1
|
Ou X, Yang J, Yang L, Zeng H, Shao L. Histone acetylation regulated by histone deacetylases during spermatogenesis. Andrology 2025; 13:706-717. [PMID: 39132925 DOI: 10.1111/andr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Physical, chemical, and biological factors in the environment constantly influence in vivo and in vitro biological processes, including diverse histone modifications involved in cancer and metabolism. However, the intricate mechanisms of acetylation regulation remain poorly elucidated. In mammalian spermatogenesis, acetylation plays a crucial role in repairing double-strand DNA breaks, regulating gene transcription, and modulating various signaling pathways. RESULTS This review summarizes the histone acetylation sites in the mouse testis and provides a comprehensive overview of how histone acetylation is involved in different stages of spermatogenesis under the regulation by histone deacetylases. The regulatory functions of various class histone deacetylases during spermatogenesis and the crossroad between histone acetylation and other histone modifications are highlighted. It is imperative to understand the mechanisms of histone acetylation regulated by histone deacetylases in spermatogenesis, which facilitates to prevent and treat infertility-related diseases.
Collapse
Affiliation(s)
- Xiangying Ou
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Juan Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Linfeng Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
2
|
Ji K, Chen G, Wang Y, Li Y, Chen J, Feng M. YEATS2: a novel cancer epigenetic reader and potential therapeutic target. Cancer Cell Int 2025; 25:162. [PMID: 40287757 PMCID: PMC12034173 DOI: 10.1186/s12935-025-03797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
YEATS2, an evolutionarily conserved reader of histone acylation marks (H3K27ac, H3K27cr, H3K27bz), functions as a central oncogenic driver in diverse cancers, including non-small cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Its structurally plastic YEATS domain bridges acyl-CoA metabolism to chromatin remodeling, amplifying transcription of survival genes such as MYC, BCL2, and PD-L1. YEATS2 orchestrates malignancy-specific programs-sustaining ribosome biogenesis in NSCLC through ATAC complex recruitment, enhancing NF-κB-dependent immune evasion in PDAC, and activating PI3K/AKT-driven metabolic rewiring in HCC. Structural studies demonstrate a unique aromatic cage architecture that selectively engages diverse acylated histones. Although pyrazolopyridine-based inhibitors targeting the YEATS domain show preclinical efficacy, developing isoform-selective agents remains challenging. Clinically, YEATS2 overexpression correlates with therapy resistance and may synergize with immune checkpoint blockade. This review integrates mechanistic insights into the role of YEATS2 in epigenetic regulation, evaluates its therapeutic potential, and proposes future directions: elucidating full-length complex topologies, mapping synthetic lethal interactors, and optimizing selective inhibitors. Disrupting YEATS2-mediated epigenetic adaptation presents novel opportunities for precision cancer therapy.
Collapse
Affiliation(s)
- Kangkang Ji
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoping Chen
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
| | - Yan Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yunyi Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Chen
- Department of Head and Neck Surgery, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China.
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
4
|
Guo L, Du Y, Li H, He T, Yao L, Yang G, Yang X. Metabolites-mediated posttranslational modifications in cardiac metabolic remodeling: Implications for disease pathology and therapeutic potential. Metabolism 2025; 165:156144. [PMID: 39864796 DOI: 10.1016/j.metabol.2025.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The nonenergy - producing functions of metabolism are attracting increasing attention, as metabolic changes are involved in discrete pathways modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Yuting Du
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Heng Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Li Yao
- Department of Pathology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi' an 710018, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| |
Collapse
|
5
|
Li F, Ye H, Li L, Chen Q, Lan X, Wu L, Li B, Li L, Guo C, Ashrafizadeh M, Sethi G, Guo J, Wu L. Histone lysine crotonylation accelerates ACSL4-mediated ferroptosis of keratinocytes via modulating autophagy in diabetic wound healing. Pharmacol Res 2025; 213:107632. [PMID: 39892437 DOI: 10.1016/j.phrs.2025.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Dysfunction of keratinocytes affects diabetic wound healing, but underlying mechanisms have not been understood. This study examines crotonylation's role in ferroptosis and autophagy in keratinocytes, particularly regarding ACSL4, using STZ-induced diabetic rats and high glucose-exposed keratinocytes to assess these processes. The ACSL4 knockdown was achieved using adenovirus in wounds to examine the impact of ferroptosis modulation on healing diabetic wounds. MB-3 was utilized to block the H3K27 crotonylation (H3K27cr) in order to clarify the regulatory function of crotonylation in both autophagy and ferroptosis. In STZ-induced diabetic skin and high glucose-exposed keratinocytes, ferroptosis mediated by ACSL4 and suppression of autophagic flux were demonstrated. Moreover, the downregulation of ACSL4 triggered ferroptosis in adjacent wounds of diabetic rats and improved wound healing. The degradation of ACSL4 may be observed via the autophagy-lysosome pathway in keratinocytes. Downregulation of SQSTM1 in diabetic keratinocytes leads to autophagy inhibition and modulates the protein level of ACSL4. Mechanistically, total crotonylation levels and H3K27cr were remarkably elevated in the skin and keratinocytes of diabetic rats; blocking high glucose-induced H3K27cr with MB-3 can enhance SQSTM1 transcription and expression while promoting autophagy and reducing ACSL4-induced ferroptosis in keratinocytes. Therefore, H3K27cr influences autophagy by adjusting SQSTM1 to facilitate ACSL4-triggered ferroptosis in diabetic keratinocytes. This study clarifies the relationships between acylation modifications, autophagy, and ferroptosis, while also offering mechanistic insights and potential therapeutic targets for issues associated with diabetic wound healing.
Collapse
Affiliation(s)
- Fengjuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Haowen Ye
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xianwu Lan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liangxiu Wu
- Department of Gastroenterology, The People's Hospital of Hezhou, Hezhou 542899, China
| | - Bin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lishan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chuxian Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Shang G, Zhang W, Jia Y, Ji D, Wei E, Gao C, Zeng C, Wang C, Liu N, Ge P, Li Y, Zeng L. GAS41 promotes ITGA4-mediated PI3K/Akt/mTOR signaling pathway and glioma tumorigenesis. Biochem Pharmacol 2025; 233:116747. [PMID: 39788387 DOI: 10.1016/j.bcp.2025.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Glioma Amplified Sequence 41 (GAS41) is a chromatin-associated protein that belongs to the YEATS domain family of proteins and is frequently amplified in various tumors. However, its biological function and carcinogenic mechanism in gliomas are not fully understood. In this study, we revealed that GAS41 was upregulated in human glioma tissues and cell lines, and higher expression of GAS41 was significantly associated with poor clinical prognosis. Genetic depletion and chemical inhibition of GAS41 remarkably inhibited glioma cell proliferation and metastasis abilities and induced cellular apoptosis. Furthermore, functional annotation identified that GAS41 was involved in stimulating the expression of membrane protein ITGA4 to activate the downstream PI3K/Akt/mTOR signaling pathway in glioma cell lines. In addition, we synthesized and evaluated a series of small molecules targeting the GAS41 YEATS domain, which yielded effective anti-proliferative activities in glioma cells. Molecular docking revealed that these compounds bound to the GAS41 YEATS domain pocket in a manner similar to Compounds 9 and 3b, providing a structural basis for exploring the selective inhibition of GAS41 as part of an essential molecular framework. Overall, our study illustrates the crucial role of GAS41 in glioma progression and the malignant phenotype and suggests that targeting GAS41 may be a promising therapeutic treatment strategy for gliomas.
Collapse
Affiliation(s)
- Guanglei Shang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caroline Zeng
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Nan Liu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Pan G, Xia Y, Hao M, Guan J, Zhu Q, Zha T, Sheng L, Zhao Z, Pan H, Fang W, Xu X, Chen X, Zhou S, Tong Z. EZH2 suppresses IR-induced ferroptosis by forming a co-repressor complex with HIF-1α to inhibit ACSL4: Targeting EZH2 enhances radiosensitivity in KDM6A-deficient esophageal squamous carcinoma. Cell Death Differ 2025:10.1038/s41418-025-01451-5. [PMID: 39920286 DOI: 10.1038/s41418-025-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
The mutation status of the lysine demethylase 6 A (KDM6A), a gene antagonist to Enhancer of zeste homolog 2 (EZH2), is closely related to the therapeutic efficacy of EZH2 inhibitors in several malignancies. However, the mutational landscape of KDM6A and the therapeutic targetability of EZH2 inhibitors in esophageal squamous carcinoma (ESCC) remain unreported. Here, we found that approximately 9.18% (9/98) of our study ESCC tissues had KDM6A mutations of which 7 cases resulted in a complete loss of expression and consequent loss of demethylase function. We found that KDM6A-deficient ESCC cells exhibited increased sensitivity to EZH2 inhibitor, and the radiosensitizing activity of EZH2 inhibitor was evident in KDM6A-dficient ESCC cells. Further transcriptome analysis revealed that ferroptosis is implicated in the radiosensitizing effect exerted by EZH2 inhibition on KDM6A-deficient ESCC cells. The following Chromatin Immunoprecipitation (ChIP), co-immunoprecipitation, and luciferase reporter assays demonstrated that in KDM6A-deficient ESCC cells, (1) Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) is the target gene for EZH2 to regulate ferroptosis; (2) The IR-induced hypoxia inducible factor 1 subunit alpha (HIF-1α) is a predominant mediator of EZH2 to repress ACSL4; (3) the HRE7-8 regions of the ACSL4 promoter are required for the repressive function of EZH2 on ACSL4; (4) EZH2 regulates ACSL4 by forming a co-repressive complex with HIF-1α. Our study provides preclinical evidence supporting that EZH2 inhibitors may confer therapeutic benefit in KDM6A-deficient ESCC patients.
Collapse
Affiliation(s)
- Guizhen Pan
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yeye Xia
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Mengyu Hao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiahao Guan
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Radiation Oncology, Fuyang Tumour Hospital, Fuyang, China
| | - Tianqi Zha
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Sheng
- Department of Radiation Oncology, the Chest Hospital of Anhui Province, Hefei, Anhui, China
| | - Zhenfeng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Huaguang Pan
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiyang Fang
- Department of Electrocardiography, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyong Xu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangcun Chen
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuguang Zhou
- The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Zhuting Tong
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Sahu V, Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol Cell 2025; 85:262-275. [PMID: 39824167 PMCID: PMC11750176 DOI: 10.1016/j.molcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Wang H, Guan T, Hu R, Huang Z, Liang Z, Lin X, Qiu Y, Liao P, Guo X, Ke Y, Zhang H, Ou C, Li Y. Targeting KAT7 inhibits the progression of colorectal cancer. Theranostics 2025; 15:1478-1495. [PMID: 39816686 PMCID: PMC11729548 DOI: 10.7150/thno.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC. Methods: In this research, we analyzed the expression of KAT7 in CRC patients and its correlation with prognosis using the GEO database, western blot, and immunohistochemistry. We assessed the impact of KAT7 on CRC cell functions through cell viability, colony formation, flow cytometry, scratch, and transwell assays. Mechanistic insights were obtained via RNA sequencing and ChIP-qPCR. Additionally, we evaluated the effects of KAT7 on CRC growth and metastasis in vivo using mouse subcutaneous tumor and lung metastasis models. Results: In this study, we discovered an upregulated KAT7 signaling pathway in CRC and its association with poor patient survival. Knockdown of KAT7 promotes apoptosis and inhibits proliferation, migration, and invasion of CRC cells. Conversely, KAT7 overexpression enhanced these cellular processes. In vivo assays confirmed that knockdown of KAT7 can inhibit CRC proliferation and lung metastasis. Mechanistically, KAT7 acetylated histone H3 at lysine 14 (H3K14) to enhance MRAS transcription, which activated the MAPK/ERK pathway and promoted tumorigenesis. The enzymatic function of KAT7 as an acetyltransferase is crucial for the advancement of colorectal cancer. In KAT7 knockdown CRC cells, re-expression of KAT7, but not an acetyltransferase-deficient mutant, rescued MRAS expression, ERK phosphorylation, and CRC tumorigenesis. Conclusion: We found that KAT7 is highly expressed in CRC patients, and those with high KAT7 expression have a worse prognosis. KAT7 enhances MRAS gene transcription by promoting H3K14 acetylation, thereby activating the MAPK/ERK pathway and promoting malignant phenotypes of CRC. In summary, KAT7 represents a promising target for CRC therapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Tianwang Guan
- Cancer Center, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Engineering Research Center for Innovative Boron Drugs and Novel Radioimmune Drugs, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Zhongjie Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Xiaonan Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Xiongbo Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510280, China
| | - Yushen Ke
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, 510280, China
| |
Collapse
|
12
|
Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y, Zhang K. DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2421496121. [PMID: 39636855 DOI: 10.1073/pnas.2421496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Lysine lactylation (Kla) is a new type of histone mark implicated in the regulation of various functional processes such as transcription. However, how this histone mark acts in cancers remains unexplored due in part to a lack of knowledge about its reader proteins. Here, we observe that cervical cancer (CC) cells undergo metabolic reprogram by which lactate accumulation and thereby boosts histone lactylation, particularly H3K14la. Utilizing a multivalent photoaffinity probe in combination with quantitative proteomics approach, we identify DPF2 as a candidate target of H3K14la. Biochemical studies as well as CUT&Tag analysis reveal that DPF2 is capable of binding to H3K14la and colocalizes with it on promoters of oncogenic genes. Notably, disrupting the DPF2-H3K14la interaction through structure-guided mutation blunts those cancer-related gene expression along with cell survival. Together, our findings reveal DPF2 as a bona fide H3K14la effector that couples histone lactylation to gene transcription and cell survival, offering insight into how histone Kla engages in transcription and tumorigenesis.
Collapse
Affiliation(s)
- Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zheng
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanpu Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China
| |
Collapse
|
13
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
14
|
McCrory C, Lenardon M, Traven A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol 2024; 32:1106-1118. [PMID: 38729839 DOI: 10.1016/j.tim.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Megan Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
15
|
Chen F, He X, Xu W, Zhou L, Liu Q, Chen W, Zhu W, Zhang J. Chromatin lysine acylation: On the path to chromatin homeostasis and genome integrity. Cancer Sci 2024; 115:3506-3519. [PMID: 39155589 PMCID: PMC11531963 DOI: 10.1111/cas.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
The fundamental role of cells in safeguarding the genome's integrity against DNA double-strand breaks (DSBs) is crucial for maintaining chromatin homeostasis and the overall genomic stability. Aberrant responses to DNA damage, known as DNA damage responses (DDRs), can result in genomic instability and contribute significantly to tumorigenesis. Unraveling the intricate mechanisms underlying DDRs following severe damage holds the key to identify therapeutic targets for cancer. Chromatin lysine acylation, encompassing diverse modifications such as acetylation, lactylation, crotonylation, succinylation, malonylation, glutarylation, propionylation, and butyrylation, has been extensively studied in the context of DDRs and chromatin homeostasis. Here, we delve into the modifying enzymes and the pivotal roles of lysine acylation and their crosstalk in maintaining chromatin homeostasis and genome integrity in response to DDRs. Moreover, we offer a comprehensive perspective and overview of the latest insights, driven primarily by chromatin acylation modification and associated regulators.
Collapse
Affiliation(s)
- Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Xingkai He
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Linmin Zhou
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Qi Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
- Cancer Research Institute, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Weicheng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Wei‐Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| |
Collapse
|
16
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Chen X, Wang S, Chen K, Han Q. The global landscapes of lysine crotonylation in pseudorabies virus infection. Virology 2024; 598:110172. [PMID: 39018683 DOI: 10.1016/j.virol.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Lysine crotonylation is a common occurrence in eukaryotic cells, regulating various physiological functions, including chromatin remodeling, cellular growth, and development. However, its involvement in viral infections has rarely been documented. In this study, we reveal that pseudorabies virus (PRV) infection significantly alters the global lysine crotonylation levels in porcine kidney PK-15 cells. Specifically, we identified a few viral proteins, including UL54, gM, gD, UL19, UL37, and UL46, which undergo crotonylation modification. Our observations indicate that at 20 h post-infection (hpi), 551 crotonylation sites were reduced across 345 proteins, while 47 new sites emerged in 37 proteins compared to the control group. By 40 hpi, 263 sites had decreased in 190 proteins, while 389 new sites appeared in 240 proteins. Deeper analysis revealed that the proteins with altered crotonylation levels were primarily involved in binding, catalytic activity, biosynthetic processes, ribosome activity, and metabolic processes. Additionally, our findings underscored the significance of ribosomes and the endoplasmic reticulum (ER), which were enriched with proteins exhibiting altered crotonylation. Overall, our study for the first time offers new insights into the relationship between crotonylation and herpes virus infection, paving the way for future investigations into the role of crotonylation in viral infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Shuaiwei Wang
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| | - Keyuan Chen
- Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Qingsong Han
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
18
|
Hou L, Chen YJ, Zhong Q, Pei J, Liu L, Pi H, Xie M, Zhao G. Function and mechanism of lysine crotonylation in health and disease. QJM 2024; 117:695-708. [PMID: 38390964 DOI: 10.1093/qjmed/hcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.
Collapse
Affiliation(s)
- L Hou
- Guangzhou Huali Science and Technology Vocational College, Guangzhou, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Y-J Chen
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Q Zhong
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - J Pei
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - L Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - H Pi
- School of basic medicine, Dali University, Dali, China
| | - M Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - G Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| |
Collapse
|
19
|
Liao M, Zheng W, Wang Y, Li M, Sun X, Liu N, Yao J, Dong F, Wang Q, Ma Y, Mou J. LINC00887 promotes GCN5-dependent H3K27cr level and CRC metastasis via recruitment of YEATS2 and enhancing ETS1 expression. Cell Death Dis 2024; 15:711. [PMID: 39349460 PMCID: PMC11443008 DOI: 10.1038/s41419-024-07091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Recent observations have revealed upregulation of H3K27cr in colorectal cancer (CRC) tissues; however, the underlying cause remains elusive. This study aimed to investigate the mechanism of H3K27cr upregulation and its roles in CRC metastasis. Clinically, our findings showed that H3K27cr served as a highly accurate diagnostic marker to distinguish CRC tissues from healthy controls. Elevated levels of LINC00887 and H3K27cr were associated with a poorer prognosis in CRC patients. Functionally, LINC00887 and H3K27cr facilitated the migration and invasion of CRC cells. Mechanistically, LINC00887 interacted with SIRT3 protein. Overexpressed of LINC00887 obstructed the enrichment of SIRT3 within GCN5 promoter, thereby elevating H3K27ac but not H3K27cr level within this region, subsequently activating GCN5 expression. This activation increased the global level of H3K27cr, promoting the enrichment of GCN5, H3K27cr, and YEATS2 within ETS1 promoter, activating ETS1 transcription and ultimately promoting the metastasis of CRC. The in vivo study demonstrated that inhibition of LINC00887 suppressed CRC metastasis, but this inhibitory effect was nullified when mice were treated with NaCr. In conclusion, our results confirmed the diagnostic biomarker potential of H3K27cr in individuals with CRC, and proposed a functional model to elucidate the involvement of LINC00887 in promoting CRC metastasis by elevating H3K27cr level.
Collapse
Affiliation(s)
- Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Wendan Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yifan Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Mengting Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Xiaolin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun, 130061, PR China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Jia Yao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China.
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
20
|
Goell J, Li J, Mahata B, Ma AJ, Kim S, Shah S, Shah S, Contreras M, Misra S, Reed D, Bedford GC, Escobar M, Hilton IB. Tailoring a CRISPR/Cas-based Epigenome Editor for Programmable Chromatin Acylation and Decreased Cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.611000. [PMID: 39345554 PMCID: PMC11429961 DOI: 10.1101/2024.09.22.611000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineering histone acylation states can inform mechanistic epigenetics and catalyze therapeutic epigenome editing opportunities. Here, we developed engineered lysine acyltransferases that enable the programmable deposition of acetylation and longer-chain acylations. We show that targeting an engineered lysine crotonyltransferase results in weak levels of endogenous enhancer activation yet retains potency when targeted to promoters. We further identify a single mutation within the catalytic core of human p300 that preserves enzymatic activity while substantially reducing cytotoxicity, enabling improved viral delivery. We leveraged these capabilities to perform single-cell CRISPR activation screening and map enhancers to the genes they regulate in situ. We also discover acylation-specific interactions and find that recruitment of p300, regardless of catalytic activity, to prime editing sites can improve editing efficiency. These new programmable epigenome editing tools and insights expand our ability to understand the mechanistic role of lysine acylation in epigenetic and cellular processes and perform functional genomic screens.
Collapse
Affiliation(s)
- Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Spencer Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Shriya Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Contreras
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Suchir Misra
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Daniel Reed
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Guy C Bedford
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| |
Collapse
|
21
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
22
|
Christensen LM, Akimova T, Wang L, Han R, Samanta A, Di Giorgio E, Hancock WW. T-regulatory cells require Sin3a for stable expression of Foxp3. Front Immunol 2024; 15:1444937. [PMID: 39156895 PMCID: PMC11327135 DOI: 10.3389/fimmu.2024.1444937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Histone deacetylases 1 and 2 play a major role in the transcriptional regulation of T-regulatory (Treg) cells via interactions with a myriad of coregulatory factors. Sin3a has been well established as a Hdac1/2 cofactor, while its role within Tregs has not been established. In this study, the effects of conditional deletion of Sin3a within Foxp3+ Tregs were evaluated. Developmental deletion of Sin3a from Foxp3+ Tregs resulted in the rapid onset of fatal autoimmunity. Treg numbers were greatly reduced, while residual Tregs had impaired suppressive function. Mice also showed effector T-cell activation, autoantibody production, and widespread tissue injury. Mechanistically, Sin3a deletion resulted in decreased transcription of Foxp3 with a complete lack of CNS2 CpG demethylation. In addition, Foxp3 protein stability was impaired with an increased ex-Treg population. Thus, Sin3a plays a critical role in the maintenance of Treg identity and function and is essential for the expression and stability of Foxp3.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rongxiang Han
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Wang Z, Zhao N, Zhang S, Wang D, Wang S, Liu N. YEATS domain-containing protein GAS41 regulates nuclear shape by working in concert with BRD2 and the mediator complex in colorectal cancer. Pharmacol Res 2024; 206:107283. [PMID: 38964523 DOI: 10.1016/j.phrs.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The maintenance of nuclear shape is essential for cellular homeostasis and disruptions in this process have been linked to various pathological conditions, including cancer, laminopathies, and aging. Despite the significance of nuclear shape, the precise molecular mechanisms controlling it are not fully understood. In this study, we have identified the YEATS domain-containing protein 4 (GAS41) as a previously unidentified factor involved in regulating nuclear morphology. Genetic ablation of GAS41 in colorectal cancer cells resulted in significant abnormalities in nuclear shape and inhibited cancer cell proliferation both in vitro and in vivo. Restoration experiments revealed that wild-type GAS41, but not a YEATS domain mutant devoid of histone H3 lysine 27 acetylation or crotonylation (H3K27ac/cr) binding, rescued the aberrant nuclear phenotypes in GAS41-deficient cells, highlighting the importance of GAS41's binding to H3K27ac/cr in nuclear shape regulation. Further experiments showed that GAS41 interacts with H3K27ac/cr to regulate the expression of key nuclear shape regulators, including LMNB1, LMNB2, SYNE4, and LEMD2. Mechanistically, GAS41 recruited BRD2 and the Mediator complex to gene loci of these regulators, promoting their transcriptional activation. Disruption of GAS41-H3K27ac/cr binding caused BRD2, MED14 and MED23 to dissociate from gene loci, leading to nuclear shape abnormalities. Overall, our findings demonstrate that GAS41 collaborates with BRD2 and the Mediator complex to control the expression of crucial nuclear shape regulators.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
24
|
Vai A, Noberini R, Ghirardi C, Rodrigues de Paula D, Carminati M, Pallavi R, Araújo N, Varga-Weisz P, Bonaldi T. Improved Mass Spectrometry-Based Methods Reveal Abundant Propionylation and Tissue-Specific Histone Propionylation Profiles. Mol Cell Proteomics 2024; 23:100799. [PMID: 38866077 PMCID: PMC11277384 DOI: 10.1016/j.mcpro.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
Histone posttranslational modifications (PTMs) have crucial roles in a multitude of cellular processes, and their aberrant levels have been linked with numerous diseases, including cancer. Although histone PTM investigations have focused so far on methylations and acetylations, alternative long-chain acylations emerged as new dimension, as they are linked to cellular metabolic states and affect gene expression through mechanisms distinct from those regulated by acetylation. Mass spectrometry is the most powerful, comprehensive, and unbiased method to study histone PTMs. However, typical mass spectrometry-based protocols for histone PTM analysis do not allow the identification of naturally occurring propionylation and butyrylation. Here, we present improved state-of-the-art sample preparation and analysis protocols to quantitate these classes of modifications. After testing different derivatization methods coupled to protease digestion, we profiled common histone PTMs and histone acylations in seven mouse tissues and human normal and tumor breast clinical samples, obtaining a map of propionylations and butyrylations found in different tissue contexts. A quantitative histone PTM analysis also revealed a contribution of histone acylations in discriminating different tissues, also upon perturbation with antibiotics, and breast cancer samples from the normal counterpart. Our results show that profiling only classical modifications is limiting and highlight the importance of using sample preparation methods that allow the analysis of the widest possible spectrum of histone modifications, paving the way for deeper insights into their functional significance in cellular processes and disease states.
Collapse
Affiliation(s)
- Alessandro Vai
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Dieggo Rodrigues de Paula
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Michele Carminati
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Nathália Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; School of Biological Sciences, University of Essex, Colchester, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Gold S, Shilatifard A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr Opin Genet Dev 2024; 86:102181. [PMID: 38564841 DOI: 10.1016/j.gde.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.
Collapse
Affiliation(s)
- Sarah Gold
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/@rwx_life
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Nie H, Kong X, Song X, Guo X, Li Z, Fan C, Zhai B, Yang X, Wang Y. Roles of histone post-translational modifications in meiosis†. Biol Reprod 2024; 110:648-659. [PMID: 38224305 DOI: 10.1093/biolre/ioae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Histone post-translational modifications, such as phosphorylation, methylation, acetylation, and ubiquitination, play vital roles in various chromatin-based cellular processes. Meiosis is crucial for organisms that depend on sexual reproduction to produce haploid gametes, during which chromatin undergoes intricate conformational changes. An increasing body of evidence is clarifying the essential roles of histone post-translational modifications during meiotic divisions. In this review, we concentrate on the post-translational modifications of H2A, H2B, H3, and H4, as well as the linker histone H1, that are required for meiosis, and summarize recent progress in understanding how these modifications influence diverse meiotic events. Finally, challenges and exciting open questions for future research in this field are discussed. Summary Sentence Diverse histone post-translational modifications exert important effects on the meiotic cell cycle and these "histone codes" in meiosis might lead to the development of novel therapeutic strategies against reproductive diseases.
Collapse
Affiliation(s)
- Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xueyu Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Zhanyu Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Cunxian Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
27
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
28
|
Wu Q, Zheng Q, Yuan L, Gao D, Hu Y, Jiang X, Zhai Q, Liu M, Xu L, Xu H, Ye J, Zhang F. Repression of YEATS2 induces cellular senescence in hepatocellular carcinoma and inhibits tumor growth. Cell Cycle 2024; 23:478-494. [PMID: 38619971 PMCID: PMC11174065 DOI: 10.1080/15384101.2024.2342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related fatalities globally. In this study, we observed a significant increase in the expression level of the YEATS2 gene in HCC patients, and it is negatively correlated with the patients' survival rate. While we have previously identified the association between YEATS2 and the survival of pancreatic cancer cells, the regulatory mechanisms and significance in HCC are still to be fully elucidated. Our study shows that knockdown (KD) of YEATS2 expression leads to DNA damage, which in turn results in an upregulation of γ-H2A.X expression and activation of the canonical senescence-related pathway p53/p21Cip1. Moreover, our transcriptomic analysis reveals that YEATS2 KD cells can enhance the expression of p21Cip1 via the c-Myc/miR-93-5p pathway, consequently fostering the senescence of HCC cells. The initiation of cellular senescence through dual-channel activation suggests that YEATS2 plays a pivotal regulatory role in the process of cell proliferation. Ultimately, our in vivo research utilizing a nude mouse tumor model revealed a notable decrease in both tumor volume and weight after the suppression of YEATS2 expression. This phenomenon is likely attributable to the attenuation of proliferative cell activity, coupled with a concurrent augmentation in the population of natural killer (NK) cells. In summary, our research results have supplemented the understanding of the regulatory mechanisms of HCC cell proliferation and indicated that targeting YEATS2 may potentially inhibit liver tumor growth.
Collapse
Affiliation(s)
- Qi Wu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Quan Zheng
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Dandan Gao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yabing Hu
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinqing Jiang
- The Joint Innovation Center for Engineering in Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaocheng Zhai
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Ming Liu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lifeng Xu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Heng Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Feng Zhang
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| |
Collapse
|
29
|
Kikuchi M, Takase S, Konuma T, Noritsugu K, Sekine S, Ikegami T, Ito A, Umehara T. GAS41 promotes H2A.Z deposition through recognition of the N terminus of histone H3 by the YEATS domain. Proc Natl Acad Sci U S A 2023; 120:e2304103120. [PMID: 37844223 PMCID: PMC10614846 DOI: 10.1073/pnas.2304103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023] Open
Abstract
Glioma amplified sequence 41 (GAS41), which has the Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain that recognizes lysine acetylation (Kac), regulates gene expression as a subunit of the SRCAP (SNF2-related CREBBP activator protein) complex that deposits histone H2A.Z at promoters in eukaryotes. The YEATS domains of the proteins AF9 and ENL recognize Kac by hydrogen bonding the aromatic cage to arginine situated just before K9ac or K27ac in the N-terminal tail of histone H3. Curiously, the YEATS domain of GAS41 binds most preferentially to the sequence that contains K14ac of H3 (H3K14ac) but lacks the corresponding arginine. Here, we biochemically and structurally elucidated the molecular mechanism by which GAS41 recognizes H3K14ac. First, stable binding of the GAS41 YEATS domain to H3K14ac required the N terminus of H3 (H3NT). Second, we revealed a pocket in the GAS41 YEATS domain responsible for the H3NT binding by crystallographic and NMR analyses. This pocket is away from the aromatic cage that recognizes Kac and is unique to GAS41 among the YEATS family. Finally, we showed that E109 of GAS41, a residue essential for the formation of the H3NT-binding pocket, was crucial for chromatin occupancy of H2A.Z and GAS41 at H2A.Z-enriched promoter regions. These data suggest that binding of GAS41 to H3NT via its YEATS domain is essential for its intracellular function.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| | - Shohei Takase
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Tsuyoshi Konuma
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Kota Noritsugu
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Saaya Sekine
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takahisa Ikegami
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| |
Collapse
|
30
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|