1
|
Neal FE, Li W, Uhrig ME, Katz JN, Syed S, Sharma N, Dutta A, Burma S, Hromas R, Mazin AV, Dray E, Libich DS, Olsen SK, Wasmuth EV, Zhao W, Sørensen CS, Wiese C, Kwon Y, Sung P. Distinct roles of the two BRCA2 DNA-binding domains in DNA damage repair and replication fork preservation. Cell Rep 2025; 44:115654. [PMID: 40323719 DOI: 10.1016/j.celrep.2025.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Homologous recombination (HR) removes DNA double-strand breaks (DSBs) and preserves stressed DNA replication forks. Successful HR execution requires the tumor suppressor BRCA2, which harbors distinct DNA-binding domains (DBDs): one that possesses three oligonucleotide/oligosaccharide-binding (OB) folds (OB-DBD) and another residing in the C-terminal recombinase binding domain (CTRB-DBD). Here, we employ multi-faceted approaches to delineate the contributions of these domains toward HR and replication fork maintenance. We show that OB-DBD and CTRB-DBD confer single-strand DNA (ssDNA)- and dsDNA-binding capabilities, respectively, and that BRCA2 variants mutated in either domain are impaired in their ability to load the recombinase RAD51 onto ssDNA pre-occupied by RPA. While the CTRB-DBD mutant is modestly affected by DNA break repair, it exhibits a strong defect in the protection of stressed replication forks. In contrast, the OB-DBD is indispensable for both BRCA2 functions. Our study thus defines the unique contributions of the two BRCA2 DBDs in genome maintenance.
Collapse
Affiliation(s)
- Francisco E Neal
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey N Katz
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Shahrez Syed
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - David S Libich
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Nguyen TT, Mazzucco G, Kyriacou E, Lunardi T, Brandl L, Ahmed W, Doksani Y, Lingner J. Oxidative stress at telomeres triggers internal DNA loops, TRF1 dissociation, and TRF2-dependent R-loops. Nucleic Acids Res 2025; 53:gkaf285. [PMID: 40219969 PMCID: PMC11992676 DOI: 10.1093/nar/gkaf285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Telomeres are the nucleoprotein structures at chromosome ends. Telomeres are particularly sensitive to oxidative stress, which can induce telomere damage, shortening, and premature cellular senescence. How oxidative damage influences telomere structure has not been defined. Here, we induce oxidative damage at telomeres using menadione, which damages mitochondria mimicking intrinsic oxidative stress. We find that oxidative stress induces at telomeres single-stranded DNA breaks, internal DNA loop structures, dissociation of the shelterin component TRF1, upregulation of TERRA long noncoding RNA, and increased DNA:RNA hybrid structures known as R-loops. R-loop formation is enhanced not only in cis at telomeres, which show increased TERRA transcription, but also in trans at telomeres at which TERRA transcription is not induced indicating post-transcriptional R-loop formation. Finally, we show that oxidative damage induced R-loop formation requires TRF2, whose R-loop promoting activity may be unleashed upon TRF1 dissociation from telomeres. Altogether, our findings uncover in response to oxidative stress major remodelling of telomeric DNA, RNA, and shelterin complexes, and they unravel a physiological role of TRF2's ability to stimulate TERRA R-loop formation. We propose that the identified structural changes may facilitate DNA damage signalling and repair pathways to maintain telomere integrity during development and aging.
Collapse
Affiliation(s)
- Trang Thu Nguyen
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Giulia Mazzucco
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Leona Brandl
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wareed Ahmed
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ylli Doksani
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Yu X, Zhang H. Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells. J Mol Biol 2025; 437:168951. [PMID: 39826712 DOI: 10.1016/j.jmb.2025.168951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements. By regulating replication stress and promoting DNA synthesis, ALT condensates create an environment conducive to HDR-based telomere extension. This review explores recent advancements in ALT, focusing on understanding the role of biomolecular condensates in ALT and how they impact telomere dynamics and stability.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Cao C, Gong W, Shuai Y, Rasouli S, Ge Q, Khan A, Dakic A, Putluri N, Shvets G, Zheng YL, Daneshdoust D, Mahyoob R, Li J, Liu X. Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex. Cell Biosci 2025; 15:30. [PMID: 40025596 PMCID: PMC11871756 DOI: 10.1186/s13578-025-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
The telomerase complex consists of a protein component (TERT), which has reverse transcriptase activity, and an RNA component (TERC), which serves as a template for telomere synthesis. Evidence is rapidly accumulating regarding the non-canonical functions of these components in both normal or diseased cells. An oligonucleotide-based drug, the first telomerase inhibitor, secured FDA approval in June 2024. We recently summarized the non-canonical functions of TERT in viral infections and cancer. In this review, we expand on these non-canonical functions of TERC beyond telomere maintenance. Specifically, we explore TERC's roles in cellular aging and senescence, immune regulation, genetic diseases, human cancer, as well as involvement in viral infections and host interactions. Finally, we discuss a transcription product of telomere repeats, TERRA, and explore strategies for targeting TERC as a therapeutic approach.
Collapse
Affiliation(s)
- Chongwen Cao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Weiyi Gong
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuanlong Shuai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Sara Rasouli
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Qianyun Ge
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anam Khan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, MD, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Danyal Daneshdoust
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rani Mahyoob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jenny Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Lazzerini Denchi E. Identification of modulators of the ALT pathway through a native FISH-based optical screen. Cell Rep 2025; 44:115114. [PMID: 39729394 PMCID: PMC11844024 DOI: 10.1016/j.celrep.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators. Here, we present the validation of factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DExD-box helicase 39A/B (DDX39A/B), the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
7
|
Abstract
In recent years, significant advances have been made in understanding the intricate details of the mechanisms underlying alternative lengthening of telomeres (ALT). Studies of a specialized DNA strand break repair mechanism, known as break-induced replication, and the advent of telomere-specific DNA damaging strategies and proteomic methodologies to profile the ribonucleoprotein composition of telomeres enabled the discovery of networks of proteins that coordinate the stepwise homology-directed DNA repair and DNA synthesis processes of ALT. These networks couple mediators of homologous recombination, DNA template-switching, long-range template-directed DNA synthesis, and DNA strand resolution with SUMO-dependent liquid condensate formation to create discrete nuclear bodies where telomere extension occurs. This review will discuss the recent findings of how these networks may cooperate to mediate telomere extension by the ALT mechanism and their impact on telomere function and integrity in ALT cancer cells.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
9
|
Azzalin CM. TERRA and the alternative lengthening of telomeres: a dangerous affair. FEBS Lett 2025; 599:157-165. [PMID: 38445359 PMCID: PMC11771730 DOI: 10.1002/1873-3468.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Claus M. Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM)Faculdade de Medicina da Universidade de LisboaPortugal
| |
Collapse
|
10
|
Kyriacou E, Lingner J. TERRA long noncoding RNA: At the interphase of telomere damage, rescue and signaling. Curr Opin Cell Biol 2024; 91:102437. [PMID: 39342869 DOI: 10.1016/j.ceb.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
TERRA long noncoding RNAs play key roles in telomere function and maintenance. They can orchestrate telomeric chromatin remodeling, regulate telomere maintenance by telomerase and homology-directed repair, and they participate in the telomeric DNA damage response. TERRA associates with chromosome ends through base-pairing forming R-loops, which are mediated by the RAD51 DNA recombinase and its partner RAD51AP1. Telomeric R-loops interfere with replication fork progression, stimulating a switch of telomere maintenance from semiconservative DNA replication to homology-directed repair (HDR). The latter mechanism is exploited by a subset of cancer cells that lack telomerase, referred to as ALT. In addition, TERRA stimulates HDR at short telomeres during aging, delaying cellular senescence. During carcinogenesis, when cells with eroded telomeres enter replicative crisis, TERRA acts as a signaling molecule to mediate autophagic cell death.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Lynskey ML, Brown EE, Bhargava R, Wondisford AR, Ouriou JB, Freund O, Bowman RW, Smith BA, Lardo SM, Schamus-Hayes S, Hainer SJ, O'Sullivan RJ. HIRA protects telomeres against R-loop-induced instability in ALT cancer cells. Cell Rep 2024; 43:114964. [PMID: 39509271 PMCID: PMC11698518 DOI: 10.1016/j.celrep.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Inactivating mutations in chromatin modifiers, like the α-thalassemia/mental retardation, X-linked (ATRX)-death domain-associated protein (DAXX) chromatin remodeling/histone H3.3 deposition complex, drive the cancer-specific alternative lengthening of telomeres (ALT) pathway. Prior studies revealed that HIRA, another histone H3.3 chaperone, compensates for ATRX-DAXX loss at telomeres to sustain ALT cancer cell survival. How HIRA rescues telomeres from the consequences of ATRX-DAXX deficiency remains unclear. Here, using an assay for transposase-accessible chromatin using sequencing (ATAC-seq) and cleavage under targets and release using nuclease (CUT&RUN), we establish that HIRA-mediated deposition of new H3.3 maintains telomeric chromatin accessibility to prevent the detrimental accumulation of nucleosome-free single-stranded DNA (ssDNA) in ATRX-DAXX-deficient ALT cells. We show that the HIRA-UBN1/UBN2 complex deposits new H3.3 to prevent TERRA R-loop buildup and transcription-replication conflicts (TRCs) at telomeres. Furthermore, HIRA-mediated H3.3 incorporation into telomeric chromatin links productive ALT to the phosphorylation of serine 31, an H3.3-specific amino acid, by Chk1. Therefore, we identify a critical role for HIRA-mediated H3.3 deposition that ensures the survival of ATRX-DAXX-deficient ALT cancer cells.
Collapse
Affiliation(s)
- Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Emily E Brown
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Jean-Baptiste Ouriou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Oliver Freund
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ray W Bowman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Baylee A Smith
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sandra Schamus-Hayes
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA.
| |
Collapse
|
12
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Denchi EL. Identification of Novel Modulators of the ALT Pathway Through a Native FISH-Based Optical Screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623791. [PMID: 39605432 PMCID: PMC11601530 DOI: 10.1101/2024.11.15.623791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A significant portion of human cancers utilize a recombination-based pathway, Alternative Lengthening of Telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (Telomeric ALT In situ Localization Screen), to identify genes that either promote or inhibit ALT activity. Screening over 1000 genes implicated in DNA transactions, TAILS revealed both well-established and novel ALT modulators. We have identified new factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DDX39A/B, the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Gianna M. Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Douglas ME. How to write an ending: Telomere replication as a multistep process. DNA Repair (Amst) 2024; 144:103774. [PMID: 39426311 DOI: 10.1016/j.dnarep.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Telomeres are protective nucleoprotein caps found at the natural ends of eukaryotic chromosomes and are crucial for the preservation of stable chromosomal structure. In cycling cells, telomeres are maintained by a multi-step process called telomere replication, which involves the eukaryotic replisome navigating a complex repetitive template tightly bound by specific proteins, before terminating at the chromosome end prior to a 5' resection step that generates a protective 3' overhang. In this review, we examine mechanistic aspects of the telomere replication process and consider how individual parts of this multistep event are integrated and coordinated with one-another.
Collapse
Affiliation(s)
- Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
14
|
Neal F, Li W, Uhrig ME, Sharma N, Syed S, Burma S, Hromas R, Mazin A, Dray E, Libich D, Olsen S, Wasmuth E, Zhao W, Sørensen CS, Wiese C, Kwon Y, Sung P. Distinct roles of the two BRCA2 DNA binding domains in DNA damage repair and replication fork preservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614752. [PMID: 39386664 PMCID: PMC11463483 DOI: 10.1101/2024.09.24.614752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Homologous recombination (HR) is a highly conserved tool for the removal of DNA double-strand breaks (DSBs) and the preservation of stalled and damaged DNA replication forks. Successful completion of HR requires the tumor suppressor BRCA2. Germline mutations in BRCA2 lead to familial breast, ovarian, and other cancers, underscoring the importance of this protein for maintaining genome stability. BRCA2 harbors two distinct DNA binding domains, one that possesses three oligonucleotide/oligosaccharide binding (OB) folds (known as the OB-DBD), and with the other residing in the C-terminal recombinase binding domain (termed the CTRB-DBD) encoded by the last gene exon. Here, we employ a combination of genetic, biochemical, and cellular approaches to delineate contributions of these two DNA binding domains toward HR and the maintenance of stressed DNA replication forks. We show that OB-DBD and CTRB-DBD confer ssDNA and dsDNA binding capabilities to BRCA2, respectively, and that BRCA2 variants mutated in either DNA binding domain are impaired in the ability to load the recombinase RAD51 onto ssDNA pre-occupied by RPA. While the CTRB-DBD mutant is modestly affected for HR, it exhibits a strong defect in the protection of stressed replication forks. In contrast, the OB-DBD is indispensable for both BRCA2 functions. Our study thus defines the unique contributions of the two BRCA2 DNA binding domains in genome maintenance.
Collapse
|
15
|
Zeng SH, Yan ZQ, Ren Q, Lin LH, Chen Z. Knocking down RAD51AP1 enhances chemosensitivity by inhibiting the self-renewal of CD133 positive ovarian cancer stem-like cells. Discov Oncol 2024; 15:410. [PMID: 39235706 PMCID: PMC11377390 DOI: 10.1007/s12672-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
PURPOSE This study was designed to investigate the function of RAD51AP1 in the self-renewal and chemosensitivity of CD133 positive (CD133+) ovarian cancer (OC) stem-like cells. METHODS CD133+ (CD133 positive) OVCAR4 and CD133 negative (CD133-) OVCAR4 cells were separated from OVCAR4 by flow cytometry. Then, the separated CD133+OVCAR4 cells were divided into the following groups: Vector group; RAD51AP1 group; siNC group; si-RAD51AP1 group. Next, sphere-formation assay and colony forming assay were used to evaluate the self-renewal and proliferation ability of cells; western blot to detect the expression of RAD51AP1, transforming growth factor beta 1 (TGF-β1) and SMAD4 proteins in tissues and cells; qRT-PCR to assess the mRNA levels of sex-determining region Y-box 2 (SOX2), octamer-binding transcription factor 4 (OCT4), NANOG and Kruppel-like factor 4 (KLF4). RESULTS The performance of CD133+OVCAR4 cells was much better than that of CD133-OVCAR4 cells in sphere-formation assay and colony forming assay. Besides, compared with adjacent group and CD133-OVCAR4 cells, the expression level of RAD51AP1 increased significantly in OC group and CD133+OVCAR4 cells. Moreover, the over-expression of RAD51AP1 promoted the self-renewal and proliferation of CD133+OVCAR4 cells. On the contrary, knocking down the expression level of RAD51AP1 could inhibit the self-renewal and proliferation of CD133+OVCAR4 cells and improve the sensitivity of cells to chemotherapy drugs. CONCLUSION The findings of this study showed that RAD51AP1 was highly expressed in OC tissue and CD133+OVCAR4 cells, and regulated the self-renewal and chemosensitivity of tumor cells through the TGF-β1/SMAD4 signaling pathway.
Collapse
Affiliation(s)
- Si-Heng Zeng
- Department of Gynecology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200170, China
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Zhi-Qiang Yan
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Qing Ren
- Department of Gynecology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Li-Hui Lin
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Zhen Chen
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China.
| |
Collapse
|
16
|
Zhao R, Xu M, Yu X, Wondisford AR, Lackner RM, Salsman J, Dellaire G, Chenoweth DM, O'Sullivan RJ, Zhao X, Zhang H. SUMO promotes DNA repair protein collaboration to support alternative telomere lengthening in the absence of PML. Genes Dev 2024; 38:614-630. [PMID: 39038850 PMCID: PMC11368244 DOI: 10.1101/gad.351667.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether-and if so, how-SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.
Collapse
Affiliation(s)
- Rongwei Zhao
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Meng Xu
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaoyang Yu
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Rachel M Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
17
|
Bettin N, Querido E, Gialdini I, Grupelli GP, Goretti E, Cantarelli M, Andolfato M, Soror E, Sontacchi A, Jurikova K, Chartrand P, Cusanelli E. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends. SCIENCE ADVANCES 2024; 10:eadk4387. [PMID: 38865460 PMCID: PMC11168465 DOI: 10.1126/sciadv.adk4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Collapse
Affiliation(s)
- Nicole Bettin
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Irene Gialdini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Glenda Paola Grupelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elena Goretti
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Cantarelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Andolfato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eslam Soror
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandra Sontacchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
18
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal telomere DNA derived from excessive strand displacements. Proc Natl Acad Sci U S A 2024; 121:e2318438121. [PMID: 38696464 PMCID: PMC11087782 DOI: 10.1073/pnas.2318438121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| |
Collapse
|
20
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
21
|
Xu M, Senanayaka D, Zhao R, Chigumira T, Tripathi A, Tones J, Lackner RM, Wondisford AR, Moneysmith LN, Hirschi A, Craig S, Alishiri S, O'Sullivan RJ, Chenoweth DM, Reiter NJ, Zhang H. TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells. Nat Commun 2024; 15:2165. [PMID: 38461301 PMCID: PMC10925046 DOI: 10.1038/s41467-024-46509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dulmi Senanayaka
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Rongwei Zhao
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tafadzwa Chigumira
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Astha Tripathi
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jason Tones
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rachel M Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laurel N Moneysmith
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Alexander Hirschi
- Cepheid Diagnostics, 904 E. Caribbean Dr., Sunnyvale, California, 94089, USA
| | - Sara Craig
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Sahar Alishiri
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Nicholas J Reiter
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Chen L, Gai X, Yu X. Pre-rRNA facilitates the recruitment of RAD51AP1 to DNA double-strand breaks. J Biol Chem 2024; 300:107115. [PMID: 38403248 PMCID: PMC10959706 DOI: 10.1016/j.jbc.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.
Collapse
Affiliation(s)
- Linlin Chen
- School of Life Sciences, Fudan University, Shanghai, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
23
|
Zhang J, Chen F, Tang M, Xu W, Tian Y, Liu Z, Shu Y, Yang H, Zhu Q, Lu X, Peng B, Liu X, Xu X, Gullerova M, Zhu WG. The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability. Cell Rep 2024; 43:113779. [PMID: 38358891 DOI: 10.1016/j.celrep.2024.113779] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.
Collapse
Affiliation(s)
- Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Yuxin Shu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Hui Yang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Bin Peng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xingzhi Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
24
|
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. Bioessays 2024; 46:e2300184. [PMID: 38047499 DOI: 10.1002/bies.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ava Boston
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
27
|
Rosso I, Jones-Weinert C, Rossiello F, Cabrini M, Brambillasca S, Munoz-Sagredo L, Lavagnino Z, Martini E, Tedone E, Garre' M, Aguado J, Parazzoli D, Mione M, Shay JW, Mercurio C, d'Adda di Fagagna F. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat Commun 2023; 14:7086. [PMID: 37925537 PMCID: PMC10625592 DOI: 10.1038/s41467-023-42831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.
Collapse
Affiliation(s)
- Ilaria Rosso
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Corey Jones-Weinert
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Matteo Cabrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Brambillasca
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Zeno Lavagnino
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Emanuele Martini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimiliano Garre'
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- RCSI, Royal College of Surgeons in Ireland, Department of Chemistry, Dublin, Ireland
| | - Julio Aguado
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dario Parazzoli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ciro Mercurio
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy.
| |
Collapse
|
28
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
29
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal Telomeres Derived from Excessive Strand Displacements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551186. [PMID: 37577643 PMCID: PMC10418088 DOI: 10.1101/2023.07.31.551186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication (BIR), evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), unique to ALT cells, are considered potential precursors of C-circles, their generation process remains undefined. Here, we introduce a highly sensitive method to detect single stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear C-rich ssDNA accumulation may indeed precede C-circle formation. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a new model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
30
|
LIU R, LI M, HU Z, SONG Z, CHEN J. [Research Advances of RAD51AP1 in Tumor Progression and Drug Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:701-708. [PMID: 37985156 PMCID: PMC10600754 DOI: 10.3779/j.issn.1009-3419.2023.102.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 11/22/2023]
Abstract
The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.
Collapse
|
31
|
Pizzul P, Rinaldi C, Bonetti D. The multistep path to replicative senescence onset: zooming on triggering and inhibitory events at telomeric DNA. Front Cell Dev Biol 2023; 11:1250264. [PMID: 37771378 PMCID: PMC10524272 DOI: 10.3389/fcell.2023.1250264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Replicative senescence is an essential cellular process playing important physiological functions, but it is better known for its implications in aging, cancer, and other pathologies. One of the main triggers of replicative senescence is telomere shortening and/or its dysfunction and, therefore, a deep understanding of the molecular determinants is crucial. However, replicative senescence is a heterogeneous and hard to study process, especially in mammalian cells, and some important questions still need an answer. These questions concern i) the exact molecular causes triggering replicative senescence, ii) the role of DNA repair mechanisms and iii) the importance of R-loops at telomeres in regulating senescence onset, and iv) the mechanisms underlying the bypass of replicative senescence. In this review, we will report and discuss recent findings about these mechanisms both in mammalian cells and in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
| | | | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
32
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
33
|
Fernandes RV, Lingner J. The THO complex counteracts TERRA R-loop-mediated telomere fragility in telomerase+ cells and telomeric recombination in ALT+ cells. Nucleic Acids Res 2023; 51:6702-6722. [PMID: 37246640 PMCID: PMC10359610 DOI: 10.1093/nar/gkad448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023] Open
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes. Telomeres are transcribed into long non-coding Telomeric Repeat-Containing RNA (TERRA), whose functions rely on its ability to associate with telomeric chromatin. The conserved THO complex (THOC) was previously identified at human telomeres. It links transcription with RNA processing, decreasing the accumulation of co-transcriptional DNA:RNA hybrids throughout the genome. Here, we explore the role of THOC at human telomeres, as a regulator of TERRA localization to chromosome ends. We show that THOC counteracts TERRA association with telomeres via R-loops formed co-transcriptionally and also post-transcriptionally, in trans. We demonstrate that THOC binds nucleoplasmic TERRA, and that RNaseH1 loss, which increases telomeric R-loops, promotes THOC occupancy at telomeres. Additionally, we show that THOC counteracts lagging and mainly leading strand telomere fragility, suggesting that TERRA R-loops can interfere with replication fork progression. Finally, we observed that THOC suppresses telomeric sister-chromatid exchange and C-circle accumulation in ALT cancer cells, which maintain telomeres by recombination. Altogether, our findings reveal crucial roles of THOC in telomeric homeostasis through the co- and post-transcriptional regulation of TERRA R-loops.
Collapse
Affiliation(s)
- Rita Valador Fernandes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Göder A, Quinlan A, Rainey MD, Bennett D, Shamavu D, Corso J, Santocanale C. PTBP1 enforces ATR-CHK1 signaling determining the potency of CDC7 inhibitors. iScience 2023; 26:106951. [PMID: 37378325 PMCID: PMC10291475 DOI: 10.1016/j.isci.2023.106951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and fork processing. CDC7 inhibition mildly activates the ATR pathway, which further limits origin firing; however, to date the relationship between CDC7 and ATR remains controversial. We show that CDC7 and ATR inhibitors are either synergistic or antagonistic depending on the degree of inhibition of each individual kinase. We find that Polypyrimidine Tract Binding Protein 1 (PTBP1) is important for ATR activity in response to CDC7 inhibition and genotoxic agents. Compromised PTBP1 expression makes cells defective in RPA recruitment, genomically unstable, and resistant to CDC7 inhibitors. PTBP1 deficiency affects the expression and splicing of many genes indicating a multifactorial impact on drug response. We find that an exon skipping event in RAD51AP1 contributes to checkpoint deficiency in PTBP1-deficient cells. These results identify PTBP1 as a key factor in replication stress response and define how ATR activity modulates the activity of CDC7 inhibitors.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Aisling Quinlan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Declan Bennett
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91TK33, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Jacqueline Corso
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| |
Collapse
|
35
|
Broderick R, Cherdyntseva V, Nieminuszczy J, Dragona E, Kyriakaki M, Evmorfopoulou T, Gagos S, Niedzwiedz W. Pathway choice in the alternative telomere lengthening in neoplasia is dictated by replication fork processing mediated by EXD2's nuclease activity. Nat Commun 2023; 14:2428. [PMID: 37105990 PMCID: PMC10140042 DOI: 10.1038/s41467-023-38029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Telomerase-independent cancer proliferation via the alternative lengthening of telomeres (ALT) relies upon two distinct, largely uncharacterized, break-induced-replication (BIR) processes. How cancer cells initiate and regulate these terminal repair mechanisms is unknown. Here, we establish that the EXD2 nuclease is recruited to ALT telomeres to direct their maintenance. We demonstrate that EXD2 loss leads to telomere shortening, elevated telomeric sister chromatid exchanges, C-circle formation as well as BIR-mediated telomeric replication. We discover that EXD2 fork-processing activity triggers a switch between RAD52-dependent and -independent ALT-associated BIR. The latter is suppressed by EXD2 but depends specifically on the fork remodeler SMARCAL1 and the MUS81 nuclease. Thus, our findings suggest that processing of stalled replication forks orchestrates elongation pathway choice at ALT telomeres. Finally, we show that co-depletion of EXD2 with BLM, DNA2 or POLD3 confers synthetic lethality in ALT cells, identifying EXD2 as a potential druggable target for ALT-reliant cancers.
Collapse
Affiliation(s)
| | - Veronica Cherdyntseva
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | | | - Eleni Dragona
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Maria Kyriakaki
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Theodora Evmorfopoulou
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece.
| | | |
Collapse
|
36
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Clatterbuck Soper SF, Meltzer PS. ATRX/DAXX: Guarding the Genome against the Hazards of ALT. Genes (Basel) 2023; 14:genes14040790. [PMID: 37107548 PMCID: PMC10137841 DOI: 10.3390/genes14040790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Proliferating cells must enact a telomere maintenance mechanism to ensure genomic stability. In a subset of tumors, telomeres are maintained not by telomerase, but through a homologous recombination-based mechanism termed Alternative Lengthening of Telomeres or ALT. The ALT process is linked to mutations in the ATRX/DAXX/H3.3 histone chaperone complex. This complex is responsible for depositing non-replicative histone variant H3.3 at pericentric and telomeric heterochromatin but has also been found to have roles in ameliorating replication in repeat sequences and in promoting DNA repair. In this review, we will discuss ways in which ATRX/DAXX helps to protect the genome, and how loss of this complex allows ALT to take hold.
Collapse
|
38
|
Yadav T, Zhang JM, Ouyang J, Leung W, Simoneau A, Zou L. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol Cell 2022; 82:3985-4000.e4. [PMID: 36265486 PMCID: PMC9637728 DOI: 10.1016/j.molcel.2022.09.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.
Collapse
Affiliation(s)
- Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
39
|
TERRA and RAD51AP1 at the R&D-loop department of ALT telomeres. Mol Cell 2022; 82:3963-3965. [DOI: 10.1016/j.molcel.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|