1
|
Niljikar M, Barreto-Galvez A, Patel S, Gagliardi JE, Kumar V, Pradeep A, Juwarwala A, Gerhardt J, Chang Y, Montagna C, Madireddy A. Polymerase Eta Recruits FANCD2 to Common Fragile Sites to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631600. [PMID: 39829787 PMCID: PMC11741286 DOI: 10.1101/2025.01.06.631600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress. However, the mechanistic basis for pol eta's role in facilitating DNA replication at CFS and(or) at other genomic regions is currently unclear. Importantly, the functional importance of three non-catalytic domains of pol eta, the Ubiquitin-binding Zinc finger (UBZ), PCNA interacting protein (PIP) domain, and the F1 domain which mediates its switch with replicative DNA polymerases in mediating replication stress, especially at CFS loci is not clear. Here, we report that the PIP and UBZ domains of Pol Eta are both critical for its role in mediating cellular replication stress, especially at CFS. The absence of either domain induced elevated replication stress, replication stalling and DNA damage accumulation genome wide. This effect was even more pronounced at CFS loci leading to the accumulation of under replication DNA in G2/M. Importantly, while the inactivation of the UBZ domain resulted in a robust FANCD2 monoubiquitylation (a prominent marker of FANCD2 activation), FANCD2 recruitment genome wide was significantly impacted, especially at CFSs such as FRA16D. These S-phase phenotypes result in ssDNA gap formation and the persistence of under-replicated genomic regions upon transition to G2/M. While post-replicative gap filing/ repair by Mitotic DNA synthesis is activated in the mutants, it only effectively resolves UFBs in the F1* cells. The PIP*, UBZ* and pol eta -/- cells unfortunately manifest excessive toxic cytosolic DNA that instigates a strong innate immune response. These results collectively show that translesion polymerase Eta functions in a common pathway with FANCD2 to prevent replication perturbation and instability at CFS loci.
Collapse
|
2
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Kechin A, Koryukov M, Mikheeva R, Filipenko M. Homologous recombination deficiency (HRD) diagnostics: underlying mechanisms and new perspectives. Cancer Metastasis Rev 2024; 44:19. [PMID: 39724448 DOI: 10.1007/s10555-024-10238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations. HRD tests, based on signatures of LGRs and copy number alterations, show in hindsight that some progenitor cells have possessed HRD status but not the current state of the genome. The aim of this review was to compare different methods of HRD detection and mechanisms of formation of HRD-specific LGRs. In the last several years, new data appeared implying a crucial role of proteins BRCA1 and BRCA2 in the resolution of stalled replication forks that may be associated with at least some of LGRs observed in HRD-positive tumors. Reviewing current knowledge on these mechanisms, distributions of different LGR types, and limitations of sequencing technologies and algorithms of data analysis, we offer some new perspectives on HRD diagnostics. We hope that this review will help to accelerate the development of new diagnostic approaches in this important field of molecular oncology.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Maksim Koryukov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Regina Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maksim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
5
|
Lee IH, Lee SJ, Kim J, Lee YH, Chong GO, Kim JM, Lee J, Lee NY, Park SY, Hong DG, Chae YS. Exploring the effect of BRCA1/2 status on chemotherapy-induced hematologic toxicity in patients with ovarian cancer. Cancer Chemother Pharmacol 2024; 94:103-108. [PMID: 38652271 DOI: 10.1007/s00280-024-04670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE BRCA1/2 are integral to the DNA repair mechanism and their germline pathogenic variants (gBRCA) result in a high risk for developing breast and ovarian cancer. Patients with gBRCA mutations showed increased sensitivity to DNA cross-linking agent but might have increased treatment-related toxicities. Thus, we hypothesized that gBRCA mutation ovarian cancer patients who underwent platinum-based chemotherapy might be at higher risk of developing chemotherapy-induced hematologic toxicity. METHODS This study enrolled 160 patients with ovarian cancer who received frontline platinum-based chemotherapy between 2011 and 2019 in Kyungpook National University Chilgok Hospital. Incidence rate and severity of chemotherapy-induced hematologic toxicity (neutropenia, anemia, thrombocytopenia) was compared for BRCA mutation and wild patients. RESULTS 160 women, including 62 BRCA1/2 (38 BRCA1, and 25 BRCA2) mutation group, and 98 noncarriers, were analyzed. A higher frequency of G2 anemia was noted in the BRCA -mutant group (22% vs. 1%, p = 0.07). Furthermore, G3 anemia was significantly common among BRCA group (12.9% vs. 3%, p = 0.02). In the subgroup analysis according to BRCA1/2 status, BRCA1 mutated patients showed a significantly higher frequency of G1 anemia than BRCA2 (89% vs. 60%, p = 0.01). In terms of neutropenia and thrombocytopenia, BRCA mutated patients and noncarriers had similar hematologic toxicity. CONCLUSION Germline BRCA mutations were associated with a higher frequency of G2/3 anemia in ovarian cancer patients who underwent first-line platinum-based chemotherapy. Moreover, the BRCA1 mutation appeared to be more strongly associated with the incidence of chemotherapy-induced anemia. Our findings warrant further investigation in larger, prospective studies to confirm these current findings and determine whether preventive interventions may be necessary.
Collapse
Affiliation(s)
- In Hee Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Juhyung Kim
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jong Mi Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Juhun Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Laboratory Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Seo Young Park
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Dea Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Yee Soo Chae
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Kawabata T, Sekiya R, Goto S, Li TS. Chronic replication stress invokes mitochondria dysfunction via impaired parkin activity. Sci Rep 2024; 14:7877. [PMID: 38570643 PMCID: PMC10991263 DOI: 10.1038/s41598-024-58656-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
Replication stress is a major contributor to tumorigenesis because it provides a source of chromosomal rearrangements via recombination events. PARK2, which encodes parkin, a regulator of mitochondrial homeostasis, is located on one of the common fragile sites that are prone to rearrangement by replication stress, indicating that replication stress may potentially impact mitochondrial homeostasis. Here, we show that chronic low-dose replication stress causes a fixed reduction in parkin expression, which is associated with mitochondrial dysfunction, indicated by an increase in mtROS. Consistent with the major role of parkin in mitophagy, reduction in parkin protein expression was associated with a slight decrease in mitophagy and changes in mitochondrial morphology. In contrast, cells expressing ectopic PARK2 gene does not show mtROS increases and changes in mitochondrial morphology even after exposure to chronic replication stress, suggesting that intrinsic fragility at PARK2 loci associated with parkin reduction is responsible for mitochondrial dysfunction caused by chronic replication stress. As endogenous replication stress and mitochondrial dysfunction are both involved in multiple pathophysiology, our data support the therapeutic development of recovery of parkin expression in human healthcare.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
8
|
Madireddy A, Gerhardt J. Visualizing DNA replication by single-molecule analysis of replicated DNA. STAR Protoc 2023; 4:102721. [PMID: 38048218 PMCID: PMC10730367 DOI: 10.1016/j.xpro.2023.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Single-molecule analysis of replicated DNA (SMARD) is a unique technique that enables visualization of DNA replication at specific genomic regions at single-molecule resolution. Here, we present a protocol for visualizing DNA replication by SMARD. We describe steps for pulse labeling DNA, followed by isolating and stretching of genomic DNA. We then detail the detection of the replication at chromosomal regions through immunostaining and fluorescence in situ hybridization. Using SMARD, we can visualize replication initiation, progression, termination, and fork stalling. For complete details on the use and execution of this protocol, please refer to Norio et al. (2001) and Gerhardt et al. (2014).1,2.
Collapse
Affiliation(s)
- Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Department of Pediatrics Hematology/Oncology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Irony-Tur Sinai M, Kerem B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg Top Life Sci 2023; 7:277-287. [PMID: 37876349 PMCID: PMC10754330 DOI: 10.1042/etls20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Stroik S, Carvajal-Garcia J, Gupta D, Edwards A, Luthman A, Wyatt DW, Dannenberg RL, Feng W, Kunkel TA, Gupta GP, Hedglin M, Wood R, Doublié S, Rothenberg E, Ramsden DA. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature 2023; 623:836-841. [PMID: 37968395 PMCID: PMC10959172 DOI: 10.1038/s41586-023-06729-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.
Collapse
Affiliation(s)
- Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alyssa Edwards
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David W Wyatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Richard Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Chakraborty S, Schirmeisen K, Lambert SA. The multifaceted functions of homologous recombination in dealing with replication-associated DNA damages. DNA Repair (Amst) 2023; 129:103548. [PMID: 37541027 DOI: 10.1016/j.dnarep.2023.103548] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
The perturbation of DNA replication, a phenomena termed "replication stress", is a driving force of genome instability and a hallmark of cancer cells. Among the DNA repair mechanisms that contribute to tolerating replication stress, the homologous recombination pathway is central to the alteration of replication fork progression. In many organisms, defects in the homologous recombination machinery result in increased cell sensitivity to replication-blocking agents and a higher risk of cancer in humans. Moreover, the status of homologous recombination in cancer cells often correlates with the efficacy of anti-cancer treatment. In this review, we discuss our current understanding of the different functions of homologous recombination in fixing replication-associated DNA damage and contributing to complete genome duplication. We also examine which functions are pivotal in preventing cancer and genome instability.
Collapse
Affiliation(s)
- Shrena Chakraborty
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France; Equipe Labelisée Ligue Nationale Contre le Cancer, France
| | - Kamila Schirmeisen
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France; Equipe Labelisée Ligue Nationale Contre le Cancer, France
| | - Sarah Ae Lambert
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France; Equipe Labelisée Ligue Nationale Contre le Cancer, France.
| |
Collapse
|
12
|
Hu-Heimgartner K, Lang N, Ayme A, Ming C, Combes JD, Chappuis VN, Vazquez C, Friedlaender A, Vuilleumier A, Bodmer A, Viassolo V, Sandoval JL, Chappuis PO, Labidi-Galy SI. Hematologic toxicities of chemotherapy in breast and ovarian cancer patients carrying BRCA1/BRCA2 germline pathogenic variants. A single center experience and review of the literature. Fam Cancer 2023; 22:283-289. [PMID: 37119509 PMCID: PMC10276105 DOI: 10.1007/s10689-023-00331-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
BRCA1 and BRCA2 play a central role in DNA repair and their germline pathogenic variants (gBRCA) confer a high risk for developing breast and ovarian cancer. Standard chemotherapy regimens for these cancers include DNA-damaging agents. We hypothesized that gBRCA carriers might be at higher risk of developing chemotherapy-related hematologic toxicity and therapy-related myeloid neoplasms (t-MN). We conducted a retrospective study of women newly diagnosed with invasive breast or ovarian cancer who were screened for gBRCA1/gBRCA2 at Geneva University Hospitals. All patients were treated with (neo-)adjuvant chemotherapy. We evaluated acute hematologic toxicities by analyzing the occurrence of febrile neutropenia and severe neutropenia (grade 4) at day 7-14 of the first cycle of chemotherapy and G-CSF use during the entire chemotherapy regimen. Characteristics of t-MN were collected. We reviewed medical records from 447 patients: 58 gBRCA1 and 40 gBRCA2 carriers and 349 non-carriers. gBRCA1 carriers were at higher risk of developing severe neutropenia (32% vs. 14.5%, p = 0.007; OR = 3.3, 95% CI [1.6-7], p = 0.001) and of requiring G-CSF for secondary prophylaxis (58.3% vs. 38.2%, p = 0.011; OR = 2.5, 95% CI [1.4-4.8], p = 0.004). gBRCA2 carriers did not show increased acute hematologic toxicities. t-MN were observed in 2 patients (1 gBRCA1 and one non-carrier). Our results suggested an increased acute hematologic toxicity upon exposure to chemotherapy for breast and ovarian cancer among gBRCA1 but not gBRCA2 carriers. A deeper characterization of t-MN is warranted with the recent development of PARP inhibitors in frontline therapy in gBRCA breast and ovarian cancer.
Collapse
Affiliation(s)
- Ketty Hu-Heimgartner
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Noémie Lang
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Aurélie Ayme
- Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Chang Ming
- Department of Clinical Research, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Jean-Damien Combes
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Victor N Chappuis
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Carla Vazquez
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Alex Friedlaender
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Aurélie Vuilleumier
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Valeria Viassolo
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - José L Sandoval
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Pierre O Chappuis
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
- Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland.
- Center of Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland.
| |
Collapse
|
13
|
Barreto-Galvez A, Niljikar M, Gagliardi J, Zhang R, Kumar V, Juruwala A, Pradeep A, Shaikh A, Tiwari P, Sharma K, Gerhardt J, Cao J, Kataoka K, Durbin A, Qi J, Ye BH, Madireddy A. Acetyl transferase EP300 deficiency leads to chronic replication stress mediated by defective fork protection at stalled replication forks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538781. [PMID: 37163075 PMCID: PMC10168362 DOI: 10.1101/2023.04.29.538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the epigenetic regulator and global transcriptional activator, E1A binding protein (EP300), is being increasingly reported in aggressive hematological malignancies including adult T-cell leukemia/lymphoma (ATLL). However, the mechanistic contribution of EP300 dysregulation to cancer initiation and progression are currently unknown. Independent inhibition of EP300 in human cells results in the differential expression of genes involved in regulating the cell cycle, DNA replication and DNA damage response. Nevertheless, specific function played by EP300 in DNA replication initiation, progression and replication fork integrity has not been studied. Here, using ATLL cells as a model to study EP300 deficiency and an p300-selective PROTAC degrader, degrader as a pharmacologic tool, we reveal that EP300-mutated cells display prolonged cell cycle kinetics, due to pronounced dysregulations in DNA replication dynamics leading to persistent genomic instability. Aberrant DNA replication in EP300-mutated cells is characterized by elevated replication origin firing due to increased replisome pausing genome-wide. We demonstrate that EP300 deficiency results in nucleolytic degradation of nascently synthesized DNA at stalled forks due to a prominent defect in fork stabilization and protection. This in turn results in the accumulation of single stranded DNA gaps at collapsed replication forks, in EP300-deficient cells. Inhibition of Mre11 nuclease rescues the ssDNA accumulation indicating a dysregulation in downstream mechanisms that restrain nuclease activity at stalled forks. Importantly, we find that the absence of EP300 results in decreased expression of BRCA2 protein expression and a dependency on POLD3-mediated error-prone replication restart mechanisms. The overall S-phase abnormalities observed lead to under-replicated DNA in G2/M that instigates mitotic DNA synthesis. This in turn is associated with mitotic segregation defects characterized by elevated micronuclei formation, accumulation of cytosolic DNA and transmission of unrepaired inherited DNA lesions in the subsequent G1-phase in EP300-deficient cells. We demonstrate that the DNA replication dynamics of EP300-mutated cells ATLL cells recapitulate features of BRCA-deficient cancers. Altogether these results suggest that mutations in EP300 cause chronic DNA replication stress and defective replication fork restart results in persistent genomic instability that underlie aggressive chemo-resistant tumorigenesis in humans.
Collapse
|
14
|
Martin SK, McVey M. BRCA1 protects against its own fragility. Mol Cell 2022; 82:3757-3759. [PMID: 36270245 PMCID: PMC10035668 DOI: 10.1016/j.molcel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Deshpande et al. (2022) demonstrate that BRCA1, a tumor suppressor tasked with protecting the genome, is encoded by a gene that is intrinsically fragile.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Biology, Tufts University, Medford, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|