1
|
Celar Šturm D, Režen T, Jančar N, Virant-Klun I. Bisphenol a Disrupts Steroidogenesis and Induces Apoptosis in Human Granulosa Cells Cultured In Vitro. Int J Mol Sci 2025; 26:4081. [PMID: 40362320 PMCID: PMC12071243 DOI: 10.3390/ijms26094081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Bisphenol A (BPA) is a common synthetic chemical compound classified as an endocrine disruptor. It affects multiple physiological systems in the body, including the female reproductive system, particularly granulosa cells (GCs) in the ovaries, where steroidogenesis occurs. This study investigated the impact of various BPA concentrations (environmentally relevant concentrations of 0.001 µM and 0.1 µM and toxicological concentration of 100 µM) and exposure times (24 and 72 h) on cell viability and counts and in vitro production of estradiol and progesterone in human GCs collected from waste follicular fluid of IVF patients. Gene expression analysis of 182 genes associated with steroidogenesis and apoptosis was performed in GCs using PCR arrays, followed by protein expression analysis by Western blot. Our results demonstrate that after longer BPA exposure (72 h), a higher concentration of BPA (100 µM) negatively affects the cellular viability and counts and significantly alters steroid hormone biosynthesis in vitro, leading to reduced concentrations of estradiol and progesterone in the culture medium. We found that all BPA concentrations altered the expression of different steroidogenesis- and apoptosis-related genes in GCs. At 0.001 μM, BPA exposure decreased the expression of TRIM25, UGT2B15, CASP3, and RPS6KA3 genes and increased the expression of NR6A1 and PPID genes. At 0.1 μM, BPA increased the expression of AR, HSD3B1, BID, IKBKG, and PPID genes while reducing the expression of TRIM25 and CASP3 genes. At the highest concentration of 100 μM, BPA upregulated the expression of AR, GPER30, BID, IKBKG, and PPID genes and downregulated the expression of FOXO1 and UGT2B15 genes. These results highlight BPA's concentration-specific effects on steroidogenesis and apoptosis and show its potential to compromise GC function, with possible negative implications for female fertility and ovarian health, even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dominika Celar Šturm
- Clinical Research Centre, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nina Jančar
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Galaud JP, Genin S, Aldon D. Pathogen effectors hijack calcium signaling to promote virulence. TRENDS IN PLANT SCIENCE 2025; 30:356-363. [PMID: 39523142 DOI: 10.1016/j.tplants.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.
Collapse
Affiliation(s)
- Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France.
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France
| |
Collapse
|
3
|
Xie J, Zhu Y, Yang Z, Yu Z, Yang M, Wang Q. An integrative analysis reveals cancer risk associated with artificial sweeteners. J Transl Med 2025; 23:32. [PMID: 39780215 PMCID: PMC11708064 DOI: 10.1186/s12967-024-06047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk. METHODS Targets associated with commonly used AS were screened and validated using databases such as CTD, STITCH, Super-PRED, Swiss Target Prediction, SEA, PharmMapper, and GalaxySagittarius. Cancer-related targets were sourced from GeneCards, OMIM, and TTD databases. AS-cancer targets were identified through the intersection of these datasets. A network visualization ('AS-targets-cancer') was constructed using Cytoscape 3.9.0. Protein-protein interaction analysis was conducted using the STRING database to identify significant AS-cancer targets. GO and KEGG enrichment analyses were performed using the DAVID database. Core targets were identified from significant targets and genes involved in the 'Pathways in cancer' (map05200). Molecular docking and dynamics simulations were employed to verify interactions between AS and target proteins. Pan-cancer and univariate Cox regression analyses of core targets across 33 cancer types were conducted using GEPIA 2 and SangerBox, respectively. Gene chip datasets (GSE53757 for KIRC, GSE21354 for LGG, GSE42568 for BRCA, and GSE46602 for PRAD) were retrieved from the GEO database, while transcriptome and overall survival data were obtained from TCGA. Data normalization and identification of differentially expressed genes (DEGs) were performed on these datasets using R (version 4.3.2). Gene Set Enrichment Analysis (GSEA) was employed to identify critical pathways in the gene expression profiles between normal and cancer groups. A cancer risk prognostic model was constructed for key targets to further elucidate their significance in cancer initiation and progression. Finally, the HPA database was utilized to investigate variations in the expression of key AS-cancer target proteins across KIRC, LGG, BRCA, PRAD, and normal tissues. RESULTS Seven commonly used AS (Aspartame, Acesulfame, Sucralose, NHDC, Cyclamate, Neotame, and Saccharin) were selected for study. A total of 368 AS-cancer intersection targets were identified, with 48 notable AS-cancer targets, including TP53, EGFR, SRC, PIK3R1, and EP300, retrieved. GO biological process analysis indicated that these targets are involved in the regulation of apoptosis, gene expression, and cell proliferation. Thirty-five core targets were identified from the intersection of the 48 significant AS-cancer targets and genes in the 'Pathways in cancer' (map05200). KEGG enrichment analysis of these core targets revealed associations with several cancer types and the PI3K-Akt signaling pathway. Molecular docking and dynamics simulations confirmed interactions between AS and these core targets. HSP90AA1 was found to be highly expressed across the 33 cancer types, while EGF showed the opposite trend. Univariate Cox regression analysis demonstrated strong associations of core targets with KIRC, LGG, BRCA, and PRAD. DEGs of AS-cancer core targets across these four cancers were analyzed. GSEA revealed upregulated and downregulated pathways enriched in KIRC, LGG, BRCA, and PRAD. Cancer risk prognostic models were constructed to elucidate the significant roles of key targets in cancer initiation and progression. Finally, the HPA database confirmed the crucial function of these targets in KIRC, LGG, BRCA, and PRAD. CONCLUSION This study integrated data mining, machine learning, network toxicology, molecular docking, molecular dynamics simulations, and clinical sample analysis to demonstrate that AS increases the risk of kidney cancer, low-grade glioma, breast cancer, and prostate cancer through multiple targets and signaling pathways. This paper provides a valuable reference for the safety assessment and cancer risk evaluation of food additives. It urges food safety regulatory agencies to strengthen oversight and encourages the public to reduce consumption of foods and beverages containing artificial sweeteners and other additives.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Guilin North Road No 16, Huangshi, 435003, Hubei, People's Republic of China.
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Guilin North Road No 16, Huangshi, 435003, Hubei, People's Republic of China
| | - Zixuan Yang
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Guilin North Road No 16, Huangshi, 435003, Hubei, People's Republic of China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Guilin North Road No 16, Huangshi, 435003, Hubei, People's Republic of China
| | - Mingzhi Yang
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Guilin North Road No 16, Huangshi, 435003, Hubei, People's Republic of China
| | - Qingzhi Wang
- Medical College of YiChun University, Xuefu Road No 576, Yichun, 336000, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Zhang Z, Das C. Insights into mechanisms of ubiquitin ADP-ribosylation reversal. Biochem Soc Trans 2024; 52:2525-2537. [PMID: 39584475 PMCID: PMC11668277 DOI: 10.1042/bst20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
5
|
Xian W, Tang Z, Zhang Q, Wang Y, Liu X. An Emerging Way for Bacteria to Engage with Host Cells via Protein ADP-riboxanation. Toxins (Basel) 2024; 16:467. [PMID: 39591223 PMCID: PMC11598138 DOI: 10.3390/toxins16110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications (PTMs) are increasingly recognized as important strategies used by bacterial pathogens to modulate host cellular functions. Protein ADP-riboxanation, a derivative of ADP-ribosylation, has recently emerged as a new biochemical way by which bacterial pathogens interact with host cells. Recent studies have revealed that this modification has broad regulatory roles in host processes including cell death, protein translation, and stress granule formation. Given that the vast majority of bacterial ADP-riboxanases are still uncharacterized, in this review we also highlight the utility of advanced proteomic tools in the functional dissection of ADP-riboxanation events during bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.X.); (Z.T.); (Q.Z.); (Y.W.)
| |
Collapse
|
6
|
Zhou YR, Dang JJ, Yang QC, Sun ZJ. The regulation of pyroptosis by post-translational modifications: molecular mechanisms and therapeutic targets. EBioMedicine 2024; 109:105420. [PMID: 39476537 PMCID: PMC11564932 DOI: 10.1016/j.ebiom.2024.105420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Rao Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Jun-Jie Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Wang Y, Wang C, Guan Z, Cao J, Xu J, Wang S, Cui Y, Wang Q, Chen Y, Yin Y, Zhang D, Liu H, Sun M, Jin S, Tao P, Zou T. DNA methylation activates retron Ec86 filaments for antiphage defense. Cell Rep 2024; 43:114857. [PMID: 39395169 DOI: 10.1016/j.celrep.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
Retrons are a class of multigene antiphage defense systems typically consisting of a retron reverse transcriptase, a non-coding RNA, and a cognate effector. Although triggers for several retron systems have been discovered recently, the complete mechanism by which these systems detect invading phages and mediate defense remains unclear. Here, we focus on the retron Ec86 defense system, elucidating its modes of activation and mechanisms of action. We identified a phage-encoded DNA cytosine methyltransferase (Dcm) as a trigger of the Ec86 system and demonstrated that Ec86 is activated upon multicopy single-stranded DNA (msDNA) methylation. We further elucidated the structure of a tripartite retron Ec86-effector filament assembly that is primed for activation by Dcm and capable of hydrolyzing nicotinamide adenine dinucleotide (NAD+). These findings provide insights into the retron Ec86 defense mechanism and underscore an emerging theme of antiphage defense through supramolecular complex assemblies.
Collapse
Affiliation(s)
- Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangshuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqi Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
10
|
Hu J, Dong X, Yao X, Yi T. Circulating inflammatory factors and risk causality associated with type 2 diabetic nephropathy: A Mendelian randomization and bioinformatics study. Medicine (Baltimore) 2024; 103:e38864. [PMID: 38996161 PMCID: PMC11245217 DOI: 10.1097/md.0000000000038864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The main causative factors of diabetic nephropathy (DN), a common complication of diabetes mellitus, are metabolic abnormalities and hemodynamic changes. However, studies have shown that the immune-inflammatory response also plays an important role in DN pathogenesis. Therefore, in this study, we analyzed the causal relationship and immune infiltration between inflammatory factors and DN using Mendelian randomization (MR) and bioinformatics techniques. We analyzed the causal relationship between 91 inflammatory factors and DN using two-sample MR dominated by the results of inverse variance-weighted analysis. Based on the MR analysis, the immune mechanism of inflammatory factors in DN was further explored using immune cell infiltration analysis. MR analysis indicated a positive causal relationship between DN and IL1A, caspase 8 (CASP8), macrophage colony-stimulating factor 1, IL10, STAM-binding protein, and tumor necrosis factor ligand superfamily member 12 (TNFSF12) and a negative causal relationship between DN and cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. The pathogenic mechanism of CASP8 may involve the recruitment of CD4+ T cells and macrophages for DN infiltration. In this study, we found a causal relationship between DN and IL1A, CASP8, macrophage colony-stimulating factor 1, IL10, STAM-binding protein, TNFSF12, cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. Bioinformatic immune infiltration analysis further revealed that CASP8 regulates DN by influencing the infiltration of immune cells, such as T cells and macrophages.
Collapse
Affiliation(s)
- Jialin Hu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xue Dong
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xingyi Yao
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tongning Yi
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Wang X, Tu Y, Chen Y, Yang H, Luo M, Li Y, Huang L, Luo H. Critical bloodstream infection caused by Chromobacterium violaceum: a case report in a 15-year-old male with sepsis-induced cardiogenic shock and purpura fulminans. Front Med (Lausanne) 2024; 11:1342706. [PMID: 38596787 PMCID: PMC11002164 DOI: 10.3389/fmed.2024.1342706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
Chromobacterium violaceum (C. violaceum) is a gram-negative bacillus that is widespread in tropical and subtropical areas. Although C. violaceum rarely infects humans, it can cause critical illness with a mortality rate above 50%. Here, we report the successful treatment of a 15-year-old male who presented with bloodstream infection of C. violaceum along with sepsis, specific skin lesions, and liver abscesses. Cardiogenic shock induced by sepsis was reversed by venoarterial extracorporeal membrane oxygenation (VA ECMO). Moreover, C. violaceum-related purpura fulminans, which is reported herein for the first time, was ameliorated after treatment. This case report demonstrates the virulence of C. violaceum with the aim of raising clinical awareness of this disease.
Collapse
Affiliation(s)
- Xueqing Wang
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yunliang Tu
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yingqun Chen
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huilin Yang
- Department of Microbiology Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Minghua Luo
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yanyan Li
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lei Huang
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hua Luo
- Department of Intensive Care Unit (ICU), Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Zhang Q, Xian W, Li Z, Lu Q, Chen X, Ge J, Tang Z, Liu B, Chen Z, Gao X, Hottiger MO, Zhang P, Qiu J, Shao F, Liu X. Shigella induces stress granule formation by ADP-riboxanation of the eIF3 complex. Cell Rep 2024; 43:113789. [PMID: 38368608 DOI: 10.1016/j.celrep.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Under stress conditions, translationally stalled mRNA and associated proteins undergo liquid-liquid phase separation and condense into cytoplasmic foci called stress granules (SGs). Many viruses hijack SGs for their pathogenesis; however, whether pathogenic bacteria also exploit this pathway remains unknown. Here, we report that members of the OspC family of Shigella flexneri induce SG formation in infected cells. Mechanistically, the OspC effectors target multiple subunits of the host translation initiation factor 3 complex by ADP-riboxanation. The modification of eIF3 leads to translational arrest and thus the formation of SGs. Furthermore, OspC-mediated SGs are beneficial for S. flexneri replication within infected host cells, and bacterial strains unable to induce SGs are attenuated for virulence in a murine model of infection. Our findings reveal a mechanism by which bacterial pathogens induce SG assembly by inactivating host translational machinery and promote bacterial proliferation in host cells.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zilin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xindi Chen
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bohao Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao 266000, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao 266000, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Peipei Zhang
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Department of Biochemistry, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
13
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
14
|
Harvest CK, Abele TJ, Yu C, Beatty CJ, Amason ME, Billman ZP, DePrizio MA, Souza FW, Lacey CA, Maltez VI, Larson HN, McGlaughon BD, Saban DR, Montgomery SA, Miao EA. An innate granuloma eradicates an environmental pathogen using Gsdmd and Nos2. Nat Commun 2023; 14:6686. [PMID: 37865673 PMCID: PMC10590453 DOI: 10.1038/s41467-023-42218-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023] Open
Abstract
Granulomas often form around pathogens that cause chronic infections. Here, we discover an innate granuloma model in mice with an environmental bacterium called Chromobacterium violaceum. Granuloma formation not only successfully walls off, but also clears, the infection. The infected lesion can arise from a single bacterium that replicates despite the presence of a neutrophil swarm. Bacterial replication ceases when macrophages organize around the infection and form a granuloma. This granuloma response is accomplished independently of adaptive immunity that is typically required to organize granulomas. The C. violaceum-induced granuloma requires at least two separate defense pathways, gasdermin D and iNOS, to maintain the integrity of the granuloma architecture. This innate granuloma successfully eradicates C. violaceum infection. Therefore, this C. violaceum-induced granuloma model demonstrates that innate immune cells successfully organize a granuloma and thereby resolve infection by an environmental pathogen.
Collapse
Affiliation(s)
- Carissa K Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Taylor J Abele
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Megan E Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zachary P Billman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morgan A DePrizio
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Fernando W Souza
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Carolyn A Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Vivien I Maltez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather N Larson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin D McGlaughon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
15
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
16
|
Li Y, Qiao Y, Li H, Wang Z, Su E, Du Y, Che L. Mechanism of the Mongolian medicine Eerdun Wurile basic formula in improving postoperative cognitive dysfunction by inhibiting apoptosis through the SIRT1/p53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116312. [PMID: 36863641 DOI: 10.1016/j.jep.2023.116312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mongolian medicine Eerdun Wurile is a commonly used Mongolian in folk medicine used to treat cerebral nervous system diseases such as cerebral hemorrhage, cerebral thrombosis, nerve injury and cognitive function, cardiovascular diseases such as hypertension and coronary heart disease. Eerdun wurile may effect anti-postoperative cognitive function. AIM OF THE STUDY To investigate the molecular mechanism of the Mongolian medicine Eerdun Wurile Basic Formula (EWB) in improving postoperative cognitive dysfunction (POCD) based on Network pharmacology, and to confirm involvement of the SIRT1/p53 signal pathway, one of the key signal pathways, by using the POCD mouse model. MATERIAL AND METHODS Obtain compounds and disease-related targets through TCMSP, TCMID, PubChem, PharmMapper platforms, GeneCards, and OMIM databases, and screen intersection genes; Use Cytoscape software to build a "drug-ingredient-disease-target" network, and the STRING platform for protein interaction analysis.; R software was used to analyze the function of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.; AutoDock Vina software for active components and core targets to Perform molecular docking. The POCD mouse model was prepared by intracerebroventricular injection of lipopolysaccharide (LPS), and the morphological changes of hippocampal tissue were observed by hematoxylin-eosin (HE) staining, Western blot, immunofluorescence and TUNEL were used to verify the results of network pharmacological enrichment analysis. RESULTS There were 110 potential targets for improving POCD by EWB, 117 items were enriched by GO, and 113 pathways were enriched by KEGG, among which the SIRT1/p53 signaling pathway was related to the occurrence of POCD. Quercetin, kaempferol, vestitol, β-sitosterol and 7-methoxy-2-methyl isoflavone in EWB can form stable conformations with low binding energy with core target proteins IL-6, CASP3, VEGFA, EGFR and ESR1. Animal experiments showed that compared with the POCD model group, the EWB group could significantly improve the apoptosis in the hippocampus of the mice, and significantly down-regulate the expression of Acetyl-p53 protein (P < 0.05). CONCLUSION EWB can improve POCD with the characteristics of multi-component, multi-target, and multi-pathway synergistic effects. Studies have confirmed that EWB can improve the occurrence of POCD by regulating the expression of genes related to the SIRT1/p53 signal pathway, which provides a new target and basis for the treatment of POCD.
Collapse
Affiliation(s)
- Yan Li
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Yun Qiao
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Huiru Li
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Zhe Wang
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Enboer Su
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Yiri Du
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Limuge Che
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
17
|
Jin J, Yuan Y, Xian W, Tang Z, Fu J, Liu X. The ever-increasing necessity of mass spectrometry in dissecting protein post-translational modifications catalyzed by bacterial effectors. Mol Microbiol 2023. [PMID: 37127430 DOI: 10.1111/mmi.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Protein post-translational modifications (PTMs), such as ADP-ribosylation and phosphorylation, regulate multiple fundamental biological processes in cells. During bacterial infection, effector proteins are delivered into host cells through dedicated bacterial secretion systems and can modulate important cellular pathways by covalently modifying their host targets. These strategies enable intruding bacteria to subvert various host processes, thereby promoting their own survival and proliferation. Despite rapid expansion of our understanding of effector-mediated PTMs in host cells, analytical measurements of these molecular events still pose significant challenges in the study of host-pathogen interactions. Nevertheless, with major technical breakthroughs in the last two decades, mass spectrometry (MS) has evolved to be a valuable tool for detecting protein PTMs and mapping modification sites. Additionally, large-scale PTM profiling, facilitated by different enrichment strategies prior to MS analysis, allows high-throughput screening of host enzymatic substrates of bacterial effectors. In this review, we summarize the advances in the studies of two representative PTMs (i.e., ADP-ribosylation and phosphorylation) catalyzed by bacterial effectors during infection. Importantly, we will discuss the ever-increasing role of MS in understanding these molecular events and how the latest MS-based tools can aid in future studies of this booming area of pathogenic bacteria-host interactions.
Collapse
Affiliation(s)
- Jie Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
18
|
Wanford JJ, Odendall C. Ca 2+-calmodulin signalling at the host-pathogen interface. Curr Opin Microbiol 2023; 72:102267. [PMID: 36716574 DOI: 10.1016/j.mib.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Multiple eukaryotic cell processes are modulated by calcium ions (Ca2+). As such, Ca2+ is emerging as a crucial regulator of innate immunity in multicellular organisms. In particular, recent studies have identified roles of Ca2+ signalling at the host-bacteria interface. Following microbial exposure, Ca2+ signals mobilised from the extracellular milieu or intracellular stores are transduced into cell physiological responses. However, during infection with host-adapted pathogens, Ca2+ signals are often atypical, due to the activities of virulence factors, with varied consequences for both the pathogen and the host cell. In this review, we describe the Ca2+-dependent host factors regulating antibacterial immunity, in addition to bacterial effectors that promote, inhibit, or co-opt Ca2+-calmodulin signalling to promote infection.
Collapse
Affiliation(s)
- Joseph J Wanford
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Charlotte Odendall
- School of Immunology and Microbial Sciences, Kings College London, London, UK.
| |
Collapse
|
19
|
Harvest CK, Abele TJ, Yu C, Beatty CJ, Amason ME, Billman ZP, DePrizio MA, Lacey CA, Maltez VI, Larson HN, McGlaughon BD, Saban DR, Montgomery SA, Miao EA. An innate granuloma eradicates an environmental pathogen using Gsdmd and Nos2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531568. [PMID: 36945446 PMCID: PMC10028874 DOI: 10.1101/2023.03.07.531568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Granulomas often form around pathogens that cause chronic infections. Here, we discover a novel granuloma model in mice. Chromobacterium violaceum is an environmental bacterium that stimulates granuloma formation that not only successfully walls off but also clears the infection. The infected lesion can arise from a single bacterium that replicates in the presence of a neutrophil swarm. Bacterial replication ceases when macrophages organize around the infection and form a granuloma. This granuloma response is accomplished independently of adaptive immunity that is typically required to organize granulomas. The C. violaceum -induced granuloma requires at least two separate defense pathways, gasdermin D and iNOS, to maintain the integrity of the granuloma architecture. These innate granulomas successfully eradicate C. violaceum infection. Therefore, this new C. violaceum -induced granuloma model demonstrates that innate immune cells successfully organize a granuloma and thereby eradicate infection by an environmental pathogen.
Collapse
|
20
|
Hou Y, Zeng H, Li Z, Feng N, Meng F, Xu Y, Li L, Shao F, Ding J. Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis. Nat Struct Mol Biol 2023; 30:261-272. [PMID: 36624349 DOI: 10.1038/s41594-022-00888-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023]
Abstract
The caspase-4/11-GSDMD pyroptosis axis recognizes cytosolic lipopolysaccharide for antibacterial defenses. Shigella flexneri employs an OspC3 effector to block pyroptosis by catalyzing NAD+-dependent arginine ADP-riboxanation of caspase-4/11. Here, we identify Ca2+-free calmodulin (CaM) that binds and stimulates OspC3 ADP-riboxanase activity. Crystal structures of OspC3-CaM and OspC3-caspase-4 binary complexes reveal unique CaM binding to an OspC3 N-terminal domain featuring an ADP-ribosyltransferase-like fold and specific recognition of caspase-4 by an OspC3 ankryin repeat domain, respectively. CaM-OspC3-caspase-4 ternary complex structures show that NAD+ binding reorganizes the catalytic pocket, in which D231 and D177 activate the substrate arginine for initial ADP-ribosylation and ribosyl 2'-OH in the ADP-ribosylated arginine, respectively, for subsequent deamination. We also determine structures of unmodified and OspC3-ADP-riboxanated caspase-4. Mechanisms derived from this series of structures covering the entire process of OspC3 action are supported by biochemical analyses in vitro and functional validation in S. flexneri-infected mice.
Collapse
Affiliation(s)
- Yanjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huan Zeng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Zilin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China
| | - Na Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fanyi Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Xu
- National Institute of Biological Sciences, Beijing, Beijing, China
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Feng Shao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, Beijing, China.
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, Beijing, China.
| |
Collapse
|
21
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Zhang K, Peng T, Tao X, Tian M, Li Y, Wang Z, Ma S, Hu S, Pan X, Xue J, Luo J, Wu Q, Fu Y, Li S. Structural insights into caspase ADPR deacylization catalyzed by a bacterial effector and host calmodulin. Mol Cell 2022; 82:4712-4726.e7. [PMID: 36423631 DOI: 10.1016/j.molcel.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.
Collapse
Affiliation(s)
- Kuo Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ting Peng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Xinyuan Tao
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanxin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shuaifei Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Shufan Hu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiwei Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
23
|
Zhang C, Liu N. Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol 2022; 13:920059. [PMID: 35958626 PMCID: PMC9361070 DOI: 10.3389/fimmu.2022.920059] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies that causes death in women and is a heterogeneous disease with complex molecular and genetic changes. Because of the relatively high recurrence rate of OC, it is crucial to understand the associated mechanisms of drug resistance and to discover potential target for rational targeted therapy. Cell death is a genetically determined process. Active and orderly cell death is prevalent during the development of living organisms and plays a critical role in regulating life homeostasis. Ferroptosis, a novel type of cell death discovered in recent years, is distinct from apoptosis and necrosis and is mainly caused by the imbalance between the production and degradation of intracellular lipid reactive oxygen species triggered by increased iron content. Necroptosis is a regulated non-cysteine protease–dependent programmed cell necrosis, morphologically exhibiting the same features as necrosis and occurring via a unique mechanism of programmed cell death different from the apoptotic signaling pathway. Pyroptosis is a form of programmed cell death that is characterized by the formation of membrane pores and subsequent cell lysis as well as release of pro-inflammatory cell contents mediated by the abscisin family. Studies have shown that ferroptosis, necroptosis, and pyroptosis are involved in the development and progression of a variety of diseases, including tumors. In this review, we summarized the recent advances in ferroptosis, necroptosis, and pyroptosis in the occurrence, development, and therapeutic potential of OC.
Collapse
|
24
|
Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, Frowde K, Alrehaili A, Dickenson RE, Munk M, Panina S, Mahmood IF, Llorian M, Stanifer ML, Boulant S, Berchtold MW, Bergeron JRC, Wack A, Lesser CF, Odendall C. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell 2022; 185:2354-2369.e17. [PMID: 35568036 PMCID: PMC9596379 DOI: 10.1016/j.cell.2022.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Joseph J Wanford
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Andrew A Voak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jack Gay
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Shayla Venkhaya
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Owen Burroughs
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sanjana Mathew
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Truelian Lee
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sasha L Evans
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Weiting Zhao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Kyle Frowde
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mads Munk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ishraque F Mahmood
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
25
|
Maintaining home integrity by bacterial pathogens: Disruption for the sake of construction. Mol Cell 2022; 82:1781-1783. [PMID: 35594841 DOI: 10.1016/j.molcel.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Caspases are often considered the final checkpoint for a pathogen to save its replicative niche from collapsing after cell death signaling has been initiated in response to infection. Two recent works (Li et al., 2021; Peng et al., 2022) found that pathogens inhibit host cell death by inactivating multiple caspases with a novel posttranslational modification.
Collapse
|