1
|
Maciag AE, Yang Y, Sharma AK, Turner DM, DeHart CJ, Abdelkarim H, Fan L, Smith BP, Kumari V, Dyba M, Rigby M, Castillo Badillo JA, Adams L, Fornelli L, Fox S, Brafman A, Turbyville T, Gillette W, Messing S, Agamasu C, Wolfe AL, Gysin S, Chan AH, Simanshu DK, Esposito D, Chertov O, Stephen AG, Arkin M, Renslo A, Kelleher NL, Gaponenko V, Lightstone FC, Nissley DV, McCormick F. Blocking C-terminal processing of KRAS4b via a direct covalent attack on the CaaX-box cysteine. Proc Natl Acad Sci U S A 2025; 122:e2410766122. [PMID: 40343987 PMCID: PMC12088381 DOI: 10.1073/pnas.2410766122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
RAS is the most frequently mutated oncogene in cancer. RAS proteins show high sequence similarities in their G-domains but are significantly different in their C-terminal hypervariable regions (HVR). These regions interact with the cell membrane via lipid anchors that result from posttranslational modifications (PTM) of cysteine residues. KRAS4b is unique as it has only one cysteine that undergoes PTM, C185. Small molecule covalent modification of C185 would block any form of prenylation and subsequently inhibit attachment of KRAS4b to the cell membrane, blocking its biological activity. We translated this concept to the discovery and development of disulfide tethering screen hits into irreversible covalent modifiers of C185. These compounds inhibited proliferation of KRAS4b-driven mouse embryonic fibroblasts, but not cells driven by N-myristoylated KRAS4b that harbor a C185S mutation and are not dependent on C185 prenylation. Top-down proteomics was used to confirm target engagement in cells. These compounds bind in a pocket formed when the HVR folds back between helix 3 and 4 in the G-domain (HVR-α3-α4). This interaction can happen in the absence of small molecules as predicted by molecular dynamics simulations and is stabilized in the presence of C185 binders as confirmed by small-angle X-ray scattering and solution NMR. NOESY-HSQC, an NMR approach that measures internuclear distances of 6 Å or less, and structure analysis identified the critical residues and interactions that define the HVR-α3-α4 pocket. Further development of compounds that bind to this pocket could be the basis of a new approach to targeting KRAS cancers.
Collapse
Affiliation(s)
- Anna E. Maciag
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yue Yang
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biotechnology and Biosciences Division, Livermore, CA94550
| | - Alok K. Sharma
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David M. Turner
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Caroline J. DeHart
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL60607
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Facility of the National Cancer Institute, Frederick, MD21702
| | - Brian P. Smith
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Vandana Kumari
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Marcin Dyba
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Megan Rigby
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Jean A. Castillo Badillo
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Lauren Adams
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Luca Fornelli
- Department of Chemistry, Proteomics Center of Excellence, Northwestern University, Evanston, IL60208
| | - Stephen Fox
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Alla Brafman
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thomas Turbyville
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - William Gillette
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Simon Messing
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Constance Agamasu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Andrew L. Wolfe
- Department of Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Stephan Gysin
- Department of Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Albert H. Chan
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Dhirendra K. Simanshu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Dominic Esposito
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Oleg Chertov
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Andrew G. Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA94143
| | - Adam Renslo
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA94143
| | - Neil L. Kelleher
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL60208
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL60607
| | - Felice C. Lightstone
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biotechnology and Biosciences Division, Livermore, CA94550
| | - Dwight V. Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Frank McCormick
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
- Department of Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| |
Collapse
|
2
|
Levinson A, Shannon K, Huang BJ. Targeting Hyperactive Ras Signaling in Pediatric Cancer. Cold Spring Harb Perspect Med 2025; 15:a041572. [PMID: 39009442 PMCID: PMC12047744 DOI: 10.1101/cshperspect.a041572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Somatic RAS mutations are among the most frequent drivers in pediatric and adult cancers. Somatic KRAS, NRAS, and HRAS mutations exhibit distinct tissue-specific predilections. Germline NF1 and RAS mutations in children with neurofibromatosis type 1 and other RASopathy developmental disorders have provided new insights into Ras biology. In many cases, these germline mutations are associated with increased cancer risk. Promising targeted therapeutic strategies for pediatric cancers and neoplasms with NF1 or RAS mutations include inhibition of downstream Ras effector pathways, directly inhibiting the signal output of oncogenic Ras proteins and associated pathway members, and therapeutically targeting Ras posttranslational modifications and intracellular trafficking. Acquired drug resistance to targeted drugs remains a significant challenge but, increasingly, rational drug combination approaches have shown promise in overcoming resistance. Developing predictive preclinical models of childhood cancers for drug testing is a high priority for the field of pediatric oncology.
Collapse
Affiliation(s)
- Anya Levinson
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
3
|
França TC, Maddalena M, Kouidmi I, Ayotte Y, Islam ST, LaPlante SR. SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target. ACS OMEGA 2025; 10:9463-9473. [PMID: 40092832 PMCID: PMC11904710 DOI: 10.1021/acsomega.4c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
Collapse
Affiliation(s)
- Tanos
C. C. França
- INRS
Centre Armand Frappier Santé Biotechnologie, 531 des Prairies Boulevard, Laval, Quebec H7 V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to the Chemical and Biological Defense
(LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio
80, 22290-270 Rio
de Janeiro, Brazil
- Center
for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michael Maddalena
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Imène Kouidmi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Lavoie H, Therrien M. RAS signaling gets granular. Nat Chem Biol 2025:10.1038/s41589-025-01851-1. [PMID: 40038477 DOI: 10.1038/s41589-025-01851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Hugo Lavoie
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada.
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Ke Y, Gannaban R, Liu J, Zhou Y. STIM1 and lipid interactions at ER-PM contact sites. Am J Physiol Cell Physiol 2025; 328:C107-C114. [PMID: 39620863 DOI: 10.1152/ajpcell.00634.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Store-operated calcium (Ca2+) entry (SOCE) represents a major route of Ca2+ permeation across the plasma membrane (PM) in nonexcitable cells, which plays an indispensable role in maintaining intracellular Ca2+ homeostasis. This process is orchestrated through the dynamic coupling between the endoplasmic reticulum (ER)-localized Ca2+ sensor stromal interaction molecule 1 (STIM1) and the PM-resident ORAI1 channel. Upon depletion of ER Ca2+ stores, STIM1 undergoes conformational rearrangements and oligomerization, leading to the translocation of activated STIM1 toward the PM. This movement is facilitated by the physical interactions between positively charged cytosolic domains within STIM1 and negatively charged phospholipids embedded in the PM, ultimately enabling its binding to and activation of the PM-embedded ORAI1 channel. In this mini-review, we provide an overview of STIM1-mediated Ca2+ signaling at ER-PM contact sites, highlighting the regulatory roles of phospholipids in the inner leaflet and sphingolipids in the outer leaflet of the PM. We also discuss the development of molecular tools that enable real-time visualization and manipulation of membrane contact sites (MCSs) at ER-PM junctions. Finally, we highlight recent progress in developing targeted therapies for human diseases linked to STIM1 mutations and dysregulated Ca2+ signaling at ER-PM MCSs.
Collapse
Affiliation(s)
- Yuepeng Ke
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Ritchel Gannaban
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
| | - Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
- Graduate School of Biological Sciences, M. D. Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
6
|
Stephen AG. Two hearts beat as one: the debate over RAS dimers continues. Trends Biochem Sci 2024; 49:933-935. [PMID: 39358051 PMCID: PMC11560542 DOI: 10.1016/j.tibs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
A recent report by Yun et al. describes the detection of RAS dimers using intact mass spectrometry and investigates the role that membrane lipids, nucleotide state, and binding partners have in their formation.
Collapse
Affiliation(s)
- Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Zhou Z, Nguyen TL, Li X, Poujol C, Berlinska E, Michelina SV, Kapp JN, Plückthun A, Winslow MM, Ambrogio C, Shan Y, Santamaría D, Westover KD. Experimental variables determine the outcome of RAS-RAS interactions. J Biol Chem 2024; 300:107859. [PMID: 39374781 PMCID: PMC11567016 DOI: 10.1016/j.jbc.2024.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
RAS clustering at the cell membrane is critical to activate signaling in cells, but whether this clustering is mediated exclusively by its c-terminal hypervariable region, receives contributions from the G-domain of RAS, and/or is influenced by secondary effectors has been intensely debated. Reports that G-domain mutations do not modulate RAS-RAS interactions have led some to question the validity of previous experiments that indicate the G-domain plays a role in RAS clustering/interactions. Here we reconcile these findings by clarifying the impact of experimental variables, such as protein expression levels, cellular context, RAS zygosity, and secondary effector interactions on RAS clustering. Lack of control over these variables impacts the results using G-domain mutations across various assay systems and can lead to unsound conclusions.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tra Ly Nguyen
- BoRdeaux Institute of onCology (BRIC), INSERM, University of Bordeaux, Bordeaux, France
| | - Xingxiao Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christel Poujol
- Bordeaux Imaging Center, University of Bordeaux, CNRS, INSERM, BIC, Bordeaux, France
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Yibing Shan
- Antidote Health Foundation for Cure of Cancer, Cambridge, Massachusetts, USA
| | - David Santamaría
- University of Bordeaux, INSERM, ACTION Laboratory, IECB, Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Lee S, Eun H, Lee K. Effector Binding Sequentially Alters KRAS Dimerization on the Membrane: New Insights Into RAS-Mediated RAF Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401530. [PMID: 39138901 PMCID: PMC11481233 DOI: 10.1002/advs.202401530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Indexed: 08/15/2024]
Abstract
RAS proteins are peripheral membrane GTPases that activate multiple downstream effectors for cell proliferation and differentiation. The formation of a signaling RAS-RAF complex at the plasma membrane is implicated in a quarter of all human cancers; however, the underlying mechanism remains unclear. In this work, nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses to determine the structure of a hetero-tetrameric complex comprising KRAS and the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of activated RAF1 are employed. The binding of the RBD or RBD-CRD differentially alters the dimerization modes of KRAS on both anionic and neutral membranes, validated by interface-specific mutagenesis. Notably, the RBD binding allosterically generated two distinct KRAS dimer interfaces in equilibrium, favored by KRAS free and in complex with the RBD-CRD, respectively. Additional interactions of the CRD with both KRAS protomers are mutually cooperative to stabilize a new dimer configuration of KRAS bound to the RBD-CRD. The RAF binding sequentially alters KRAS dimerization, providing new insights into RAF activation, including a configurational transition of the KRAS dimer to provide an interaction site for the CRD and release the autoinhibited RAF complex. These methods are applicable to many other signaling protein complexes on the membrane.
Collapse
Affiliation(s)
- Soo‐Yeon Lee
- Department of PharmacyCollege of Pharmacy and Institute of Pharmaceutical SciencesCHA UniversityPocheon‐siGyeonggi‐Do11160Republic of Korea
| | - Hyun‐Jong Eun
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826Republic of Korea
| | - Ki‐Young Lee
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
9
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
10
|
Yun SD, Scott E, Chang JY, Bahramimoghaddam H, Lynn M, Lantz C, Russell DH, Laganowsky A. Capturing RAS oligomerization on a membrane. Proc Natl Acad Sci U S A 2024; 121:e2405986121. [PMID: 39145928 PMCID: PMC11348296 DOI: 10.1073/pnas.2405986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | | | - Michael Lynn
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| |
Collapse
|
11
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
12
|
Lyu H, Chamberlin HM. Functional distinction in oncogenic Ras variant activity in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050577. [PMID: 38946472 PMCID: PMC11340813 DOI: 10.1242/dmm.050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
Ras genes are important oncogenes that are frequently mutated in cancer. Human oncogenic variants exhibit functional distinctions in terms of their representation in different cancer types, impact on cellular targets and sensitivity to pharmacological treatments. However, how these distinct variants influence and respond to the cellular networks in which they are embedded is poorly understood. To identify novel participants in the complex interplay between Ras genotype and cell interaction networks in vivo, we have developed and tested an experimental framework using a simple vulva-development assay in the nematode C. elegans. Using this system, we evaluated a set of Ras oncogenic substitution changes at G12, G13 and Q61. We found that these variants fall into distinct groups based on phenotypic differences, sensitivity to gene dosage and inhibition of the downstream kinase MEK and their response to genetic modulators that influence Ras activity in a non-autonomous manner. Together, our results demonstrated that oncogenic C. elegans Ras variants exhibit clear distinctions in how they interface with the vulva-development network and showed that extracellular modulators yield variant-restricted effects in vivo.
Collapse
Affiliation(s)
- Haimeng Lyu
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Helen M. Chamberlin
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Araya M, Chen W, Ke Y, Zhou Y, Gorfe AA, Hancock JF, Liu J. Differential Lipid Binding Specificities of RAP1A and RAP1B are Encoded by the Amino Acid Sequence of the Membrane Anchors. J Am Chem Soc 2024; 146:19782-19791. [PMID: 39001846 PMCID: PMC11276784 DOI: 10.1021/jacs.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
RAP1 proteins belong to the RAS family of small GTPases that operate as molecular switches by cycling between GDP-bound inactive and GTP-bound active states. The C-terminal anchors of RAP1 proteins are known to direct membrane localization, but how these anchors organize RAP1 on the plasma membrane (PM) has not been investigated. Using high-resolution imaging, we show that RAP1A and RAP1B form spatially segregated nanoclusters on the inner leaflet of the PM, with further lateral segregation between GDP-bound and GTP-bound proteins. The C-terminal polybasic anchors of RAP1A and RAP1B differ in their amino acid sequences and exhibit different lipid binding specificities, which can be modified by single-point mutations in the respective polybasic domains (PBD). Molecular dynamics simulations reveal that single PBD mutations substantially reduce the interactions of the membrane anchors with the PM lipid phosphatidylserine. In summary, we show that aggregate lipid binding specificity encoded within the C-terminal anchor determines PM association and nanoclustering of RAP1A and RAP1B. Taken together with previous observations on RAC1 and KRAS, the study reveals that the PBD sequences of small GTPase membrane anchors can encode distinct lipid binding specificities that govern PM interactions.
Collapse
Affiliation(s)
- Mussie
K. Araya
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Wei Chen
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Yuepeng Ke
- Center
for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
- Department
of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Yubin Zhou
- Center
for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
- Department
of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Alemayehu A. Gorfe
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Junchen Liu
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Smith SF, Islam AFMT, Alimukhamedov S, Weiss ET, Charest PG. Molecular determinants of Ras-mTORC2 signaling. J Biol Chem 2024; 300:107423. [PMID: 38815864 PMCID: PMC11255897 DOI: 10.1016/j.jbc.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Stephen F Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - A F M Tariqul Islam
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan T Weiss
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Pascale G Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
16
|
Arora N, Liang H, Yao W, Ying H, Liu J, Zhou Y. Lysophosphatidylcholine acyltransferase 1 suppresses nanoclustering and function of KRAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596653. [PMID: 38853864 PMCID: PMC11160780 DOI: 10.1101/2024.05.30.596653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
KRAS is frequently mutated in cancer, contributing to 20% of all human cancer especially pancreatic, colorectal and lung cancer. Signaling of the constitutively active KRAS oncogenic mutants is mostly compartmentalized to proteolipid nanoclusters on the plasma membrane (PM). Signaling nanoclusters of many KRAS mutants selectively enrich phosphatidylserine (PS) lipids with unsaturated sn-2 acyl chains, but not the fully saturated PS species. Thus, remodeling PS acyl chains may suppress KRAS oncogenesis. Lysophosphatidylcholine acyltransferases (LPCATs) remodel sn-2 acyl chains of phospholipids, with LPCAT1 preferentially generating the fully saturated lipids. Here, we show that stable expression of LPCAT1 depletes major PS species with unsaturated sn-2 chains while decreasing minor phosphatidylcholine (PC) species with the corresponding acyl chains. LPCAT1 expression more effectively disrupts the nanoclustering of oncogenic GFP-KRASG12V, which is restored by acute addback of exogenous unsaturated PS. LPCAT1 expression compromises signaling and oncogenic activities of the KRAS-dependent pancreatic tumor lines. LPCAT1 expression sensitizes human pancreatic tumor MiaPaCa-2 cells to KRASG12C specific inhibitor, Sotorasib. Statistical analyses of patient data further reveal that pancreatic cancer patients with KRAS mutations express less LPCAT1. Higher LPCAT1 expression also improves survival probability of pancreatic and lung adenocarcinoma patients with KRAS mutations. Thus, PS acyl chain remodeling selectively suppresses KRAS oncogenesis.
Collapse
Affiliation(s)
- Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine Div, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Program of Biochemistry and Cell Biology, Graduate School of Biological Sciences, M. D. Anderson Cancer Center and University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
17
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
18
|
Gebregiworgis T, Chan JYL, Kuntz DA, Privé GG, Marshall CB, Ikura M. Crystal structure of NRAS Q61K with a ligand-induced pocket near switch II. Eur J Cell Biol 2024; 103:151414. [PMID: 38640594 DOI: 10.1016/j.ejcb.2024.151414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada.
| | - Jonathan Yui-Lai Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
19
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Lee SY, Lee KY. Conditional Cooperativity in RAS Assembly Pathways on Nanodiscs and Altered GTPase Cycling. Angew Chem Int Ed Engl 2024; 63:e202316942. [PMID: 38305637 DOI: 10.1002/anie.202316942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/β' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/β interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| | - Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| |
Collapse
|
21
|
Clayton NS, Hodge RG, Infante E, Alibhai D, Zhou F, Ridley AJ. RhoU forms homo-oligomers to regulate cellular responses. J Cell Sci 2024; 137:jcs261645. [PMID: 38180080 PMCID: PMC10917059 DOI: 10.1242/jcs.261645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.
Collapse
Affiliation(s)
- Natasha S. Clayton
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Richard G. Hodge
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
22
|
Kaczmarczyk JA, Whiteley GR, Blonder J. Detection and Quantitation of Endogenous Membrane-Bound RAS Proteins and KRAS Mutants in Cancer Cell Lines Using 1D-SDS-PAGE LC-MS 2. Methods Mol Biol 2024; 2823:269-289. [PMID: 39052226 DOI: 10.1007/978-1-0716-3922-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In healthy cells, membrane-anchored wild-type RAS proteins (i.e., HRAS, KRAS4A, KRAS4B, and NRAS) regulate critical cellular processes (e.g., proliferation, differentiation, survival). When mutated, RAS proteins are principal oncogenic drivers in approximately 30% of all human cancers. Among them, KRAS mutants are found in nearly 80% of all patients diagnosed with RAS-driven malignancies and are regarded as high-priority anti-cancer drug targets. Due to the lack of highly qualified/specific RAS isoform and mutant RAS monoclonal antibodies, there is a vital need for an effective antibody-free approach capable of identifying and quantifying membrane-bound RAS proteins in isoform- and mutation-specific manner. Here, we describe the development of a simple antibody-free protocol that relies on ultracentrifugation to isolate the membrane fraction coupled with single-dimensional (1D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to fractionate and enrich membrane-bound endogenous RAS isoforms. Next, bottom-up proteomics that utilizes in-gel digestion followed by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS2) is used for detection and relative quantitation of all wild-type RAS proteins (i.e., HRAS, KRAS4A, KRAS4B, and NRAS) and corresponding RAS mutants (e.g., G12D, G13D, G12S, G12V). Notably, this simple 1D-SDS-PAGE-HPLC-MS2-based protocol can be automated and widely applied to multiple cancer cell lines to investigate concentration changes in membrane-bound endogenous RAS proteins and corresponding mutants in the context of drug discovery.
Collapse
Affiliation(s)
- Jan A Kaczmarczyk
- Meso Scale Diagnostics, Rockville, MD, USA.
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Gordon R Whiteley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Josip Blonder
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
23
|
Trebino TE, Markusic B, Nan H, Banerjee S, Wang Z. Unveiling the domain-specific and RAS isoform-specific details of BRAF kinase regulation. eLife 2023; 12:RP88836. [PMID: 38150000 PMCID: PMC10752582 DOI: 10.7554/elife.88836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Mutant BRAF is often the underlying cause of various types of cancer and mutant RAS, the upstream regulator of BRAF, is a driver of up to one-third of all cancers. BRAF interacts with RAS and undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer, which propagates downstream signaling. Because of BRAF's complex regulation mechanism, the exact order and magnitude of its activation steps have yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation through pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS). We demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activation of BRAF in a RAS isoform-specific manner. Moreover, we quantified the binding affinities between BRAF N-terminal and kinase domains (KD) to reveal their individual roles in autoinhibition. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the N-terminal domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insight into the activation mechanism of BRAF kinase to guide the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Borna Markusic
- Rowan UniversityGlassboroUnited States
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Haihan Nan
- Rowan UniversityGlassboroUnited States
- School of Laboratory Medicine and Life Science, Wenzhou Medical UniversityWenzhouChina
| | | | | |
Collapse
|
24
|
Saitoh T, Kim HN, Narita R, Ohtsuka I, Mo W, Lee KY, Enomoto M, Gasmi-Seabrook GMC, Marshall CB, Ikura M. Biochemical and biophysical characterization of the RAS family small GTPase protein DiRAS3. Protein Expr Purif 2023; 212:106361. [PMID: 37652393 DOI: 10.1016/j.pep.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.
Collapse
Affiliation(s)
- Takashi Saitoh
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Riku Narita
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan
| | - Ibuki Ohtsuka
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan
| | - Weiyu Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
25
|
Clark GJ. K-RAS Is…Complicated. Cancers (Basel) 2023; 15:5480. [PMID: 38001740 PMCID: PMC10670387 DOI: 10.3390/cancers15225480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
There is little argument that the K-RAS onco-protein is the most important single oncoprotein in human cancer [...].
Collapse
Affiliation(s)
- Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville, Rm 417, CTRB, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
26
|
Gao A, Bai P, Zhang M, Yao Y, Herman JG, Guo M. RASSF1A promotes ATM signaling and RASSF1A methylation is a synthetic lethal marker for ATR inhibitors. Epigenomics 2023; 15:1205-1220. [PMID: 38093706 DOI: 10.2217/epi-2023-0306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Aim: The mechanism of RASSF1A in DNA damage repair remains to be further clarified for applying to synthetic lethal strategy. Materials & methods: Eight esophageal cancer cell lines, 181 cases of esophageal dysplasia and 1066 cases of primary esophageal squamous cell carcinoma (ESCC) were employed. Methylation-specific PCR, the CRISPR/Cas9 technique, immunoprecipitation assay and a xenograft mouse model were used. Results: RASSF1A was methylated in 2.21% of esophageal dysplasia and 11.73% of ESCC. RASSF1A was also involved in DNA damage repair through activating Hippo signaling. Loss of RASSF1A expression sensitized esophageal cancer cell lines to ataxia telangiectasia mutated and rad3-related (ATR) inhibitor (VE-822) both in vitro and in vivo. Conclusion: RASSF1A methylation is a synthetic lethal marker for ATR inhibitors.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Panpan Bai
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Henan Advanced Technology Research Institute, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuanxin Yao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
27
|
Morstein J, Shrestha R, Van QN, López CA, Arora N, Tonelli M, Liang H, Chen D, Zhou Y, Hancock JF, Stephen AG, Turbyville TJ, Shokat KM. Direct Modulators of K-Ras-Membrane Interactions. ACS Chem Biol 2023; 18:2082-2093. [PMID: 37579045 PMCID: PMC10510109 DOI: 10.1021/acschembio.3c00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Rebika Shrestha
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - César A. López
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Neha Arora
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Marco Tonelli
- National
Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Hong Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - De Chen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yong Zhou
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Andrew G. Stephen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J. Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Kevan M. Shokat
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
28
|
Chen PY, Huang BJ, Harris M, Boone C, Wang W, Carias H, Mesiona B, Mavrici D, Kohler AC, Bollag G, Zhang C, Zhang Y, Shannon K. Structural and functional analyses of a germline KRAS T50I mutation provide insights into Raf activation. JCI Insight 2023; 8:e168445. [PMID: 37681415 PMCID: PMC10544224 DOI: 10.1172/jci.insight.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.
Collapse
Affiliation(s)
- Pan-Yu Chen
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Max Harris
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Weijie Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Heidi Carias
- Plexxikon Inc., South San Francisco, California, USA
| | - Brian Mesiona
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Gideon Bollag
- Plexxikon Inc., South San Francisco, California, USA
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Ying Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
29
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
30
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|