamura
- Department of Breast Surgery Kikuna Memorial Hospital Yokohama Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention Aichi Cancer Center Research Institute Nagoya Aichi Japan
- Division of Cancer Epidemiology Nagoya University Graduate School of Medicine Nagoya Aichi Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies Radiation Biology Center Graduate School of Biostudies, Kyoto University Kyoto Japan
| |
Collapse
|
14
|
Abstract
Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.
Collapse
|
15
|
Brunsdon H, Brombin A, Peterson S, Postlethwait JH, Patton EE. Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development 2022; 149:275182. [PMID: 35485397 PMCID: PMC9188749 DOI: 10.1242/dev.200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
Melanocyte stem cells (McSCs) in zebrafish serve as an on-demand source of melanocytes during growth and regeneration, but metabolic programs associated with their activation and regenerative processes are not well known. Here, using live imaging coupled with scRNA-sequencing, we discovered that, during regeneration, quiescent McSCs activate a dormant embryonic neural crest transcriptional program followed by an aldehyde dehydrogenase (Aldh) 2 metabolic switch to generate progeny. Unexpectedly, although ALDH2 is well known for its aldehyde-clearing mechanisms, we find that, in regenerating McSCs, Aldh2 activity is required to generate formate – the one-carbon (1C) building block for nucleotide biosynthesis – through formaldehyde metabolism. Consequently, we find that disrupting the 1C cycle with low doses of methotrexate causes melanocyte regeneration defects. In the absence of Aldh2, we find that purines are the metabolic end product sufficient for activated McSCs to generate progeny. Together, our work reveals McSCs undergo a two-step cell state transition during regeneration, and that the reaction products of Aldh2 enzymes have tissue-specific stem cell functions that meet metabolic demands in regeneration. Summary: In zebrafish melanocyte regeneration, quiescent McSCs respond by re-expressing a neural crest identity, followed by an Aldh2-dependent metabolic switch to generate progeny.
Collapse
Affiliation(s)
- Hannah Brunsdon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Samuel Peterson
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
16
|
Wang M, Dingler FA, Patel KJ. Genotoxic aldehydes in the hematopoietic system. Blood 2022; 139:2119-2129. [PMID: 35148375 DOI: 10.1182/blood.2019004316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive aldehydes are potent genotoxins that threaten the integrity of hematopoietic stem cells and blood production. To protect against aldehydes, mammals have evolved a family of enzymes to detoxify aldehydes, and the Fanconi anemia DNA repair pathway to process aldehyde-induced DNA damage. Loss of either protection mechanisms in humans results in defective hematopoiesis and predisposition to leukemia. This review will focus on the impact of genotoxic aldehydes on hematopoiesis, the sources of endogenous aldehydes, and potential novel protective pathways.
Collapse
Affiliation(s)
- Meng Wang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Haematology and
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom; and
| | - Felix A Dingler
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - K J Patel
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Umansky C, Morellato AE, Rieckher M, Scheidegger MA, Martinefski MR, Fernández GA, Pak O, Kolesnikova K, Reingruber H, Bollini M, Crossan GP, Sommer N, Monge ME, Schumacher B, Pontel LB. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat Commun 2022; 13:745. [PMID: 35136057 PMCID: PMC8827065 DOI: 10.1038/s41467-022-28242-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.
Collapse
Affiliation(s)
- Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Marco A Scheidegger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gabriela A Fernández
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ksenia Kolesnikova
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Hernán Reingruber
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
18
|
[Research progress of Fanconi anemia and DNA interstrand crosslink repair]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:173-176. [PMID: 35381685 PMCID: PMC8980637 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
20
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
21
|
Du Y, Zhang Y, Huang M, Wang S, Wang J, Liao K, Wu X, Zhou Q, Zhang X, Wu YD, Peng T. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem Sci 2021; 12:13857-13869. [PMID: 34760171 PMCID: PMC8549814 DOI: 10.1039/d1sc04387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biological processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiological and pathological relevance and functions of FA, fluorescent probes for FA imaging in live biological samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theoretical calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-infrared probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chemical tools for fluorescence imaging and biological investigation of FA in living systems.
Collapse
Affiliation(s)
- Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
22
|
Nadalutti CA, Prasad R, Wilson SH. Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair (Amst) 2021; 105:103134. [PMID: 34116475 PMCID: PMC9014805 DOI: 10.1016/j.dnarep.2021.103134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/15/2022]
Abstract
Maintaining genome stability involves coordination between different subcellular compartments providing cells with DNA repair systems that safeguard against environmental and endogenous stresses. Organisms produce the chemically reactive molecule formaldehyde as a component of one-carbon metabolism, and cells maintain systems to regulate endogenous levels of formaldehyde under physiological conditions, preventing genotoxicity, among other adverse effects. Dysregulation of formaldehyde is associated with several diseases, including cancer and neurodegenerative disorders. In the present review, we discuss the complex topic of endogenous formaldehyde metabolism and summarize advances in research on fo dysregulation, along with future research perspectives.
Collapse
Affiliation(s)
- Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
24
|
Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nat Struct Mol Biol 2021; 28:487-500. [PMID: 34117478 DOI: 10.1038/s41594-021-00602-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Collapse
|
25
|
|
26
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
27
|
Tan W, Deans AJ. Formaldehyde Causes Bone Marrow Failure Linked to Transcriptional Reprogramming or Metabolic Deficiency. Mol Cell 2021; 80:935-937. [PMID: 33338408 DOI: 10.1016/j.molcel.2020.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two new studies in this issue of Molecular Cell demonstrate that bone marrow failure, in mice and humans, can be induced by formaldehyde generated either from defective metabolism (Dingler et al., 2020) or during the process of transcriptional reprogramming (Shen et al., 2020).
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|