1
|
Xiang W, Lin X, Yang Y, Huang L, Chen Y, Chen J, Liu L. Cas12h is a crRNA-guided DNA nickase that can be utilized for precise gene editing. Cell Rep 2025; 44:115718. [PMID: 40372912 DOI: 10.1016/j.celrep.2025.115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/20/2025] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
Type V-H CRISPR-Cas system, an important subtype of type V CRISPR-Cas systems, has remained enigmatic in terms of its structure and function despite being discovered several years ago. Here, we comprehensively characterize the type V-H CRISPR-Cas system and elucidate its role as a DNA nicking system. The unique CRISPR RNA (crRNA) employed by Cas12h effector protein enables specific targeting of double-stranded DNA (dsDNA), while its RuvC domain is responsible for cleaving the non-target strand (NTS) of dsDNA. We present the structure of Cas12h bound to crRNA and target DNA. Our structural analysis reveals that the RuvC domain possesses a narrow active pocket that facilitates recognition of NTS but potentially hinders access to the target strand. Furthermore, we demonstrate that Cas12h confers adaptive immunity against invading mobile genetic elements through transcriptional gene inhibition. We have engineered an adenine base editor by fusing Cas12h with an adenine deaminase, achieving effective A-to-G substitution.
Collapse
Affiliation(s)
- Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yunqian Yang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Faure G, Saito M, Wilkinson ME, Quinones-Olvera N, Xu P, Flam-Shepherd D, Kim S, Reddy N, Zhu S, Evgeniou L, Koonin EV, Macrae RK, Zhang F. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025; 388:eadv9789. [PMID: 40014690 PMCID: PMC12045711 DOI: 10.1126/science.adv9789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
RNA-guided systems provide remarkable versatility, enabling diverse biological functions. Through iterative structural and sequence homology-based mining starting with a guide RNA-interaction domain of Cas9, we identified a family of RNA-guided DNA-targeting proteins in phage and parasitic bacteria. Each system consists of a tandem interspaced guide RNA (TIGR) array and a TIGR-associated (Tas) protein containing a nucleolar protein (Nop) domain, sometimes fused to HNH (TasH)- or RuvC (TasR)-nuclease domains. We show that TIGR arrays are processed into 36-nucleotide RNAs (tigRNAs) that direct sequence-specific DNA binding through a tandem-spacer targeting mechanism. TasR can be reprogrammed for precise DNA cleavage, including in human cells. The structure of TasR reveals striking similarities to box C/D small nucleolar ribonucleoproteins and IS110 RNA-guided transposases, providing insights into the evolution of diverse RNA-guided systems.
Collapse
Affiliation(s)
- Guilhem Faure
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Makoto Saito
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Max E. Wilkinson
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Natalia Quinones-Olvera
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Peiyu Xu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Daniel Flam-Shepherd
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Stephanie Kim
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Nishith Reddy
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Shiyou Zhu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Lilia Evgeniou
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
- Department of Systems Biology, Harvard University; Boston, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Rhiannon K. Macrae
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| |
Collapse
|
3
|
Lv J, Jin J, Ding L, Xiang L, Xie B, Wu K, Chen Q. Directed Evolution of OgeuIscB With Enhanced Activity in Human Cells. FASEB J 2025; 39:e70570. [PMID: 40278504 DOI: 10.1096/fj.202500082r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
The miniature RNA-guided endonuclease IscB, as the evolutionary progenitor of Cas9, is attracting increased attention for genome editing due to its compact size and suitability for in vivo delivery. However, the poor editing efficiency of IscB in eukaryotic cells presents a significant challenge to its widespread application in precise site-specific human genome editing. In this study, we employed structure-guided rational design and protein engineering to optimize OgeuIscB, resulting in the identification of enIscB-F138R, which further enhanced editing activity up to 3.49-fold in mammalian cells compared to the high-activity OgeuIscB variant enIscB. Furthermore, we engineered an enIscB-F138R nickase-based adenine base editor, termed miABE-F138R, exhibiting enhanced base editing efficiency relative to miABE. To illustrate the practical applications of miABE-F138R, we applied it to rectify the prevalent R560C mutation in Pde6β associated with autosomal recessive retinitis pigmentosa, resulting in a significant improvement in activity compared to miABE. In conclusion, enIscB-F138R and miABE-F138R offer adaptable platforms for genome editing with potential significance in future biomedical applications.
Collapse
Affiliation(s)
- Jineng Lv
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang Jin
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liujun Ding
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bintao Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kunchao Wu
- Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Qi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Tordoff J, Alfonse LE, Makarova KS, Ornstein A, Garrity AJ, Yan WX, Scott DA, Koonin EV, Cheng DR. Initial Characterization of 12 New Subtypes and Variants of Type V CRISPR Systems. CRISPR J 2025; 8:149-154. [PMID: 40163416 DOI: 10.1089/crispr.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Type V CRISPR systems are highly diverse in sequence, mechanism, and function. Although recent efforts have greatly expanded our understanding of their evolution, the diversity of type V systems remains to be completely explored, and many clades have not been experimentally characterized. In this work, we mined metagenomic databases to identify three new subtypes and nine new variants of Cas12, the effector of Type V systems, and provide experimental and computational characterization of their Protospacer-Adjacent Motif (PAM), interference activity, loci architecture, and tracrRNA dependence. Half of the new Cas12s are found in phages or prophages. New subtypes Cas12o and Cas12p lack the canonical RuvC catalytic residues, suggesting they interfere with the target without cleavage, possibly by blocking transcription or replication. One variant, Cas12f10, displays substantial activity on PAM-less targets. Our work expands the diversity of the functionally characterized Cas12 effectors and provides some promising candidates for genome engineering tools.
Collapse
Affiliation(s)
- Jesse Tordoff
- Arbor Biotechnologies, Cambridge, Massachusetts, USA
| | | | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Winston X Yan
- Arbor Biotechnologies, Cambridge, Massachusetts, USA
| | - David A Scott
- Arbor Biotechnologies, Cambridge, Massachusetts, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Cheng
- Arbor Biotechnologies, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Song B. Efforts to Downsize Base Editors for Clinical Applications. Int J Mol Sci 2025; 26:2357. [PMID: 40076976 PMCID: PMC11900391 DOI: 10.3390/ijms26052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Since the advent of the clustered regularly interspaced short palindromic repeats (CRISPR) system in the gene editing field, diverse CRISPR-based gene editing tools have been developed for treating genetic diseases. Of these, base editors (BEs) are promising because they can carry out precise gene editing at single-nucleotide resolution without inducing DNA double-strand breaks (DSBs), which pose significant risks of genomic instability. Despite their outstanding advantages, the clinical application of BEs remains challenging due to their large size, which limits their efficient delivery, particularly in adeno-associated virus (AAV)-based systems. To address this issue, various strategies have been explored to reduce the size of BEs. These approaches include truncating the nonessential domains and replacing the bulky components with smaller substitutes without compromising the editing efficiency. In this review, we highlight the importance of downsizing BEs for therapeutic applications and introduce recent advances in size-reduction strategies. Additionally, we introduce the ongoing efforts to overcome other limitations of BEs, providing insights into their potential for improving in vivo gene editing.
Collapse
Affiliation(s)
- Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
6
|
Adler BA, Al-Shimary MJ, Patel JR, Armbruster EG, Colognori D, Charles EJ, Miller KV, Lahiri A, Cui ML, Oromí-Bosch A, Voelker A, Trinidad M, Lee J, Beurnier S, Boger R, Nomburg J, Barrangou R, Mutalik VK, Schoeniger JS, Pogliano JA, Savage DF, Doudna JA, Cress BF. CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d. Nat Microbiol 2025; 10:694-709. [PMID: 40011704 PMCID: PMC11879866 DOI: 10.1038/s41564-025-01935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bacteriophages constitute one of the largest reservoirs of genes of unknown function in the biosphere. Even in well-characterized phages, the functions of most genes remain unknown. Experimental approaches to study phage gene fitness and function at genome scale are lacking, partly because phages subvert many modern functional genomics tools. Here we leverage RNA-targeting dCas13d to selectively interfere with protein translation and to measure phage gene fitness at a transcriptome-wide scale. We find CRISPR Interference through Antisense RNA-Targeting (CRISPRi-ART) to be effective across phage phylogeny, from model ssRNA, ssDNA and dsDNA phages to nucleus-forming jumbo phages. Using CRISPRi-ART, we determine a conserved role of diverse rII homologues in subverting phage Lambda RexAB-mediated immunity to superinfection and identify genes critical for phage fitness. CRISPRi-ART establishes a broad-spectrum phage functional genomics platform, revealing more than 90 previously unknown genes important for phage fitness.
Collapse
Affiliation(s)
- Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David Colognori
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emeric J Charles
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kate V Miller
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Agnès Oromí-Bosch
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Angela Voelker
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sebastien Beurnier
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ron Boger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Jason Nomburg
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph S Schoeniger
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Joseph A Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z, Xiong C, Huang S, Hu C, Ouyang S. Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM. Signal Transduct Target Ther 2025; 10:66. [PMID: 39955288 PMCID: PMC11830025 DOI: 10.1038/s41392-025-02147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
Cas12h1 is a compact CRISPR-associated nuclease from functionally diverse type V CRISPR-Cas effectors and recognizes a purine-rich protospacer adjacent motif (PAM) distinct from that of other type V Cas effectors. Here, we report the nickase preference of Cas12h1, which predominantly cleaves the nontarget strand (NTS) of a double-stranded DNA (dsDNA) substrate. In addition, Cas12h1 acts as a nickase in human cells. We further determined the cryo-EM structures of Cas12h1 in the surveillance, R-loop formation, and interference states, revealing the molecular mechanisms involved in the crRNA maturation, target recognition, R-loop formation, nuclease activation and target degradation. Cas12h1 notably recognizes a broad 5'-DHR-3' PAM (D is A, G, or T; H is A, C, or T; R is A or G) both in vitro and in human cells. In addition, Cas12h1 utilizes a distinct activation mechanism that the lid motif undergoes a "flexible to stable" transition to expose the catalytic site to the substrate. A high-fidelity nucleic acid detector, Cas12h1hf, was developed through rational engineering, which distinguishes single-base mismatches and retains comparable on-target activities. Our results shed light on the molecular mechanisms underlying Cas12h1 nickase, improve the understanding of type V Cas effectors, and expand the CRISPR toolbox for genome editing and molecular diagnosis.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Hongyu Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Mengxi Liu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yuhang Wei
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Bo Liu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zekai Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chenyang Xiong
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Shiqing Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117557, Singapore.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
8
|
Chen J, Lin X, Xiang W, Chen Y, Zhao Y, Huang L, Liu L. DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems. Nucleic Acids Res 2025; 53:gkae1241. [PMID: 39676682 PMCID: PMC11797020 DOI: 10.1093/nar/gkae1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Precursor (pre)-CRISPR RNA (crRNA) processing can occur in both the repeat and spacer regions, leading to the removal of specific segments from the repeat and spacer sequences, thereby facilitating crRNA maturation. The processing of pre-crRNA repeat by Cas effector and ribonuclease has been observed in CRISPR-Cas9 and CRISPR-Cas12a systems. However, no evidence of pre-crRNA spacer cleavage by any enzyme has been reported in these systems. In this study, we demonstrate that DNA target binding triggers efficient cleavage of pre-crRNA spacers by type II and V Cas effectors such as Cas12a, Cas12b, Cas12i, Cas12j and Cas9. We show that the pre-crRNA spacer cleavage catalyzed by Cas12a and Cas9 has distinct characteristics. Activation of the cleavage activity in Cas12a is induced by both single-stranded DNA (ssDNA) and double-stranded DNA target binding, whereas only ssDNA target binding triggers cleavage in Cas9 toward the pre-crRNA spacer. We present a series of structures elucidating the underlying mechanisms governing conformational activation in both Cas12a and Cas9. Furthermore, leveraging the trans-cutting activity of the pre-crRNA spacer, we develop a one-step DNA detection method characterized by its simplicity, high sensitivity, and excellent specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Yueming Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
9
|
Nayfach S, Bhatnagar A, Novichkov A, Estevam GO, Kim N, Hill E, Ruffolo JA, Silverstein R, Gallagher J, Kleinstiver B, Meeske AJ, Cameron P, Madani A. Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631536. [PMID: 39829748 PMCID: PMC11741284 DOI: 10.1101/2025.01.06.631536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas enzymes must recognize a protospacer-adjacent motif (PAM) to edit a genomic site, significantly limiting the range of targetable sequences in a genome. Machine learning-based protein engineering provides a powerful solution to efficiently generate Cas protein variants tailored to recognize specific PAMs. Here, we present Protein2PAM, an evolution-informed deep learning model trained on a dataset of over 45,000 CRISPR-Cas PAMs. Protein2PAM rapidly and accurately predicts PAM specificity directly from Cas proteins across Type I, II, and V CRISPR-Cas systems. Using in silico deep mutational scanning, we demonstrate that the model can identify residues critical for PAM recognition in Cas9 without utilizing structural information. As a proof of concept for protein engineering, we employ Protein2PAM to computationally evolve Nme1Cas9, generating variants with broadened PAM recognition and up to a 50-fold increase in PAM cleavage rates compared to the wild-type under in vitro conditions. This work represents the first successful application of machine learning to achieve customization of Cas enzymes for alternate PAM recognition, paving the way for personalized genome editing.
Collapse
Affiliation(s)
| | | | | | | | - Nahye Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | | - Rachel Silverstein
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA
| | | | - Benjamin Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Alexander J. Meeske
- Profluent Bio, Berkeley, CA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
10
|
Li D, Zhang S, Lin S, Xing W, Yang Y, Zhu F, Su D, Chen C, Liu JJG. Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage. Nat Commun 2024; 15:10727. [PMID: 39737904 PMCID: PMC11685505 DOI: 10.1038/s41467-024-54491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties. To comprehensively understand the Cas12e family, we identify and characterize six unreported Cas12e members that vary in their CRISPR-locus architectures, PAM preferences, and cleavage efficacies. Interestingly, among all variants, PlmCas12e exhibits the most robust trans-cleavage activity and the lowest salt sensitivity in cis-cleavage. Further structural comparisons reveal that the unique NTSB domain in PlmCas12e is beneficial to DNA unwinding at high salt concentrations, while some NTSB-lacking Cas12e proteins rely on positively charged loops for dsDNA unwinding. These findings demonstrate how divergent evolution of structural elements shapes the nuclease diversity within the Cas12e family, potentially contributing to their adaptations to varying environmental conditions.
Collapse
Affiliation(s)
- Danyuan Li
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shouyue Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Lin
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Xing
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yun Yang
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengxia Zhu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China.
| | - Chunlai Chen
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Yang B, Wu C, Teng Y, Chou KJ, Guarnieri MT, Xiong W. Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation. Cell Syst 2024; 15:1133-1147.e4. [PMID: 39667940 DOI: 10.1016/j.cels.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/25/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Bin Yang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Chao Wu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yuxi Teng
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
12
|
Koonin EV, Makarova KS. CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition. BMC Biol 2024; 22:295. [PMID: 39696488 DOI: 10.1186/s12915-024-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition. Many plasmids carry type IV or subtype V-M CRISPR systems that appear to be involved in inter-plasmid competition. Numerous Tn7-like and Mu-like transposons encode CRISPR-associated transposases (CASTs) in which interference-defective CRISPR systems of type I or type V mediate RNA-guided, site-specific transposition. The recruitment of CRISPR systems and their components by MGE is a manifestation of extensive gene shuttling between host immune systems and MGE, a major trend in the coevolution of MGE with their hosts.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
13
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2540-2553. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
14
|
Wu WY, Adiego-Pérez B, van der Oost J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat Biotechnol 2024; 42:1807-1821. [PMID: 39633151 DOI: 10.1038/s41587-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
15
|
Yang W, Zhu JK, Jin W. A catalog of gene editing sites and genetic variations in editing sites in model organisms. BMC Genomics 2024; 25:1153. [PMID: 39614172 DOI: 10.1186/s12864-024-11073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND CRISPR-Cas systems require a protospacer adjacent motif (PAM), which plays an essential role in self/non-self discrimination in their natural context, to cleave DNA for genome editing. Unfortunately, common genetic variation is distributed throughout genomes, which can block recognition of target sites by Cas proteins. However, little information is available about the distribution of editing sites in model organisms and how often common variation overlaps with those PAM sites. RESULTS Herein, we characterized six representative Cas proteins (Cas9, Cas12a, Cas12b, Cas12i, Cas12j and Cas12l) genomic editing sites in ten model organisms (yeast, flatworms, flies, zebrafish, mice, humans, rice, maize, Arabidopsis and tomato). We demonstrated that there were more than 34 editing sites per kilobase on average in these genomes. In each genome, 91.69-99.83% and 95.4-99.73% of genes had at least one unique editing site in exon and promoter, respectively. Depending on publicly available genomic diversity data, we identified the variations (SNPs and InDels) in editing sites in humans and rice, indicating the risk in the application of CRISPR/Cas technology. Finally, using CCR5 and BCL11A as examples, we revealed variation site was a factor that must be considered when designing sgRNA. CONCLUSIONS Our findings not only revealed the distribution characteristics of editing sites of six representative Cas proteins in ten model organism genomes but also shed light on the adverse effect of variation sites on target site recognition. Our current work will serve as a reminder of the risks of CRISPR application.
Collapse
Affiliation(s)
- Weilong Yang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Xuan Q, Wang J, Nie Y, Fang C, Liang W. Research Progress and Application of Miniature CRISPR-Cas12 System in Gene Editing. Int J Mol Sci 2024; 25:12686. [PMID: 39684395 DOI: 10.3390/ijms252312686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
CRISPR-Cas system, a natural acquired immune system in prokaryotes that defends against exogenous DNA invasion because of its simple structure and easy operation, has been widely used in many research fields such as synthetic biology, crop genetics and breeding, precision medicine, and so on. The miniature CRISPR-Cas12 system has been an emerging genome editing tool in recent years. Compared to the commonly used CRISPR-Cas9 and CRISPR-Cas12a, the miniature CRISPR-Cas12 system has unique advantages, such as rich PAM sites, higher specificity, smaller volume, and cytotoxicity. However, the application of miniature Cas12 proteins and the methods to improve its editing efficiency have not been systematically summarized. In this review, we introduce the classification of CRISPR-Cas system and summarize the structural characteristics of type V CRISPR-Cas system and the cleavage mechanism of five miniature Cas12 proteins. The application of a miniature CRISPR-Cas12 system in the gene editing of animals, plants, and microorganisms is summarized, and the strategies to improve the editing efficiency of the miniature CRISPR-Cas12 system are discussed, aiming to provide reference for further understanding the functional mechanism and engineering modification of the miniature CRISPR-Cas12 system.
Collapse
Affiliation(s)
- Qiangbing Xuan
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Junjie Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yuanqing Nie
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Li W, Jiang X, Wang W, Hou L, Cai R, Li Y, Gu Q, Chen Q, Ma P, Tang J, Guo M, Chuai G, Huang X, Zhang J, Liu Q. Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models. Nat Commun 2024; 15:10024. [PMID: 39562558 PMCID: PMC11576732 DOI: 10.1038/s41467-024-54365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The discovery of CRISPR-Cas systems has paved the way for advanced gene editing tools. However, traditional Cas discovery methods relying on sequence similarity may miss distant homologs and aren't suitable for functional recognition. With protein large language models (LLMs) evolving, there is potential for Cas system modeling without extensive training data. Here, we introduce CHOOSER (Cas HOmlog Observing and SElf-processing scReening), an AI framework for alignment-free discovery of CRISPR-Cas systems with self-processing pre-crRNA capability using protein foundation models. By using CHOOSER, we identify 11 Casλ homologs, nearly doubling the known catalog. Notably, one homolog, EphcCasλ, is experimentally validated for self-processing pre-crRNA, DNA cleavage, and trans-cleavage, showing promise for CRISPR-based pathogen detection. This study highlights an innovative approach for discovering CRISPR-Cas systems with specific functions, emphasizing their potential in gene editing.
Collapse
Affiliation(s)
- Wenhui Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xianyue Jiang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wuke Wang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Liya Hou
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Runze Cai
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Yongqian Li
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qiuxi Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Qinchang Chen
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Tang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Menghao Guo
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Guohui Chuai
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, China.
| | - Xingxu Huang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China.
- The Key Laboratory of Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, China.
| |
Collapse
|
18
|
Mohanraju P, Wu WY. TldR: TnpB's evolutionary shift from transposon nucleases to RNA-guided transcriptional regulators. Trends Microbiol 2024; 32:1039-1041. [PMID: 39304420 DOI: 10.1016/j.tim.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
TnpB proteins are transposon-encoded nucleases involved in transposon DNA propagation. Wiegand et al. identified a new class of TnpB-derived proteins, called TnpB-like nuclease-dead repressors (TldRs), which function as RNA-guided transcriptional regulators targeting conserved promoter regions. In Enterobacteriaceae, bacteriophages use TldRs and an adjacent phage gene to modulate host flagellar assembly.
Collapse
Affiliation(s)
- Prarthana Mohanraju
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, the Netherlands.
| | - Wen Y Wu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
19
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Xue N, Hong D, Zhang D, Wang Q, Zhang S, Yang L, Chen X, Li Y, Han H, Hu C, Liu M, Song G, Guan Y, Wang L, Zhu Y, Li D. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Mol Cell 2024; 84:3128-3140.e4. [PMID: 39096898 DOI: 10.1016/j.molcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.
Collapse
Affiliation(s)
- Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dishan Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qian Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xi Chen
- Bioray Laboratories Inc., Shanghai, China
| | - Yongmei Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Honghui Han
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Bioray Laboratories Inc., Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yifan Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
21
|
Wang Y, Wang Y, Tang N, Wang Z, Pan D, Ji Q. Characterization and Engineering of a Novel Miniature Eubacterium siraeum CRISPR-Cas12f System. ACS Synth Biol 2024; 13:2115-2127. [PMID: 38941613 DOI: 10.1021/acssynbio.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cas12f nucleases are one of the most compact genome editors, exhibiting promising potential for in vivo therapeutic applications. However, the availability of active Cas12f genome editors remains relatively limited in the field. Here, we report the characterization and engineering of a novel miniature Cas12f endonuclease from Eubacterium siraeum (EsCas12f1, 433 amino acids). We elucidate the specific Protospacer Adjacent Motifs preference and the detailed biochemical properties for DNA targeting and cleavage. By employing rational design strategies, we systematically optimize the guide RNA of EsCas12f1, converting the initially ineffective CRISPR-EsCas12f1 system into an efficient bacterial genome editor. Furthermore, we demonstrate the capacity of EsCas12f1 for in vitro nucleic-acid diagnostics. In summary, our results enrich the miniature CRISPR-Cas toolbox and pave the way for the application of EsCas12f1 for both genome editing and in vitro diagnostics.
Collapse
Affiliation(s)
- Yannan Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yujue Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Na Tang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Deng Pan
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
22
|
Tang N, Ji Q. Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genome Editing Applications. ACS Chem Biol 2024; 19:1399-1408. [PMID: 38899980 DOI: 10.1021/acschembio.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The therapeutic application of CRISPR-based gene editing technology is hindered by the delivery challenges of large Cas nucleases. The emergence of miniature editing tools derived from type V CRISPR systems and their ancestor TnpB nucleases presents promising solutions to counter these obstacles. Notably, the type V CRISPR-Cas12f and -Cas12n systems exhibit not only a concise gene size but also remarkable precision in targeted editing, thereby underscoring their potential as supreme gene editing tools. Although both systems are considered as intermediates in the evolution of TnpB to mature Cas12 effectors, they exhibit distinct biochemical and structural characteristics, demonstrating the diversity and complexity of TnpB's evolutionary outcomes. The diverse evolutionary branches indicate the existence of numerous unexplored compact CRISPR systems in nature, the mining and development of which could potentially revolutionize gene manipulation techniques and pave the way for innovative applications in gene therapy. In this Account, we summarize the recent advances from our group with the research and development of Cas12f and Cas12n genome editing systems, including the identification, characterization, and engineering for improving the editing efficiency. Additionally, we discuss the evolutionary process of the ancestral nuclease TnpB growing into various type V CRISPR systems, giving insight into the discovery of novel compact gene editing systems.
Collapse
Affiliation(s)
- Na Tang
- School of Physical Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
23
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
24
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. Science 2024; 385:eadm8189. [PMID: 38991068 PMCID: PMC11758368 DOI: 10.1126/science.adm8189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 07/13/2024]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break-stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate "IStron" from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Hoang C. Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edan E. Mortman
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sanjana R. Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Diego R. Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Han L, Hu Y, Mo Q, Yang H, Gu F, Bai F, Sun Y, Ma H. Engineering miniature IscB nickase for robust base editing with broad targeting range. Nat Chem Biol 2024:10.1038/s41589-024-01670-w. [PMID: 38977788 DOI: 10.1038/s41589-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.
Collapse
Affiliation(s)
- Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
26
|
Yan H, Tan X, Zou S, Sun Y, Ke A, Tang W. Assessing and engineering the IscB-ωRNA system for programmed genome editing. Nat Chem Biol 2024:10.1038/s41589-024-01669-3. [PMID: 38977787 DOI: 10.1038/s41589-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.4-fold improvement in insertion-deletion (indel) formation efficiency in human cells. Paired with structure-guided ωRNA engineering, the enhanced OgeuIscB-ωRNA systems efficiently edited the human genome across 26 target sites, attaining up to 87.3% indel and 62.2% base-editing frequencies. Both wild-type and engineered OgeuIscB-ωRNA showed moderate fidelity in editing the human genome, with off-target profiles revealing key determinants of target selection including an NARR target-adjacent motif (TAM) and the TAM-proximal 14 nucleotides in the R-loop. Collectively, our engineered OgeuIscB-ωRNA systems are programmable, potent and sufficiently specific for human genome editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoqing Tan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Siyuan Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yihong Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature 2024; 631:439-448. [PMID: 38926585 PMCID: PMC11702177 DOI: 10.1038/s41586-024-07598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12 (refs. 5,6). We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas adaptive immunity. Here, using phylogenetics, structural predictions, comparative genomics and functional assays, we uncover multiple independent genesis events of programmable transcription factors, which we name TnpB-like nuclease-dead repressors (TldRs). These proteins use naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPR interference technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
28
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
29
|
Oh Y, Gwon LW, Lee HK, Hur JK, Park KH, Kim KP, Lee SH. Highly efficient and specific regulation of gene expression using enhanced CRISPR-Cas12f system. Gene Ther 2024; 31:358-365. [PMID: 38918512 DOI: 10.1038/s41434-024-00458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The recently developed CRISPR activator (CRISPRa) system uses a CRISPR-Cas effector-based transcriptional activator to effectively control the expression of target genes without causing DNA damage. However, existing CRISPRa systems based on Cas9/Cas12a necessitate improvement in terms of efficacy and accuracy due to limitations associated with the CRISPR-Cas module itself. To overcome these limitations and effectively and accurately regulate gene expression, we developed an efficient CRISPRa system based on the small CRISPR-Cas effector Candidatus Woesearchaeota Cas12f (CWCas12f). By engineering the CRISPR-Cas module, linking activation domains, and using various combinations of linkers and nuclear localization signal sequences, the optimized eCWCas12f-VPR system enabled effective and target-specific regulation of gene expression compared with that using the existing CRISPRa system. The eCWCas12f-VPR system developed in this study has substantial potential for controlling the transcription of endogenous genes in living organisms and serves as a foundation for future gene therapy and biological research.
Collapse
Affiliation(s)
- Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Lee Wha Gwon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyomin K Lee
- Major in Medical Genetics, Department of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Medicine, HY Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
- Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Atlanta, GA, 30303, USA
| | - Kwang-Hyun Park
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
30
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
31
|
Benz F, Camara-Wilpert S, Russel J, Wandera KG, Čepaitė R, Ares-Arroyo M, Gomes-Filho JV, Englert F, Kuehn JA, Gloor S, Mestre MR, Cuénod A, Aguilà-Sans M, Maccario L, Egli A, Randau L, Pausch P, Rocha EPC, Beisel CL, Madsen JS, Bikard D, Hall AR, Sørensen SJ, Pinilla-Redondo R. Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans. Cell Host Microbe 2024; 32:875-886.e9. [PMID: 38754416 DOI: 10.1016/j.chom.2024.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.
Collapse
Affiliation(s)
- Fabienne Benz
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Sarah Camara-Wilpert
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rimvydė Čepaitė
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Manuel Ares-Arroyo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | | | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Johannes A Kuehn
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Silvana Gloor
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mònica Aguilà-Sans
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lennart Randau
- Department of Biology, Philipps Universität Marburg, Marburg, Germany; SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
32
|
Hu Y, Han L, Mo Q, Du Z, Jiang W, Wu X, Zheng J, Xiao X, Sun Y, Ma H. Engineering miniature CRISPR-Cas Un1Cas12f1 for efficient base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102201. [PMID: 38766526 PMCID: PMC11101732 DOI: 10.1016/j.omtn.2024.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Adeno-associated virus (AAV) is a relatively safe and efficient vector for gene therapy. However, due to its 4.7-kb limit of cargo, SpCas9-mediated base editors cannot be packaged into a single AAV vector, which hinders their clinical application. The development of efficient miniature base editors becomes an urgent need. Un1Cas12f1 is a class II V-F-type CRISPR-Cas protein with only 529 amino acids. Although Un1Cas12f1 has been engineered to be a base editor in mammalian cells, the base-editing efficiency is less than 10%, which limits its therapeutic applications. Here, we developed hypercompact and high-efficiency base editors by engineering Un1Cas12f1, fusing non-specific DNA binding protein Sso7d, and truncating single guide RNA (sgRNA), termed STUminiBEs. We demonstrated robust A-to-G conversion (54% on average) by STUminiABEs or C-to-T conversion (45% on average) by STUminiCBEs. We packaged STUminiCBEs into AAVs and successfully introduced a premature stop codon on the PCSK9 gene in mammalian cells. In sum, STUminiBEs are efficient miniature base editors and could readily be packaged into AAVs for biological research or biomedical applications.
Collapse
Affiliation(s)
- Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zengming Du
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Wei Jiang
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xia Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xiao Xiao
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
33
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
34
|
George NA, Zhou Z, Anantharaman K, Hug LA. Discarded diversity: Novel megaphages, auxiliary metabolic genes, and virally encoded CRISPR-Cas systems in landfills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596742. [PMID: 38854013 PMCID: PMC11160803 DOI: 10.1101/2024.05.30.596742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Viruses are the most abundant microbial entity on the planet, impacting microbial community structure and ecosystem services. Despite outnumbering Bacteria and Archaea by an order of magnitude, viruses have been comparatively underrepresented in reference databases. Metagenomic examinations have illustrated that viruses of Bacteria and Archaea have been specifically understudied in engineered environments. Here we employed metagenomic and computational biology methods to examine the diversity, host interactions, and genetic systems of viruses predicted from 27 samples taken from three municipal landfills across North America. Results We identified numerous viruses that are not represented in reference databases, including the third largest bacteriophage genome identified to date (~678 kbp), and note a cosmopolitan diversity of viruses in landfills that are distinct from viromes in other systems. Host-virus interactions were examined via host CRISPR spacer to viral protospacer mapping which captured hyper-targeted viral populations and six viral populations predicted to infect across multiple phyla. Virally-encoded auxiliary metabolic genes (AMGs) were identified with the potential to augment hosts' methane, sulfur, and contaminant degradation metabolisms, including AMGs not previously reported in literature. CRISPR arrays and CRISPR-Cas systems were identified from predicted viral genomes, including the two largest bacteriophage genomes to contain these genetic features. Some virally encoded Cas effector proteins appear distinct relative to previously reported Cas systems and are interesting targets for potential genome editing tools. Conclusions Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for diverse viruses and atypical virus-host dynamics.
Collapse
Affiliation(s)
- Nikhil A. George
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| |
Collapse
|
35
|
Wu H, Sun Y, Wang Y, Luo L, Song Y. Advances in miniature CRISPR-Cas proteins and their applications in gene editing. Arch Microbiol 2024; 206:231. [PMID: 38652321 DOI: 10.1007/s00203-024-03962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas system consists of Cas proteins and single-stranded RNAs that recruit Cas proteins and specifically target the nucleic acid. Some Cas proteins can accurately cleave the target nucleic acid under the guidance of the single-stranded RNAs. Due to its exceptionally high specificity, the CRISPR-Cas system is now widely used in various fields such as gene editing, transcription regulation, and molecular diagnosis. However, the huge size of the most frequently utilized Cas proteins (Cas9, Cas12a, and Cas13, which contain 950-1,400 amino acids) can limit their applicability, especially in eukaryotic gene editing, where larger Cas proteins are difficult to deliver into the target cells. Recently discovered miniature CRISPR-Cas proteins, consisting of only 400 to 800 amino acids, offer the possibility of overcoming this limitation. This article systematically reviews the latest research progress of several miniature CRISPR-Cas proteins (Cas12f, Cas12j, Cas12k, and Cas12m) and their practical applications in the field of gene editing.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China.
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
36
|
Bigelyte G, Duchovska B, Zedaveinyte R, Sasnauskas G, Sinkunas T, Dalgediene I, Tamulaitiene G, Silanskas A, Kazlauskas D, Valančauskas L, Madariaga-Marcos J, Seidel R, Siksnys V, Karvelis T. Innate programmable DNA binding by CRISPR-Cas12m effectors enable efficient base editing. Nucleic Acids Res 2024; 52:3234-3248. [PMID: 38261981 PMCID: PMC11013384 DOI: 10.1093/nar/gkae016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders. Cryo-EM structure of Gordonia otitidis (Go) Cas12m ternary complex provided here reveals the structural mechanism of DNA binding ensuring interference. Harnessing GoCas12m innate ability to bind DNA target we fused it with adenine deaminase TadA-8e and showed an efficient A-to-G editing in Escherichia coli and human cells. Overall, this study expands our understanding of the functionally diverse Cas12 protein family, revealing DNA-binding dependent interference mechanism of Cas12m effectors that could be harnessed for engineering of compact base-editing tools.
Collapse
Affiliation(s)
- Greta Bigelyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Brigita Duchovska
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Rimante Zedaveinyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Tomas Sinkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Indre Dalgediene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Lukas Valančauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Julene Madariaga-Marcos
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Tautvydas Karvelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
37
|
Wang X, Li L, Guo L, Feng Y, Du Z, Jiang W, Wu X, Zheng J, Xiao X, Zheng H, Sun Y, Ma H. Robust miniature Cas-based transcriptional modulation by engineering Un1Cas12f1 and tethering Sso7d. Mol Ther 2024; 32:910-919. [PMID: 38351611 PMCID: PMC11163271 DOI: 10.1016/j.ymthe.2024.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Xiangnan Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingyun Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Feng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Wei Jiang
- Belief Biomed (Shanghai), Shanghai, China
| | - Xia Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Belief Biomed (Shanghai), Shanghai, China
| | - Xiao Xiao
- Belief Biomed (Shanghai), Shanghai, China
| | - Hui Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
38
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
39
|
Liu ZX, Zhang S, Zhu HZ, Chen ZH, Yang Y, Li LQ, Lei Y, Liu Y, Li DY, Sun A, Li CP, Tan SQ, Wang GL, Shen JY, Jin S, Gao C, Liu JJG. Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage. Science 2024; 383:eadh4859. [PMID: 38301022 DOI: 10.1126/science.adh4859] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024]
Abstract
Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shouyue Zhang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Hang Chen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun Yang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long-Qi Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Lei
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan-Yuan Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ao Sun
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng-Ping Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gao-Li Wang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie-Yi Shen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Jin
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
41
|
Su M, Li F, Wang Y, Gao Y, Lan W, Shao Z, Zhu C, Tang N, Gan J, Wu Z, Ji Q. Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nat Chem Biol 2024; 20:180-189. [PMID: 37697004 DOI: 10.1038/s41589-023-01420-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
CRISPR-Cas12f nucleases are currently one of the smallest genome editors, exhibiting advantages for efficient delivery via cargo-size-limited adeno-associated virus delivery vehicles. Most characterized Cas12f nucleases recognize similar T-rich protospacer adjacent motifs (PAMs) for DNA targeting, substantially restricting their targeting scope. Here we report the cryogenic electron microscopy structure and engineering of a miniature Clostridium novyi Cas12f1 nuclease (CnCas12f1, 497 amino acids) with rare C-rich PAM specificity. Structural characterizations revealed detailed PAM recognition, asymmetric homodimer formation and single guide RNA (sgRNA) association mechanisms. sgRNA engineering transformed CRISPR-CnCas12f1, which initially was incapable of genome targeting in bacteria, into an effective genome editor in human cells. Our results facilitate further understanding of CRISPR-Cas12f1 working mechanism and expand the mini-CRISPR toolbox.
Collapse
Affiliation(s)
- Mengjiao Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yujue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqi Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiwei Shao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
42
|
Adler BA, Trinidad MI, Bellieny-Rabelo D, Zhang E, Karp HM, Skopintsev P, Thornton BW, Weissman RF, Yoon P, Chen L, Hessler T, Eggers AR, Colognori D, Boger R, Doherty EE, Tsuchida CA, Tran RV, Hofman L, Shi H, Wasko KM, Zhou Z, Xia C, Al-Shimary MJ, Patel JR, Thomas VCJX, Pattali R, Kan MJ, Vardapetyan A, Yang A, Lahiri A, Maxwell MF, Murdock AG, Ramit GC, Henderson HR, Calvert RW, Bamert R, Knott GJ, Lapinaite A, Pausch P, Cofsky J, Sontheimer EJ, Wiedenheft B, Fineran PC, Brouns SJJ, Sashital DG, Thomas BC, Brown CT, Goltsman DSA, Barrangou R, Siksnys V, Banfield JF, Savage DF, Doudna JA. CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res 2024; 52:D590-D596. [PMID: 37889041 PMCID: PMC10767948 DOI: 10.1093/nar/gkad890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.
Collapse
Affiliation(s)
- Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Bellieny-Rabelo
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Elaine Zhang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Hannah M Karp
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Brittney W Thornton
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Rachel F Weissman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
| | - Tomas Hessler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amy R Eggers
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ron Boger
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Connor A Tsuchida
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan V Tran
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Laura Hofman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Graduate School of Life Sciences, Utrecht University, 3584 CS Utrecht, UT, The Netherlands
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Kevin M Wasko
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zehan Zhou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Chenglong Xia
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Vienna C J X Thomas
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rithu Pattali
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew J Kan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, CA 94158, USA
| | - Anna Vardapetyan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Alana Yang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Micaela F Maxwell
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA 23668, USA
| | - Andrew G Murdock
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Glenn C Ramit
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Hope R Henderson
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Roland W Calvert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rebecca S Bamert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Pausch
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Joshua C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, Dunedin 9016, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9016, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, 2629 HZ Delft, The Netherlands
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | - Rodolphe Barrangou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Virginius Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The University of Melbourne, Parkville, VIC 3052, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 2024; 32:32-43. [PMID: 37952084 PMCID: PMC10787141 DOI: 10.1016/j.ymthe.2023.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
In 2012, it was discovered that precise gene editing could be induced in target DNA using the reprogrammable characteristics of the CRISPR system. Since then, several studies have investigated the potential of the CRISPR system to edit various biological organisms. For the typical CRISPR system obtained from bacteria and archaea, many application studies have been conducted and have spread to various fields. To date, orthologs with various characteristics other than CRISPR-Cas9 have been discovered and are being intensively studied in the field of gene editing. CRISPR-Cas12 and its varied orthologs are representative examples of genome editing tools and have superior properties in terms of in vivo target gene editing compared with Cas9. Recently, TnpB and Fanzor of the OMEGA (obligate mobile element guided activity) system were identified to be the ancestor of CRISPR-Cas12 on the basis of phylogenetic analysis. Notably, the compact sizes of Cas12 and OMEGA endonucleases allow adeno-associated virus (AAV) delivery; hence, they are set to challenge Cas9 for in vivo gene therapy. This review is focused on these RNA-guided reprogrammable endonucleases: their structure, biochemistry, off-target effects, and applications in therapeutic gene editing.
Collapse
Affiliation(s)
- Isabel Wen Badon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
44
|
Lee Y, Oh Y, Lee SH. Recent advances in genome engineering by CRISPR technology. BMB Rep 2024; 57:12-18. [PMID: 38053294 PMCID: PMC10828434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2023] Open
Abstract
Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
45
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Rev Cardiovasc Ther 2024; 22:75-89. [PMID: 38494784 DOI: 10.1080/14779072.2024.2328642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION After understanding the genetic basis of cardiovascular disorders, the discovery of prime editing (PE), has opened new horizons for finding their cures. PE strategy is the most versatile editing tool to change cardiac genetic background for therapeutic interventions. The optimization of elements, prediction of efficiency, and discovery of the involved genes regulating the process have not been completed. The large size of the cargo and multi-elementary structure makes the in vivo heart delivery challenging. AREAS COVERED Updated from recent published studies, the fundamentals of the PEs, their application in cardiology, potentials, shortcomings, and the future perspectives for the treatment of cardiac-related genetic disorders will be discussed. EXPERT OPINION The ideal PE for the heart should be tissue-specific, regulatable, less immunogenic, high transducing, and safe. However, low efficiency, sup-optimal PE architecture, the large size of required elements, the unclear role of transcriptomics on the process, unpredictable off-target effects, and its context-dependency are subjects that need to be considered. It is also of great importance to see how beneficial or detrimental cell cycle or epigenomic modifier is to bring changes into cardiac cells. The PE delivery is challenging due to the size, multi-component properties of the editors and liver sink.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
46
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. Emergence of RNA-guided transcription factors via domestication of transposon-encoded TnpB nucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569447. [PMID: 38076855 PMCID: PMC10705468 DOI: 10.1101/2023.11.30.569447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Transposon-encoded tnpB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. This widespread gene family was repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas125,6. We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas. Here, using phylogenetics, structural predictions, comparative genomics, and functional assays, we uncover multiple instances of programmable transcription factors that we name TnpB-like nuclease-dead repressors (TldR). These proteins employ naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPRi technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of genes encoded by transposable elements, and reveals that RNA-guided transcription factors emerged long before the development of dCas9-based editors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Altae-Tran H, Shmakov SA, Makarova KS, Wolf YI, Kannan S, Zhang F, Koonin EV. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc Natl Acad Sci U S A 2023; 120:e2308224120. [PMID: 37983496 PMCID: PMC10691335 DOI: 10.1073/pnas.2308224120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023] Open
Abstract
The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.
Collapse
Affiliation(s)
- Han Altae-Tran
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Soumya Kannan
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Feng Zhang
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| |
Collapse
|
48
|
Altae-Tran H, Kannan S, Suberski AJ, Mears KS, Demircioglu FE, Moeller L, Kocalar S, Oshiro R, Makarova KS, Macrae RK, Koonin EV, Zhang F. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 2023; 382:eadi1910. [PMID: 37995242 PMCID: PMC10910872 DOI: 10.1126/science.adi1910] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.
Collapse
Affiliation(s)
- Han Altae-Tran
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Soumya Kannan
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Anthony J. Suberski
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kepler S. Mears
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - F. Esra Demircioglu
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Selin Kocalar
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567912. [PMID: 38045383 PMCID: PMC10690162 DOI: 10.1101/2023.11.20.567912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life, presumably due to the critical roles they play in transposon proliferation. IS605family TnpB homologs function in bacteria as programmable homing endonucleases by exploiting transposon-encoded guide RNAs to cleave vacant genomic sites, thereby driving transposon maintenance through DSB-stimulated homologous recombination. Whether this pathway is conserved in other genetic contexts, and in association with other transposases, is unknown. Here we uncover molecular mechanisms of transposition and RNA-guided DNA cleavage by IS607-family elements that, remarkably, also encode catalytic, self-splicing group I introns. After reconstituting and systematically investigating each of these biochemical activities for a candidate 'IStron' derived from Clostridium botulinum, we discovered sequence and structural features of the transposon-encoded RNA that satisfy molecular requirements of a group I intron and TnpB guide RNA, while still retaining the ability to be faithfully mobilized at the DNA level by the TnpA transposase. Strikingly, intron splicing was strongly repressed not only by TnpB, but also by the secondary structure of ωRNA alone, allowing the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts have evolved a sensitive equilibrium to balance competing and mutually exclusive activities that promote transposon maintenance while limiting adverse fitness costs on the host. Collectively, this work explains how diverse enzymatic activities emerged during the selfish spread of IS607-family elements and highlights molecular innovation in the multi-functional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Hoang C. Le
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Edan E. Mortman
- Department of Genetics and Development, Columbia University; New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Sanjana R. Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
- Present address: Biochemistry and Molecular Biophysics Program, University of California, San Diego, CA, USA
| | - Diego R. Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| |
Collapse
|
50
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|