1
|
Cadefau-Fabregat M, Martínez-Cebrián G, Lorenzi L, Weiss FD, Frank AK, Castelló-García JM, Julià-Vilella E, Gámez-García A, Yera L, de Castro CPM, Wang YF, Meissner F, Vaquero A, Merkenschlager M, Porse BT, Cuartero S. Mutant CEBPA promotes tolerance to inflammatory stress through deficient AP-1 activation. Nat Commun 2025; 16:3492. [PMID: 40221437 PMCID: PMC11993602 DOI: 10.1038/s41467-025-58712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The CEBPA transcription factor is frequently mutated in acute myeloid leukemia (AML). Mutations in the CEBPA gene, which are typically biallelic, result in the production of a shorter isoform known as p30. Both the canonical 42-kDa isoform (p42) and the AML-associated p30 isoform bind chromatin and activate transcription, but the specific transcriptional programs controlled by each protein and how they are linked to a selective advantage in AML is not well understood. Here, we show that cells expressing the AML-associated p30 have reduced baseline inflammatory gene expression and display altered dynamics of transcriptional induction in response to LPS, consequently impacting cytokine secretion. This confers p30-expressing cells an increased resistance to the adverse effects of prolonged exposure to inflammatory signals. Mechanistically, we show that these differences primarily arise from the differential regulation of AP-1 family proteins. In addition, we find that the impaired function of the AP-1 member ATF4 in p30-expressing cells alters their response to ER stress. Collectively, these findings uncover a link between mutant CEBPA, inflammation and the stress response, potentially revealing a vulnerability in AML.
Collapse
Affiliation(s)
- Maria Cadefau-Fabregat
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Lucía Lorenzi
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Felix D Weiss
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Julià-Vilella
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Laura Yera
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carini Picardi Morais de Castro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Felix Meissner
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| |
Collapse
|
2
|
Yi C, Kitamura Y, Maezawa S, Namekawa SH, Cairns BR. ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network. Nat Struct Mol Biol 2025:10.1038/s41594-025-01509-5. [PMID: 40033150 DOI: 10.1038/s41594-025-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis. These regions largely share broad histone 3 methylation and acetylation (H3K4me3 and H3K27ac), DNA hypomethylation, RNA polymerase II (RNAPol2) and often CCCTC-binding factor (CTCF). Hi-C analyses show robust three-dimensional physical interactions among these cobound promoters, suggesting the existence of a transcription factor and higher-order active chromatin interaction network within uSPG that poises meiotic promoters for subsequent activation. Conversely, these factors do not notably occupy germline-specific promoters driving spermiogenesis, which instead lack promoter-promoter physical interactions and bear DNA hypermethylation, even when active. Overall, ZBTB16 promotes uSPG cell-cycle progression and colocalizes with SALL4, SOX3, CTCF and RNAPol2 to help establish an extensive and interactive chromatin poising network.
Collapse
Affiliation(s)
- Chongil Yi
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Khullar S, Huang X, Ramesh R, Svaren J, Wang D. NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation. BIOINFORMATICS ADVANCES 2024; 5:vbae206. [PMID: 40260118 PMCID: PMC12011367 DOI: 10.1093/bioadv/vbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 04/23/2025]
Abstract
Motivation Transcription factor (TF) coordination plays a key role in gene regulation via direct and/or indirect protein-protein interactions (PPIs) and co-binding to regulatory elements on DNA. Single-cell technologies facilitate gene expression measurement for individual cells and cell-type identification, yet the connection between TF-TF coordination and target gene (TG) regulation of various cell types remains unclear. Results To address this, we introduce our innovative computational approach, Network Regression Embeddings (NetREm), to reveal cell-type TF-TF coordination activities for TG regulation. NetREm leverages network-constrained regularization, using prior knowledge of PPIs among TFs, to analyze single-cell gene expression data, uncovering cell-type coordinating TFs and identifying revolutionary TF-TG candidate regulatory network links. NetREm's performance is validated using simulation studies and benchmarked across several datasets in humans, mice, yeast. Further, we showcase NetREm's ability to prioritize valid novel human TF-TF coordination links in 9 peripheral blood mononuclear and 42 immune cell sub-types. We apply NetREm to examine cell-type networks in central and peripheral nerve systems (e.g. neuronal, glial, Schwann cells) and in Alzheimer's disease versus Controls. Top predictions are validated with experimental data from rat, mouse, and human models. Additional functional genomics data helps link genetic variants to our TF-TG regulatory and TF-TF coordination networks. Availability and implementation https://github.com/SaniyaKhullar/NetREm.
Collapse
Affiliation(s)
- Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53076, United States
| | - Xiang Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Comparative Biomedical Sciences Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53076, United States
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
4
|
Liu L, Han L, Han K, Zhang Z, Zhang H, Zhang L. Identification of co-localised transcription factors based on paired motifs analysis. IET Syst Biol 2024; 18:238-249. [PMID: 39588827 DOI: 10.1049/syb2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction of transcription factors (TFs) with DNA precisely regulates gene transcription. In mammalian cells, thousands of TFs often interact with DNA cis-regulatory elements in a combinatorial manner rather than act alone. The identification of cooperativity between TFs can help to explore the mechanism of transcriptional regulation. However, little is known about the cooperative patterns of TFs in the genome. To identify which TFs prefer co-localisation, the authors conducted a paired motif analysis in the accessible regions of the human genome based on the Poisson background model. Especially, the authors distinguish the cooperative binding TFs and the competitive binding TFs according to the distance between TF motifs. In the K562 cell line, the authors find that TFs from a same family are always competing the same binding sites, such as FOS_JUN family, whereas KLF family TFs show significant cooperative binding in the adjacency region. Furthermore, the comparative analysis across 16 human cell lines indicates that most TF combination patterns are conserved, but there are still some cell-line-specific patterns. Finally, in human prostate cancer cells (PC-3) and human prostate normal cells (RWPE-2), the authors investigate the specific TF combination patterns in the disease cell and normal cell. The results show that the cooperative binding TF pairs shared by PC-3 and RWPE-2 account for over 90%. Simultaneously, the authors also identify 26 specific TF combination pairs in PC-3 cancer cells.
Collapse
Affiliation(s)
- Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lu Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Kaiyuan Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Haojiang Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
5
|
Khandekar A, Ellis SJ. An expanded view of cell competition. Development 2024; 151:dev204212. [PMID: 39560103 DOI: 10.1242/dev.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.
Collapse
Affiliation(s)
- Ameya Khandekar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
6
|
Geng X, Fu Z, Geng G, Chi K, Liu C, Hong H, Cai G, Chen X, Hong Q. Astilbin improves the therapeutic effects of mesenchymal stem cells in AKI-CKD mice by regulating macrophage polarization through PTGS2-mediated pathway. Stem Cell Res Ther 2024; 15:427. [PMID: 39543734 PMCID: PMC11566621 DOI: 10.1186/s13287-024-04025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) have been proven to be appropriate candidates for the treatment of AKI-CKD, their efficacy is limited and variable. Astilbin (AST) had a protective effect on MSCs from oxidative stress via ROS-scavenging, however, whether it can improve MSCs' renoprotection and the underlying mechanism need to be elucidated. METHODS AST-pretreated MSCs were administered intravenously into the ischemia-reperfusion injury mice models and the renal function, pathological changes and inflammation. Were evaluated. In addition, DARTS, molecular docking, surface plasma resonance(SPR), dual-luciferase reporter gene assay and the ChIP-PCR were utilized to explore the potential signaling pathways through which AST exert renal protective effects on MSCs. RESULTS AST-pretreated MSCs markedly improved kidney function, reduced kidney pathological injury and inflammation in AKI and AKI-CKD mice. RNA-seq results showed that PTGS2 related pathway was significantly up-regulated in MSCs after AST pretreatment. DARTS assay, molecular docking and SPR assay revealed that AST could bind with the transcriptional factor of Kruppel-Like Factor 4(KLF4) protein. The promoter of PTGS2 had the binding and transcriptional activation by KLF4. Furthermore, AST pretreatment promoted the secretion of PGE2 in MSCs. And then the westren blot results showed that the protein levels of CD163 and CD206 were upregulated after coculture in AST-pretreated MSCs, indicating that the polarization of RAW264.7 cells towards M2-like macrophages was induced. Knockdown of PTGS2 reversed the ability of AST-pretreated MSCs in converting macrophages to M2 phenotype and reducing their therapeutic effects on AKI-CKD mice. CONCLUSION AST pretreatment enhances the efficacy of MSCs on AKI and AKI-CKD mice by inducing of M2-like phenotype polarization in macrophages through the PTGS2-mediated pathway. This approach not only provides a novel strategy to strengthen the capability of MSCs but also helps elucidate the beneficial effects of the Chinese herbal medicine AST.
Collapse
Affiliation(s)
- Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Healthcare Office of Service Bureau, Agency for Offices Administration, Central Military Commission, People's Republic of China, Beijing, 100034
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Guangrui Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Critical Care Medicine, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, 650032, Yunnan Province, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Haijuan Hong
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
7
|
Li Z, Li X, Lin J, Wang Y, Cao H, Zhou J. Reevaluation by the CRISPR/Cas9 knockout approach revealed that multiple pluripotency-associated lncRNAs are dispensable for pluripotency maintenance while Snora73a/b is essential for pluripotency exit. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2198-2212. [PMID: 38995489 DOI: 10.1007/s11427-023-2594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/15/2024] [Indexed: 07/13/2024]
Abstract
Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs. Unexpectedly, all of these lncRNAs were dispensable for pluripotency maintenance and proliferation in mouse ESCs when disrupted individually or in combination. Single-cell transcriptomic analysis also showed that the knockout of these lncRNAs has a minimal impact on pluripotency gene expression and cell identity. We further showed that several small hairpin RNAs (shRNAs) previously used to knock down lncRNAs caused the downregulation of pluripotency genes in the corresponding lncRNA-knockout ESCs, indicating that off-target effects likely responsible for the pluripotency defects caused by these shRNAs. Interestingly, linc1343-knockout and linc1343-knockdown ESCs failed to form cystic structures and exhibited high expression of pluripotency genes during embryoid body (EB) differentiation. By reintroducing RNA products generated from the linc1343 locus, we found that two snoRNAs, Snora73a and Snora73b, but not lncRNAs, could rescue pluripotency silencing defects during EB differentiation of linc1343 knockout ESCs. Our results suggest that the 8 previously annotated pluripotency-regulating lncRNAs have no overt functions in conventional ESC culture; however, we identified snoRNA products derived from an annotated lncRNA locus as essential regulators for silencing pluripotency genes.
Collapse
Affiliation(s)
- Zhen Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xuefei Li
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| |
Collapse
|
8
|
Lu Y, Berenson A, Lane R, Guelin I, Li Z, Chen Y, Shah S, Yin M, Soto-Ugaldi LF, Fiszbein A, Fuxman Bass JI. A large-scale cancer-specific protein-DNA interaction network. Life Sci Alliance 2024; 7:e202402641. [PMID: 39013578 PMCID: PMC11252446 DOI: 10.26508/lsa.202402641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer development and progression are generally associated with gene dysregulation, often resulting from changes in the transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network, as well as an extensive promoter clone resource for future studies. Highly connected TFs bind to promoters of genes associated with either good or poor cancer prognosis, suggesting that strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene-targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activators or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF ESR1 in DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study broadens our knowledge of the TFs involved in cancer gene regulation and provides a valuable resource for future studies and therapeutics.
Collapse
Affiliation(s)
- Yunwei Lu
- Biology Department, Boston University, Boston, MA, USA
| | - Anna Berenson
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Ryan Lane
- Biology Department, Boston University, Boston, MA, USA
| | | | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Yilin Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Sakshi Shah
- Biology Department, Boston University, Boston, MA, USA
| | - Meimei Yin
- Biology Department, Boston University, Boston, MA, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Juan Ignacio Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Katsuda T, Sussman JH, Zaret KS, Stanger BZ. The yin and yang of pioneer transcription factors: Dual roles in repression and activation. Bioessays 2024; 46:e2400138. [PMID: 39058903 PMCID: PMC11427146 DOI: 10.1002/bies.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Pioneer transcription factors, by virtue of their ability to target nucleosomal DNA in silent chromatin, play crucial roles in eliciting cell fate decisions during development and cellular reprogramming. In addition to their well-established role in chromatin opening to activate gene expression programs, recent studies have demonstrated that pioneer factors have the complementary function of being able to silence the starting cell identity through targeted chromatin repression. Given recent discoveries regarding the repressive aspect of pioneer function, we discuss the basis by which pioneer factors can suppress alternative lineage programs in the context of cell fate control.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jonathan H. Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kenneth S. Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Ben Z. Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Pal S, Dhar R. Living in a noisy world-origins of gene expression noise and its impact on cellular decision-making. FEBS Lett 2024; 598:1673-1691. [PMID: 38724715 DOI: 10.1002/1873-3468.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024]
Abstract
The expression level of a gene can vary between genetically identical cells under the same environmental condition-a phenomenon referred to as gene expression noise. Several studies have now elucidated a central role of transcription factors in the generation of expression noise. Transcription factors, as the key components of gene regulatory networks, drive many important cellular decisions in response to cellular and environmental signals. Therefore, a very relevant question is how expression noise impacts gene regulation and influences cellular decision-making. In this Review, we summarize the current understanding of the molecular origins of expression noise, highlighting the role of transcription factors in this process, and discuss the ways in which noise can influence cellular decision-making. As advances in single-cell technologies open new avenues for studying expression noise as well as gene regulatory circuits, a better understanding of the influence of noise on cellular decisions will have important implications for many biological processes.
Collapse
Affiliation(s)
- Sampriti Pal
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| |
Collapse
|
11
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing unveils coordinated global transcription. Nature 2024; 631:216-223. [PMID: 38839954 PMCID: PMC11222150 DOI: 10.1038/s41586-024-07517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1,2. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations3. However, fundamental questions about the temporal regulation of transcription and enhancer-gene coordination remain unanswered, primarily because of the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq-a new single-cell nascent RNA sequencing assay that uses click chemistry-and unveil coordinated transcription throughout the genome. We demonstrate the episodic nature of transcription and the co-transcription of functionally related genes. scGRO-seq can estimate burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells and can leverage replication-dependent non-polyadenylated histone gene transcription to elucidate cell cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq enables the identification of networks of enhancers and genes. Our results suggest that the bursting of transcription at super-enhancers precedes bursting from associated genes. By imparting insights into the dynamic nature of global transcription and the origin and propagation of transcription signals, we demonstrate the ability of scGRO-seq to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathaniel D Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sean K Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Sarah E Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Exact Sciences, Madison, WI, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Hu X, van Sluijs B, García-Blay Ó, Stepanov Y, Rietrae K, Huck WTS, Hansen MMK. ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs. Nat Commun 2024; 15:3918. [PMID: 38724524 PMCID: PMC11082235 DOI: 10.1038/s41467-024-48107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Yury Stepanov
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Koen Rietrae
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Katsuda T, Sussman JH, Ito K, Katznelson A, Yuan S, Takenaka N, Li J, Merrell AJ, Cure H, Li Q, Rasool RU, Asangani IA, Zaret KS, Stanger BZ. Cellular reprogramming in vivo initiated by SOX4 pioneer factor activity. Nat Commun 2024; 15:1761. [PMID: 38409161 PMCID: PMC10897393 DOI: 10.1038/s41467-024-45939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Katznelson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson J Merrell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hector Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reyaz Ur Rasool
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Lu Y, Berenson A, Lane R, Guelin I, Li Z, Chen Y, Shah S, Yin M, Soto-Ugaldi LF, Fiszbein A, Fuxman Bass JI. A large-scale cancer-specific protein-DNA interaction network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577099. [PMID: 38352498 PMCID: PMC10862707 DOI: 10.1101/2024.01.24.577099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cancer development and progression are generally associated with dysregulation of gene expression, often resulting from changes in transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network as well as an extensive promoter clone resource for future studies. Most highly connected TFs do not show a preference for binding to promoters of genes associated with either good or poor cancer prognosis, suggesting that emerging strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activator or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF estrogen receptor ɑ (ESR1) on DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study not only broadens our knowledge of TFs involved in the cancer gene regulatory network but also provides a valuable resource for future studies, laying a foundation for potential therapeutic strategies targeting TFs in cancer.
Collapse
Affiliation(s)
- Yunwei Lu
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Anna Berenson
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
| | - Ryan Lane
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Isabelle Guelin
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Yilin Chen
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Sakshi Shah
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Meimei Yin
- Biology Department, Boston University, Boston, MA, 02215, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Juan Ignacio Fuxman Bass
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
15
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing using click-chemistry unveils coordinated transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558015. [PMID: 37745427 PMCID: PMC10516050 DOI: 10.1101/2023.09.15.558015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1-5. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations6-9. However, fundamental questions in the temporal regulation of transcription and enhancer-gene synchrony remain unanswered primarily due to the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq - a novel single-cell nascent RNA sequencing assay using click-chemistry - and unveil the coordinated transcription throughout the genome. scGRO-seq demonstrates the episodic nature of transcription, and estimates burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells. It reveals the co-transcription of functionally related genes and leverages the replication-dependent non-polyadenylated histone genes transcription to elucidate cell-cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq identifies networks of enhancers and genes and indicates that the bursting of transcription at super-enhancers precedes the burst from associated genes. By imparting insights into the dynamic nature of transcription and the origin and propagation of transcription signals, scGRO-seq demonstrates its unique ability to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B. Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathaniel D. Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sean K. Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Department of Biology, Stanford University, Stanford, CA 94305
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208
| | - Sarah E. Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Exact Sciences Corporation, Madison, WI 53719
| | - Phillip A. Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Lead Contact
| |
Collapse
|
16
|
Katsuda T, Sussman J, Ito K, Katznelson A, Yuan S, Li J, Merrell AJ, Takenaka N, Cure H, Li Q, Rasool RU, Asangani IA, Zaret KS, Stanger BZ. Physiological reprogramming in vivo mediated by Sox4 pioneer factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528556. [PMID: 36824858 PMCID: PMC9948957 DOI: 10.1101/2023.02.14.528556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver. In lineage-traced cells, we assessed the timing of Sox4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, Sox4 directly binds to and closes hepatocyte regulatory sequences via a motif it overlaps with Hnf4a, a hepatocyte master regulator. Subsequently, Sox4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
| | - Andrew Katznelson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jinyang Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Allyson J. Merrell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Naomi Takenaka
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
| | - Hector Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Qinglan Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
| | - Reyaz Ur Rasool
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Irfan A. Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Kenneth S. Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Ben Z. Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- The Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, PA
| |
Collapse
|