1
|
Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X, Chen L. Histone modification inhibitors: An emerging frontier in thyroid Cancer therapy. Cell Signal 2025; 131:111703. [PMID: 40044017 DOI: 10.1016/j.cellsig.2025.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Thyroid cancer (TC) is the most common endocrine cancer and is a serious health concern due to its aggressiveness and high incidence. Histone modifications affect DNA accessibility and gene transcriptional activity by altering the structure of chromatin. Abnormal histone modifications may affect genome stability and disrupt gene expression patterns, leading to many diseases, including cancer. A growing body of research suggests that histone modifications and TC progression are inextricably linked. This article discusses the impact of aberrant histone modification patterns on TC. By targeting specific histone-modifying enzymes, it may be possible to regulate gene expression and inhibit the growth of TC. Finally, we summarize the relevant histone modification inhibitors to better understand the development stage of the use of these drugs to inhibit histone-modifying enzymes in cancer treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shu Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Guojun Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
2
|
Domènech-Moreno E, Lim WW, Montrose MG, Sévigny M, Brandt A, Lemmetyinen TT, Viitala EW, Mäkelä TP, Cook SA, Ollila S. Interleukin-11 expressed in the polyp-enriched fibroblast subset is a potential therapeutic target in Peutz-Jeghers syndrome. J Pathol 2025; 266:66-80. [PMID: 40070038 DOI: 10.1002/path.6408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/12/2024] [Accepted: 01/17/2025] [Indexed: 04/12/2025]
Abstract
Peutz-Jeghers syndrome (PJS) is associated with early-onset gastrointestinal polyposis caused by hereditary inactivating pathogenic variants in the tumor suppressor gene STK11 (LKB1). Due to lack of prophylactic therapies, management of PJS polyps requires frequent surveillance. Interestingly, studies in mouse models have revealed that stromal cells drive the polyp formation, but detailed understanding of the cell types and interactions involved has been lacking. Using single-cell RNA sequencing of PJS mouse model polyps, we here identify a polyp-enriched crypt top fibroblast (pCTF) cluster characterized by a transcriptional signature also enriched in PJS patient polyps. The pCTF signature was also noted in primary fibroblasts in vitro following acute STK11 loss. Targeted deletion of Stk11 in crypt top fibroblasts using Foxl1-Cre led to upregulation of the pCTF signature genes and later to polyposis. pCTFs displayed similarity to inflammation-associated fibroblasts, and polyposis was exacerbated by inflammation. Cell-cell communication analysis identified interleukin 11 (IL-11) as a potential pCTF inducer, and consistent with this, IL-11 was required for fibroblast reprogramming toward pCTFs following STK11 loss. Importantly, a neutralizing IL-11 antibody efficiently reduced polyp formation in a PJS model indicating a key, targetable role for IL-11 in polyp development. Together the results characterize pCTFs as a PJS polyp-enriched fibroblast subset and identify IL-11 as a key mediator of fibroblast reprogramming and a potential therapeutic target in PJS. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eva Domènech-Moreno
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Melissa G Montrose
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Myriam Sévigny
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Anders Brandt
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Toni T Lemmetyinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Emma W Viitala
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Tomi P Mäkelä
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wang C, Ye Y, Zhao M, Chen Q, Liu B, Ren W. Asparagine transporter supports macrophage inflammation via histone phosphorylation. SCIENCE ADVANCES 2025; 11:eads3506. [PMID: 40203093 PMCID: PMC11980831 DOI: 10.1126/sciadv.ads3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Solute carrier (SLC) family is essential for immune responses; nevertheless, whether and how SLCs regulate macrophage inflammation remains unclear. Here, we demonstrate that K636 acetylation mediates high abundance of SLC6A14 in inflammatory macrophages. Notably, the pharmacological inhibition or genetic modulation of SLC6A14 reduces macrophage interleukin-1β (IL-1β) secretion dependently of lower asparagine uptake and subsequently enhanced nuclear LKB1. Mechanistically, nuclear LKB1 lessens MAPK pathway-mediated NLRP3 inflammasome activation by increased histone 3 S10/28 phosphorylation-dependent cyclin O transcription. Moreover, myeloid Slc6a14 deficiency alleviates pulmonary inflammation via suppressing inflammatory macrophage responses. Overall, these results uncover a network by which SLC6A14-mediated asparagine uptake orchestrates macrophage inflammation through histone phosphorylation, providing a crucial target for modulation of inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Che S, Susta L, Sanpinit P, Malila Y, Barbut S. Gaping conditions of the Pectoralis minor (tenders) in commercial broilers: Prevalence, histology, and gene expression. Poult Sci 2025; 104:104976. [PMID: 40043673 PMCID: PMC11927697 DOI: 10.1016/j.psj.2025.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025] Open
Abstract
Gaping is a recently described condition that affects the Pectoralis minor (tender) muscle of broiler chickens, characterized by post-mortem separation of myofiber that leads to meat depreciation and economic losses. In this study, we aimed at understanding prevalence, morphological features, and transcriptomics signatures of this poorly understood myopathy. Between July 2022 and January 2023, a total of 5,180 chicken tenders were collected from 32 flocks across two plants in the USA, handling light (2.7 kg) and heavy (4.1 kg) birds. The prevalence of moderate and severe gaping was 24.8 % and 53.7 %, respectively. The light bird plant had a lower prevalence of moderate gaping (P < 0.001), while the heavy bird plant had a lower prevalence of severe gaping (P < 0.001). Spaghetti meat prevalence from 8,000 fillets was 46.9 % for moderate and 8.3 % for severe cases, with no significant inter-plant differences. Use of peracetic acid treatment at the poultry plants significantly increased the prevalence of severe gaping. Physical and histological features, along with gene expression, were evaluated in 120 samples representative of three gaping severity tiers. Severely gaped tenders showed greater width compared to normal and moderately gaped tenders in both light and heavy birds (P < 0.05). An increase of 1 cm in tender width was associated with a 1.99-fold increase in the odds of classification into a more severe gaping category (95 % CI: 1.15 - 3.46). Affected muscles revealed histological evidence of myodegeneration, inflammation, and lipidosis with fibrosis. For one-unit increase in the myodegeneration score, samples had a 1.75-fold increase in the odds of being classified into a more severe gaping category (95 % CI: 1.37 - 2.23). Gene expression analysis using droplet digital PCR showed differential expression of 19 genes involved in oxidative stress response, cellular signaling, muscle development, and collagen formation between weight groups and myopathy categories. Notably, 21 out of 22 differentially expressed genes showed higher expression in light birds. This study provides the comprehensive description of gaping in broiler chickens and lays a crucial benchmark for assessment of future mitigating strategies.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA.
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pornnicha Sanpinit
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Yuwares Malila
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Shai Barbut
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Oka M, Nakajima S, Suzuki E, Yamamoto S, Ando K. Glucose uptake in pigment glia suppresses Tau-induced inflammation and photoreceptor degeneration. Dis Model Mech 2025; 18:dmm052057. [PMID: 40151148 PMCID: PMC12067088 DOI: 10.1242/dmm.052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Brain inflammation contributes to the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). Glucose hypometabolism and glial activation are pathological features seen in AD brains; however, the connection between the two is not fully understood. Using a Drosophila model of AD, we identified that glucose metabolism in glia plays a critical role in neuroinflammation under disease conditions. Expression of human MATP (hereafter referred to as Tau) in the retinal cells, including photoreceptor neurons and pigment glia, causes photoreceptor degeneration accompanied by the formation of dark-stained round inclusion-like structures and swelling of the lamina cortex. We found that inclusion-like structures are formed by glial phagocytosis, and swelling of the laminal cortex correlates with the expression of antimicrobial peptides. Coexpression of human glucose transporter 3 (SLC2A3, hereafter referred to as GLUT3) with Tau in the retina does not affect Tau levels but suppresses these inflammatory responses and photoreceptor degeneration. We also found that expression of GLUT3, specifically in the pigment glia, is sufficient to suppress inflammatory phenotypes and mitigate photoreceptor degeneration in the Tau-expressing retina. Our results suggest that glial glucose metabolism contributes to inflammatory responses and neurodegeneration in tauopathy.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute for Texas Children's Hospital, Houston, TX 77030, USA
| | - Sho Nakajima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Emiko Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute for Texas Children's Hospital, Houston, TX 77030, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
6
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Liu Z, Qiu L, Zhang Y, Zhao G, Sun X, Luo W. Kat7 accelerates osteoarthritis disease progression through the TLR4/NF-κB signaling pathway. J Mol Med (Berl) 2025; 103:273-284. [PMID: 39873724 DOI: 10.1007/s00109-025-02519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2024] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
Osteoarthritis (OA) is a common degenerative bone and joint disease with an unclear pathogenesis. Our study identified that the histone acetyltransferase encoded by Kat7 is upregulated in the affected articular cartilage of OA patients and in a mice model of medial meniscal instability-induced OA. Chondrocyte-specific knockdown of Kat7 expression exhibited a protective effect on articular cartilage integrity. In vitro experiments demonstrated that KAT7 promotes cartilage catabolism, inhibits cartilage anabolism, and induces chondrocyte senescence and apoptosis. Conversely, knocking down Kat7 was shown to protect chondrocyte function. Corresponding in vivo results indicated that silencing Kat7 effectively enhances cartilage anabolism, prevents articular cartilage damage, and significantly slows OA progression. Mechanistically, KAT7 activates the TLR4/NF-κB signaling pathway, and inhibition of this pathway reverses the catabolic effects and restores anabolic activity in the presence of Kat7 overexpression. Collectively, these findings confirm the critical role of KAT7 in the pathogenesis of OA and suggest that Kat7 represents a potential therapeutic target for OA treatment. KEY MESSAGES: There is a lack of clinically effective drugs for the treatment of osteoarthritis (OA). Kat7 plays a key role in the development of OA. Knocking down Kat7 expression can alleviate the progression of OA. Kat7 accelerates the progression of OA by activating the TLR4/NF-KB signaling pathway.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Lijie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Yongqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Gang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Xuecheng Sun
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Wenming Luo
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China.
| |
Collapse
|
8
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Oka M, Nakajima S, Suzuki E, Yamamoto S, Ando K. Glucose uptake in pigment glia suppresses tau-induced inflammation and photoreceptor degeneration in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.14.607919. [PMID: 39229232 PMCID: PMC11370381 DOI: 10.1101/2024.08.14.607919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Brain inflammation contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Glucose hypometabolism and glial activation are pathological features seen in AD brains; however, the connection between the two is not fully understood. Using a Drosophila model of AD, we identified that glucose metabolism in glia plays a critical role in neuroinflammation under disease conditions. Expression of human Tau in the retinal cells, including photoreceptor neurons and pigment glia, causes photoreceptor degeneration accompanied by inclusion formation and swelling of the lamina cortex. We found that inclusions are formed by glial phagocytosis, and swelling of the laminal cortex correlates with the expression of antimicrobial peptides. Co-expression of human glucose transporter 3 ( GLUT3 ) with Tau in the retina does not affect tau levels but suppresses these inflammatory responses and photoreceptor degeneration. We also found that expression of GLUT3 , specifically in the pigment glia, is sufficient to suppress inflammatory phenotypes and mitigate photoreceptor degeneration in the tau-expressing retina. Our results suggest that glial glucose metabolism contributes to inflammatory responses and neurodegeneration in tauopathy. Summary Statement Glucose uptake into pigment glia suppresses inflammatory responses and photoreceptor degeneration in the fly model of tauopathy.
Collapse
|
10
|
Gritti I, Wan J, Weeresekara V, Vaz JM, Tarantino G, Bryde TH, Vijay V, Kammula AV, Kattel P, Zhu S, Vu P, Chan M, Wu MJ, Gordan JD, Patra KC, Silveira VS, Manguso RT, Wein MN, Ott CJ, Qi J, Liu D, Sakamoto K, Gujral TS, Bardeesy N. DNAJB1-PRKACA Fusion Drives Fibrolamellar Liver Cancer through Impaired SIK Signaling and CRTC2/p300-Mediated Transcriptional Reprogramming. Cancer Discov 2025; 15:382-400. [PMID: 39326063 PMCID: PMC11803398 DOI: 10.1158/2159-8290.cd-24-0634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
SIGNIFICANCE This work combines functional studies in model systems and examination of human tumor specimens to define a central oncogenic pathway driven by DNAJB1-PRKACA fusions in FLC. DNAJB1-PRKACA-mediated inactivation of the SIK stimulates CRTC2-p300-mediated transcription to drive tumor growth. The findings illuminate pathogenic mechanisms and inform therapeutic development.
Collapse
Affiliation(s)
- Ilaria Gritti
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jinkai Wan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Vajira Weeresekara
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Joel M. Vaz
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Giuseppe Tarantino
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tenna Holgersen Bryde
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Vindhya Vijay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Ashwin V. Kammula
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Prabhat Kattel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Songli Zhu
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Phuong Vu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marina Chan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Meng-Ju Wu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - John D. Gordan
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, California
| | | | - Vanessa S. Silveira
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Robert T. Manguso
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Marc N. Wein
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher J. Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Liu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Center for Regenerative Medicine, Massachusetts General, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| |
Collapse
|
11
|
Lin Z, Feng Y, Wang J, Men Z, Ma X. Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea. MICROBIOME 2025; 13:36. [PMID: 39905483 PMCID: PMC11792533 DOI: 10.1186/s40168-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Disorder in bile acid (BA) metabolism is known to be an important factor contributing to diarrhea. However, the pathogenesis of BA disorder-induced diarrhea remains unclear. METHODS The colonic BA pool and microbiota between health piglets and BA disorder-induced diarrheal piglets were compared. Fecal microbiota transplantation and various cell experiments further indicated that chenodeoxycholic acid (CDCA) metabolic disorder produced CDCA-3β-glucuronide, which is the main cause of BA disorder diarrhea. Non-targeted metabolomics uncovered the inhibition of the BA glucuronidation by Lactobacillus reuteri (L. reuteri) is through deriving indole-3-carbinol (I3C). In vitro, important gene involved in the reduction of BA disorder induced-diarrhea were screened by RNA transcriptomics sequencing, and activation pathway of FXR-SIRT1-LKB1 to alleviate BA disorder diarrhea and P53-mediated apoptosis were proposed in vitro by multifarious siRNA interference, CO-IP, immunofluorescence, and so on, which mechanism was also verified in a variety of mouse models. RESULTS Here, we reveal for the first time that core microbiota derived I3C represses gut epithelium glucuronidation, particularly 3β-glucuronic CDCA production, which reaction is mediated by host UDP glucuronosyltransferase family 1 member A4 (UGT1A4) and necessary of BA disorder induced diarrhea. Mechanistically, L. reuteri derived I3C activates aryl hydrocarbon receptor to decrease UGT1A4 transcription and CDCA-3β-glucuronide content, thereby upregulating FXR-SIRT1-LKB1 signal. LKB1 binds with P53 based on protein interaction, ultimately resists to apoptosis and diarrhea. Moreover, I3C assists CDCA to attain the ameliorative effects of FXR activation in BA disorder diarrhea, through reversion of abnormal metabolism pathway, improving the outcomes of CDCA supplement. CONCLUSION These findings uncover the crucial interplay between gut epithelial cells and microbes, highlighting UGT1A4-mediated conversion of CDCA-3β-glucuronide as a key target for ameliorating BA disorder-induced diarrhea. Video Abstract.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jinping Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaoyue Men
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. eLife 2024; 13:RP96992. [PMID: 39213022 PMCID: PMC11364435 DOI: 10.7554/elife.96992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.
Collapse
Affiliation(s)
- Phaedra C Ghazi
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Kayla T O'Toole
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Sanjana Srinivas Boggaram
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Michael T Scherzer
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Mark R Silvis
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | | | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Eric L Snyder
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Conan G Kinsey
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Internal Medicine, Division of Medical Oncology, University of UtahSalt Lake CityUnited States
| | - Martin McMahon
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Dermatology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
13
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579200. [PMID: 38370808 PMCID: PMC10871191 DOI: 10.1101/2024.02.06.579200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS G12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS G12C -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS G12C , efforts are underway to develop effective combination therapies. Here we report that inhibition of KRAS G12C signaling increases autophagy in KRAS G12C expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS G12C -driven lung cancer cell proliferation in vitro and superior tumor control in vivo . Additionally, in genetically engineered mouse models of KRAS G12C -driven NSCLC, inhibition of either KRAS G12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS G12C in lung cancer.
Collapse
|
14
|
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T, Wei R. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer 2024; 23:90. [PMID: 38711083 PMCID: PMC11071201 DOI: 10.1186/s12943-024-02008-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
15
|
Zhang L, Chai R, Tai Z, Miao F, Shi X, Chen Z, Zhu Q. Noval advance of histone modification in inflammatory skin diseases and related treatment methods. Front Immunol 2024; 14:1286776. [PMID: 38235133 PMCID: PMC10792063 DOI: 10.3389/fimmu.2023.1286776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Lichen Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|