1
|
Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J. Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic. Cell 2025; 188:2465-2479.e14. [PMID: 40168993 DOI: 10.1016/j.cell.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Ring-like structural maintenance of chromosome (SMC) complexes are crucial for genome organization and operate through mechanisms of DNA entrapment and loop extrusion. Here, we explore the DNA loading process of the bacterial SMC complex MukBEF. Using cryoelectron microscopy (cryo-EM), we demonstrate that ATP binding opens one of MukBEF's three potential DNA entry gates, exposing a DNA capture site that positions DNA at the open neck gate. We discover that the gp5.9 protein of bacteriophage T7 blocks this capture site by DNA mimicry, thereby preventing DNA loading and inactivating MukBEF. We propose a comprehensive and unidirectional loading mechanism in which DNA is first captured at the complex's periphery and then ingested through the DNA entry gate, powered by a single cycle of ATP hydrolysis. These findings illuminate a fundamental aspect of how ubiquitous DNA organizers are primed for genome maintenance and demonstrate how this process can be disrupted by viruses.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | - Bryony Clifton
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Sophie Koekemoer
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Oliver J Wilkinson
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Mark S Dillingham
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
2
|
Peng F, Giacomelli G, Meyer F, Linder M, Haak M, Rückert-Reed C, Weiß M, Kalinowski J, Bramkamp M. Early onset of septal FtsK localization allows for efficient DNA segregation in SMC-deleted Corynebacterium glutamicum strains. mBio 2025; 16:e0285924. [PMID: 39873485 PMCID: PMC11898615 DOI: 10.1128/mbio.02859-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of smc causes severe growth phenotypes in many organisms. Surprisingly, smc can be deleted in Corynebacterium glutamicum, a member of the Actinomycetota phylum, without any apparent growth phenotype. SMC in C. glutamicum is loaded in a ParB-dependent fashion to the chromosome and functions in replichore cohesion. The unexpected absence of a growth phenotype in the smc mutant prompted us to screen for synthetic interactions within C. glutamicum. We generated a high-density Tn5 library from wild-type and smc-deleted C. glutamicum strains. Transposon sequencing data revealed that the DNA translocase FtsK is essential in an smc-deletion strain. In wild-type cells, FtsK localized to the septa and cell poles, showing polar enrichment during the earlier stages of the life cycle and relocating to the septum in the later stages. However, deletion of smc resulted in an earlier onset of pole-to-septum FtsK relocation, suggesting that prolonged FtsK complex activity is both required and sufficient to compensate for the absence of SMC, thus achieving efficient chromosome segregation in C. glutamicum. Deletion of ParB increases SMC and FtsK mobility. While the change in SMC dynamics aligns with previous data showing ParB's role in SMC loading on DNA, the change in FtsK mobility suggests defects in chromosome segregation. Based on our data, we propose an efficient mechanism for reliable DNA segregation in the absence of replichore arm cohesion in smc mutant cells.IMPORTANCEFaithful DNA segregation is of fundamental importance for life. Bacteria have developed efficient systems to coordinate chromosome compaction, DNA segregation, and cell division. A key factor in DNA compaction is the SMC complex that is found to be essential in many bacteria. In members of the Actinomycetota, smc is dispensable, but the reason for the lack of an smc phenotype in these bacteria remained unclear. We show here that the divisome-associated DNA pump FtsK can compensate for SMC loss and the subsequent loss in correct chromosome organization. In cells with distorted chromosomes, FtsK is recruited and stabilized earlier to the septum, allowing for DNA segregation for a larger part of the cell cycle, until chromosomes are segregated.
Collapse
Affiliation(s)
- Feng Peng
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fabian Meyer
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marten Linder
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Markus Haak
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert-Reed
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Manuela Weiß
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
3
|
Ponndara S, Kortebi M, Boccard F, Bury‐Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2025; 123:195-205. [PMID: 38922728 PMCID: PMC11894783 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Stéphanie Bury‐Moné
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Virginia S. Lioy
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Liao Q, Brandão HB, Ren Z, Wang X. Replisomes restrict SMC-mediated DNA-loop extrusion in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639750. [PMID: 40027636 PMCID: PMC11870623 DOI: 10.1101/2025.02.23.639750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize genomes by extruding DNA loops, while replisomes duplicate entire chromosomes. These essential molecular machines must collide frequently in every cell cycle, yet how such collisions are resolved in vivo remains poorly understood. Taking advantage of the ability to load SMC complexes at defined sites in the Bacillus subtilis genome, we engineered head-on and head-to-tail collisions between SMC complexes and the replisome. Replisome progression was monitored by marker frequency analysis, and SMC translocation was monitored by time-resolved ChIP-seq and Hi-C. We found that SMC complexes do not impede replisome progression. By contrast, replisomes restrict SMC translocation regardless of collision orientations. Combining experimental data with simulations, we determined that SMC complexes are blocked by the replisome and then released from the chromosome. Occasionally, SMC complexes can bypass the replisome and continue translocating. Our findings establish that the replisome is a barrier to SMC-mediated DNA-loop extrusion in vivo , with implications for processes such as chromosome segregation, DNA repair, and gene regulation that require dynamic chromosome organization in all organisms.
Collapse
|
5
|
Izquierdo-Martinez A, Schäper S, Brito AD, Liao Q, Tesseur C, Sorg M, Botinas DS, Wang X, Pinho MG. Chromosome segregation dynamics during the cell cycle of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638847. [PMID: 40027834 PMCID: PMC11870517 DOI: 10.1101/2025.02.18.638847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Research on chromosome organization and cell cycle progression in spherical bacteria, particularly Staphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics in S. aureus using a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that the S. aureus cell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the "cell poles". We further used this system to assess the role of various proteins with a role in S. aureus chromosome biology, focusing on the ParB-parS and SMC-ScpAB systems. Our results demonstrate that ParB binds five parS chromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role in S. aureus chromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division-Noc, FtsK, SpoIIIE and XerC-on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization in S. aureus, contributing to our knowledge on chromosome biology of spherical bacteria.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Qin Liao
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Coralie Tesseur
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniela S. Botinas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Yamaura K, Takemata N, Kariya M, Osaka A, Ishino S, Yamauchi M, Tamura T, Hamachi I, Takada S, Ishino Y, Atomi H. Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure. Nat Commun 2025; 16:1312. [PMID: 39971902 PMCID: PMC11840125 DOI: 10.1038/s41467-025-56197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
In eukaryotes, structural maintenance of chromosomes (SMC) complexes form topologically associating domains (TADs) by extruding DNA loops and being stalled by roadblock proteins. It remains unclear whether a similar mechanism of domain formation exists in prokaryotes. Using high-resolution chromosome conformation capture sequencing, we show that an archaeal homolog of the bacterial Smc-ScpAB complex organizes the genome of Thermococcus kodakarensis into TAD-like domains. We find that TrmBL2, a nucleoid-associated protein that forms a stiff nucleoprotein filament, stalls the T. kodakarensis SMC complex and establishes a boundary at the site-specific recombination site dif. TrmBL2 stalls the SMC complex at tens of additional non-boundary loci with lower efficiency. Intriguingly, the stalling efficiency is correlated with structural properties of underlying DNA sequences. Our study illuminates a eukaryotic-like mechanism of domain formation in archaea and a role of intrinsic DNA structure in large-scale genome organization.
Collapse
Affiliation(s)
- Kodai Yamaura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Naomichi Takemata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Masashi Kariya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayami Osaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Cell Biology Center, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Pinho MG, Foster SJ. Cell Growth and Division of Staphylococcus aureus. Annu Rev Microbiol 2024; 78:293-310. [PMID: 39565951 DOI: 10.1146/annurev-micro-041222-125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
Collapse
Affiliation(s)
- Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal;
| | - Simon J Foster
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom;
| |
Collapse
|
9
|
Han W, Wei D, Sun Z, Qu D. Investigating the mechanism of rough phenotype in a naturally attenuated Brucella strain: insights from whole genome sequencing. Front Med (Lausanne) 2024; 11:1363785. [PMID: 38711779 PMCID: PMC11073494 DOI: 10.3389/fmed.2024.1363785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Brucellosis, a significant zoonotic disease, not only impacts animal health but also profoundly influences the host immune responses through gut microbiome. Our research focuses on whole genome sequencing and comparative genomic analysis of these Brucella strains to understand the mechanisms of their virulence changes that may deepen our comprehension of the host immune dysregulation. Methods The Brucella melitensis strain CMCC55210 and its naturally attenuated variant CMCC55210a were used as models. Biochemical identification tests and in vivo experiments in mice verified the characteristics of the strain. To understand the mechanism of attenuation, we then performed de novo sequencing of these two strains. Results We discovered notable genomic differences between the two strains, with a key single nucleotide polymorphism (SNP) mutation in the manB gene potentially altering lipopolysaccharide (LPS) structure and influencing host immunity to the pathogen. This mutation might contribute to the attenuated strain's altered impact on the host's macrophage immune response, overing insights into the mechanisms of immune dysregulation linked to intracellular survival. Furthermore, we explore that manipulating the Type I restriction-modification system in Brucella can significantly impact its genome stability with the DNA damage response, consequently affecting the host's immune system. Conclusion This study not only contributes to understanding the complex relationship between pathogens, and the immune system but also opens avenues for innovative therapeutic interventions in inflammatory diseases driven by microbial and immune dysregulation.
Collapse
Affiliation(s)
- Wendong Han
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong Wei
- Division of Tuberculosis Vaccines and Allergen, National Institute for Food and Drug Control, Beijing, China
| | - Zhiping Sun
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Qu
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
11
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
12
|
Seba M, Boccard F, Duigou S. Activity of MukBEF for chromosome management in E. coli and its inhibition by MatP. eLife 2024; 12:RP91185. [PMID: 38315099 PMCID: PMC10945525 DOI: 10.7554/elife.91185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes share conserved structures and serve a common role in maintaining chromosome architecture. In the bacterium Escherichia coli, the SMC complex MukBEF is necessary for rapid growth and the accurate segregation and positioning of the chromosome, although the specific molecular mechanisms involved are still unknown. Here, we used a number of in vivo assays to reveal how MukBEF controls chromosome conformation and how the MatP/matS system prevents MukBEF activity. Our results indicate that the loading of MukBEF occurs preferentially on newly replicated DNA, at multiple loci on the chromosome where it can promote long-range contacts in cis even though MukBEF can promote long-range contacts in the absence of replication. Using Hi-C and ChIP-seq analyses in strains with rearranged chromosomes, the prevention of MukBEF activity increases with the number of matS sites and this effect likely results from the unloading of MukBEF by MatP. Altogether, our results reveal how MukBEF operates to control chromosome folding and segregation in E. coli.
Collapse
Affiliation(s)
- Mohammed Seba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Duigou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Brady A, Cabello-Yeves E, Gallego Del Sol F, Chmielowska C, Mancheño-Bonillo J, Zamora-Caballero S, Omer SB, Torres-Puente M, Eldar A, Quiles-Puchalt N, Marina A, Penadés JR. Characterization of a unique repression system present in arbitrium phages of the SPbeta family. Cell Host Microbe 2023; 31:2023-2037.e8. [PMID: 38035880 DOI: 10.1016/j.chom.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPβ, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPβ-like phages in making lysis-lysogeny decisions.
Collapse
Affiliation(s)
- Aisling Brady
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Elena Cabello-Yeves
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Cora Chmielowska
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Javier Mancheño-Bonillo
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Shira Bendori Omer
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca 46115, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
14
|
Yáñez-Cuna FO, Koszul R. Insights in bacterial genome folding. Curr Opin Struct Biol 2023; 82:102679. [PMID: 37604045 DOI: 10.1016/j.sbi.2023.102679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Chromosomes in all domains of life are well-defined structural entities with complex hierarchical organization. The regulation of this hierarchical organization and its functional interplay with gene expression or other chromosome metabolic processes such as repair, replication, or segregation is actively investigated in a variety of species, including prokaryotes. Bacterial chromosomes are typically gene-dense with few non-coding sequences and are organized into the nucleoid, a membrane-less compartment composed of DNA, RNA, and proteins (nucleoid-associated proteins or NAPs). The continuous improvement of imaging and genomic methods has put the organization of these Mb-long molecules at reach, allowing to disambiguate some of their highly dynamic properties and intertwined structural features. Here we review and discuss some of the recent advances in the field of bacterial chromosome organization.
Collapse
Affiliation(s)
- Fares Osam Yáñez-Cuna
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
15
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Borrie MS, Kraycer PM, Gartenberg MR. Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo. Mol Cell Biol 2023; 43:254-268. [PMID: 37178128 PMCID: PMC10251789 DOI: 10.1080/10985549.2023.2199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.
Collapse
Affiliation(s)
- Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul M. Kraycer
- Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Member of The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
18
|
Roberts DM. A new role for monomeric ParA/Soj in chromosome dynamics in Bacillus subtilis. Microbiologyopen 2023; 12:e1344. [PMID: 36825885 PMCID: PMC9841721 DOI: 10.1002/mbo3.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
ParABS (Soj-Spo0J) systems were initially implicated in plasmid and chromosome segregation in bacteria. However, it is now increasingly understood that they play multiple roles in cell cycle events in Bacillus subtilis, and possibly other bacteria. In a recent study, monomeric forms of ParA/Soj have been implicated in regulating aspects of chromosome dynamics during B. subtilis sporulation. In this commentary, I will discuss the known roles of ParABS systems, explore why sporulation is a valuable model for studying these proteins, and the new insights into the role of monomeric ParA/Soj. Finally, I will touch upon some of the future work that remains.
Collapse
|
19
|
Roberts DM, Anchimiuk A, Kloosterman TG, Murray H, Wu LJ, Gruber S, Errington J. Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by monomeric Soj/ParA during growth and sporulation. Proc Natl Acad Sci U S A 2022; 119:e2204042119. [PMID: 36206370 PMCID: PMC9564211 DOI: 10.1073/pnas.2204042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.
Collapse
Affiliation(s)
- David M. Roberts
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Anna Anchimiuk
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Tomas G. Kloosterman
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| |
Collapse
|
20
|
Liao Q, Ren Z, Wiesler EE, Fuqua C, Wang X. A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Curr Biol 2022; 32:3609-3618.e7. [PMID: 35797999 PMCID: PMC9398967 DOI: 10.1016/j.cub.2022.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022]
Abstract
Unlike eukaryotes and archaea, which have multiple replication origins on their chromosomes, bacterial chromosomes usually contain a single replication origin.1 Here, we discovered a dicentric bacterial chromosome with two replication origins, which has resulted from the fusion of the circular and linear chromosomes in Agrobacterium tumefaciens. The fused chromosome is well tolerated, stably maintained, and retains similar subcellular organization and genome-wide DNA interactions found for the bipartite chromosomes. Strikingly, the two replication origins and their partitioning systems are both functional and necessary for cell survival. Finally, we discovered that the site-specific recombinases XerC and XerD2 are essential in cells harboring the fused chromosome but not in cells with bipartite chromosomes. Analysis of actively dividing cells suggests a model in which XerC/D are required to recombine the sister fusion chromosomes when the two centromeres on the same chromosome are segregated to opposite cell poles. Thus, faithful segregation of dicentric chromosomes in bacteria can occur because of site-specific recombination between the sister chromatids during chromosome partitioning. Our study provides a natural comparative platform to examine a bacterial chromosome with multiple origins and a possible explanation for the fundamental difference in bacterial genome architecture relative to eukaryotes and archaea.1.
Collapse
Affiliation(s)
- Qin Liao
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Emma E Wiesler
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Xindan Wang
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA.
| |
Collapse
|
21
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
22
|
Comparative Genomics Revealed Wide Intra-Species Genetic Heterogeneity and Lineage-Specific Genes of Akkermansia muciniphila. Microbiol Spectr 2022; 10:e0243921. [PMID: 35536024 PMCID: PMC9241678 DOI: 10.1128/spectrum.02439-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Akkermansia muciniphila has potential as a next-generation probiotic, but few previous studies attempted to analyze its intraspecies population diversity. In this study, we performed a comparative genomic analysis of 112 filtered genomes from the NCBI database. The populations formed three clades (A-C) on the phylogenetic tree, suggesting the existence of three genetic lineages though clades B and C were phylogenetically closer than clade A. The three clades also showed geographic-based clustering, different genetic characteristics, and clade-specific genes. Two putative functional genes (RecD2 and xerD) were specific to clade C due to genomic islands. These lineage-specific genes might be associated with differences in genomic features (number of phages/genomic islands, pan-core genome, recombination rate, genetic diversity) between genetic lineages. The carbohydrate utilization gene profile (particularly for glycolytic hydrolases and carbohydrate esterases) also varied between clades, suggesting different carbohydrate metabolism potential/requirements between genetic lineages. Our findings provide important implications for future research on A. muciniphila. IMPORTANCEAkkermansia muciniphila has been widely accepted as part of the next generation of probiotics. However, most current studies on A. muciniphila have focused on the application of type strain BAA835T in the treatment of diseases, while few studies have reported on the genomic specificity, population structure, and functional characteristics of A. muciniphila species. By comparing the genomes of 112 strains from NCBI which met the quality control conditions, we found that the A. muciniphila population could be divided into three main clades (clades A to C) and presented a certain regional aggregation. There are significant differences among the three clades in their genetic characteristics and functional genes (the type strain BAA835T was located in clade A), especially in genes related to carbohydrate metabolism. It should be mentioned that probiotics should be a concept at the strain level rather than at the gut species level, so the probiotic properties of A. muciniphila need to be carefully interpreted.
Collapse
|
23
|
Dugar G, Hofmann A, Heermann DW, Hamoen LW. A chromosomal loop anchor mediates bacterial genome organization. Nat Genet 2022; 54:194-201. [PMID: 35075232 DOI: 10.1038/s41588-021-00988-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
Nucleoprotein complexes play an integral role in genome organization of both eukaryotes and prokaryotes. Apart from their role in locally structuring and compacting DNA, several complexes are known to influence global organization by mediating long-range anchored chromosomal loop formation leading to spatial segregation of large sections of DNA. Such megabase-range interactions are ubiquitous in eukaryotes, but have not been demonstrated in prokaryotes. Here, using a genome-wide sedimentation-based approach, we found that a transcription factor, Rok, forms large nucleoprotein complexes in the bacterium Bacillus subtilis. Using chromosome conformation capture and live-imaging of DNA loci, we show that these complexes robustly interact with each other over large distances. Importantly, these Rok-dependent long-range interactions lead to anchored chromosomal loop formation, thereby spatially isolating large sections of DNA, as previously observed for insulator proteins in eukaryotes.
Collapse
Affiliation(s)
- Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Bürmann F, Funke LFH, Chin JW, Löwe J. Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites. Mol Cell 2021; 81:4891-4906.e8. [PMID: 34739874 PMCID: PMC8669397 DOI: 10.1016/j.molcel.2021.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
The ring-like structural maintenance of chromosomes (SMC) complex MukBEF folds the genome of Escherichia coli and related bacteria into large loops, presumably by active DNA loop extrusion. MukBEF activity within the replication terminus macrodomain is suppressed by the sequence-specific unloader MatP. Here, we present the complete atomic structure of MukBEF in complex with MatP and DNA as determined by electron cryomicroscopy (cryo-EM). The complex binds two distinct DNA double helices corresponding to the arms of a plectonemic loop. MatP-bound DNA threads through the MukBEF ring, while the second DNA is clamped by the kleisin MukF, MukE, and the MukB ATPase heads. Combinatorial cysteine cross-linking confirms this topology of DNA loop entrapment in vivo. Our findings illuminate how a class of near-ubiquitous DNA organizers with important roles in genome maintenance interacts with the bacterial chromosome.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, UK.
| | - Louise F H Funke
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason W Chin
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
25
|
Fisher GL, Bolla JR, Rajasekar KV, Mäkelä J, Baker R, Zhou M, Prince JP, Stracy M, Robinson CV, Arciszewska LK, Sherratt DJ. Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. eLife 2021; 10:70444. [PMID: 34585666 PMCID: PMC8523169 DOI: 10.7554/elife.70444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.
Collapse
Affiliation(s)
- Gemma Lm Fisher
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josh P Prince
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Anchimiuk A, Lioy VS, Bock FP, Minnen A, Boccard F, Gruber S. A low Smc flux avoids collisions and facilitates chromosome organization in Bacillus subtilis. eLife 2021; 10:65467. [PMID: 34346312 PMCID: PMC8357415 DOI: 10.7554/elife.65467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.
Collapse
Affiliation(s)
- Anna Anchimiuk
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florian Patrick Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anita Minnen
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 2021; 28:642-651. [PMID: 34312537 DOI: 10.1038/s41594-021-00626-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Chromosome organization mediated by structural maintenance of chromosomes (SMC) complexes is vital in many organisms. SMC complexes act as motors that extrude DNA loops, but it remains unclear what happens when multiple complexes encounter one another on the same DNA in living cells and how these interactions may help to organize an active genome. We therefore created a crash-course track system to study SMC complex encounters in vivo by engineering defined SMC loading sites in the Bacillus subtilis chromosome. Chromosome conformation capture (Hi-C) analyses of over 20 engineered strains show an amazing variety of chromosome folding patterns. Through three-dimensional polymer simulations and theory, we determine that these patterns require SMC complexes to bypass each other in vivo, as recently seen in an in vitro study. We posit that the bypassing activity enables SMC complexes to avoid traffic jams while spatially organizing the genome.
Collapse
Affiliation(s)
- Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Leonid A Mirny
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
28
|
Gogou C, Japaridze A, Dekker C. Mechanisms for Chromosome Segregation in Bacteria. Front Microbiol 2021; 12:685687. [PMID: 34220773 PMCID: PMC8242196 DOI: 10.3389/fmicb.2021.685687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|