1
|
Anastassopoulou C, Panagiotopoulos AP, Siafakas N, Tsakris A. The potential of RNA-binding proteins as host-targeting antivirals against RNA viruses. Int J Antimicrob Agents 2025; 66:107522. [PMID: 40258479 DOI: 10.1016/j.ijantimicag.2025.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
RNA-binding proteins (RBPs) are essential regulators of cellular RNA processes, including RNA stability, translation, and post-translational regulation. During viral infections, RBPs are key regulators of the viral cycle due to their interaction with both host and viral RNAs. Herein, we initially explore the roles of specific RBP families, namely heterogeneous nuclear ribonucleoproteins (hnRNPs), DEAD-box helicases, human antigen R (HuR), and the eukaryotic initiation factors of the eIF4F complex, in viral RNA replication, translation, and assembly. Next, we examine the potential of these RBPs as host-targeting antivirals against pandemic-prone RNA viruses that have been gaining momentum in recent years. Targeting RBPs could disrupt cellular homeostasis, leading to unintended effects on host cells; however, RBPs have been successfully targeted mainly in anticancer therapies, showcasing that their modulation can be safely achieved by drug repurposing. By disrupting key viral-RBP interactions or modulating RBP functions, such therapeutic interventions aim to inhibit viral propagation and restore normal host processes. Thus, conceivable benefits of targeting RBPs as alternative antiviral strategies include their broad-spectrum activity and potential for combination therapies with conventional antivirals, reduced or delayed resistance development, and concomitant enhancement of host immune responses. Our discussion also highlights the broader implications of leveraging host-directed therapies in an attempt to overcome viral resistance. Finally, we emphasise the need for continued innovation to refine these strategies for broad-spectrum antiviral applications.
Collapse
Affiliation(s)
- Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Siafakas
- Department of Clinical Microbiology, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Winnard PT, Vesuna F, Raman V. DExD-box RNA helicases in human viral infections: Pro- and anti-viral functions. Antiviral Res 2025; 235:106098. [PMID: 39889906 DOI: 10.1016/j.antiviral.2025.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Viruses have co-evolved with their hosts, intertwining their life cycles. As a result, components and pathways from a host cell's processes are appropriated for virus infection. This review examines the host DExD-box RNA helicases known to influence virus infection during human infections. We have identified 42 species of viruses (28 genera and 21 families) whose life cycles are modulated by at least one, but often multiple, DExD-box RNA helicases. Of these, 37 species require one or multiple DExD-box RNA helicases for efficient infections, i.e., in these cases the DExD-box RNA helicases are pro-viral. However, similar evolutionary processes have also led to cellular responses that combat viral infections. In humans, these responses comprise intrinsic and innate immune responses initiated and regulated by some of the same DExD-box RNA helicases that act as pro-viral helicases. Currently, anti-viral DExD-box RNA helicase responses to viral infections are noted in 23 viral species. Notably, most studied viruses are linked to severe, life-threatening diseases, leading many researchers to focus on DExD-box RNA helicases as potential therapeutic targets. Thus, we present examples of host-directed therapies targeting anti-viral DExD-box RNA helicases. Overall, our findings indicate that various DExD-box RNA helicases serve as either pro- and/or anti-viral agents across a wide range of viruses. Continued investigation into the pro-viral activities of these helicases will help identify specific protein motifs that can be targeted by drugs to manage or eliminate the severe diseases caused by these viruses. Comparative studies on anti-viral DExD-box RNA helicase responses may also offer insights for developing therapies that enhance immune responses triggered by these helicases.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508, GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Castello A, Kamel W. Nuclear RNA-binding proteins meet cytoplasmic viruses. RNA (NEW YORK, N.Y.) 2025; 31:444-451. [PMID: 39805659 PMCID: PMC11874974 DOI: 10.1261/rna.080313.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defense mechanism against viruses, which involves RNA export, splicing, and nucleolar factors. For instance, the U2 small nuclear ribonucleoprotein (snRNP) relocates to the cytoplasm in infected cells and uses U2 snRNA to interact with viral genomes, repressing viral replication and gene expression. Here, we describe these emerging host-virus interactions and discuss the remaining questions to elucidate their antiviral mechanisms.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
4
|
Song L, Xie H, Fan H, Zhang Y, Cheng Z, Chen J, Guo Y, Zhang S, Zhou X, Li Z, Liao H, Han J, Huang J, Zhou J, Fang D, Liu T. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol Cell 2025; 85:506-522.e7. [PMID: 39706186 DOI: 10.1016/j.molcel.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Stalled replication forks, susceptible to nucleolytic threats, necessitate protective mechanisms involving pivotal factors such as the tumor suppressors BRCA1 and BRCA2. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. These hybrids act as safeguards, preventing premature engagement by the DNA2 nuclease and uncontrolled DNA2-mediated degradation of nascent DNA. Furthermore, we provide evidence that DExD box polypeptide 39A (DDX39A), serving as an RNA-DNA resolver, unwinds these structures and facilitates regulated DNA2 access to stalled forks. This orchestrated process enables controlled DNA2-dependent stalled fork processing and restart. Finally, we reveal that loss of DDX39A enhances stalled fork protection in BRCA1/2-deficient cells, consequently conferring chemoresistance. Our results suggest that the dynamic regulation of RNA-DNA hybrid formation at stalled forks by RNAPII and DDX39A precisely governs the timing of DNA2 activation, contributing to stalled fork protection, processing, and restart, ultimately promoting genome stability.
Collapse
Affiliation(s)
- Lizhi Song
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haihua Xie
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Haonan Fan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Yanjun Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000 Yiwu, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Yuzun Guo
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Shudi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Xinyu Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Zhaoshuang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haoxiang Liao
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, China
| | - Jun Huang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China.
| |
Collapse
|
5
|
Meng X, Wu Q, Cao C, Yang W, Chu S, Guo H, Qi S, Bai J. A novel peptide encoded by circSRCAP confers resistance to enzalutamide by inhibiting the ubiquitin-dependent degradation of AR-V7 in castration-resistant prostate cancer. J Transl Med 2025; 23:108. [PMID: 39844192 PMCID: PMC11755828 DOI: 10.1186/s12967-025-06115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear. METHODS High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells. The coding potential of circSRCAP was confirmed by polysome profiling and LC-MS. The function of circSRCAP was validated in vitro and in vivo using gain- and loss-of-function assays. Mechanistic insights were obtained through immunoprecipitation analyses. RESULTS A novel ENZ-resistant circRNA, circSRCAP, was identified and shown to be upregulated in ENZ-resistant C4-2B (ENZR-C4-2B) cells, correlating with increased AR-V7 protein levels. circSRCAP is generated via splicing by eIF4A3, forming a loop structure and is exported from the nucleus by the RNA helicase DDX39A. Mechanistically, circSRCAP encodes a 75-amino acid peptide (circSRCAP-75aa) that inhibits the ubiquitination of AR/AR-V7's co-chaperone protein HSP70 by disrupting the interaction with the E3 ligase STUB1. This process results in the upregulation of AR-V7 expression and promotes ENZ resistance in CRPC cells. Xenograft tumor models further confirmed the role of circSRCAP in CRPC progression and its potential as a therapeutic target for ENZ-resistant CRPC. CONCLUSIONS circSRCAP provides an epigenetic mechanism influencing AR-V7 stability and offers a promising therapeutic target for treating ENZ-resistant CRPC.
Collapse
MESH Headings
- Male
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/pathology
- Humans
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Benzamides
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Proteolysis/drug effects
- Cell Line, Tumor
- Animals
- Nitriles
- Ubiquitin/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Peptides/metabolism
- Peptides/genetics
- Ubiquitin-Protein Ligases/metabolism
- Mice, Nude
- Protein Isoforms/metabolism
- Mice
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qingxuan Wu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chengsong Cao
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Oncology, Xuzhou Institute of Medical Science, Xuzhou, Jiangsu, China
| | - Wendong Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hongjun Guo
- Department of General Surgery, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China.
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Liu L, Wang P, Guo C, Song L, Chen L, Qi H, Zheng Y, Xing X, Wang C. TRAIP enhances progression of tongue squamous cell carcinoma through EMT and Wnt/β-catenin signaling by interacting with DDX39A. BMC Cancer 2024; 24:1481. [PMID: 39623306 PMCID: PMC11610093 DOI: 10.1186/s12885-024-13130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors with high mortality and poor prognosis. Its incidence rate is increasing gradually. Tumor necrosis factor receptor-associated factor interacting protein (TRAIP), as a factor related to several tumors, reveals that its gene expression is different between normal tissue and primary tumor of head and neck squamous cell carcinoma using bioinformatics analysis. METHOD In our study, TCGA database, immunohistochemistry, proliferation assay, colony formation, wound healing assay, Transwell, cell cycle analysis and tumor xenografts model were used to determine the expression and functions of TRAIP in TSCC. RESULT We found that TRAIP may promote the proliferation, migration and invasion of TSCC. Furthermore, the results of bioinformatics analysis, mass spectrometry and co-immunoprecipitation suggested that DDX39A may be a TRAIP interacting protein. DDX39A has been proven to be an oncogene in several tumors, which may have an important effect on cell proliferation and metastasis in multiple tumors. In addition, the high expression of DDX39A implies the poor prognosis of patients. Our study demonstrated that TRAIP probably interact with DDX39A to regulate cell progression through epithelial-mesenchymal transition and Wnt/β-catenin pathway. In addition, we show that the necessary domain of DDX39A for the interaction between DDX39A and TRAIP region. CONCLUSION These results indicate that TRAIP is important in occurrence and development of TSCC and is expected to become the new promising therapeutic target.
Collapse
Affiliation(s)
- Litong Liu
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Ping Wang
- Department of Pathology, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Cheng Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Li Song
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Lifang Chen
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Hongbing Qi
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Yangyang Zheng
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Xiaoming Xing
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Chengqin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China.
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
7
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan equine encephalitis virus infection by targeting a late step in viral entry. PLoS Pathog 2024; 20:e1012312. [PMID: 39527628 PMCID: PMC11581401 DOI: 10.1371/journal.ppat.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases of Children’s Hospital, Zhejiang University School of Medicine, National Clinical Center for Children’s Health, Hangzhou, China
| |
Collapse
|
8
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Castello A, Álvarez L, Kamel W, Iselin L, Hennig J. Exploring the expanding universe of host-virus interactions mediated by viral RNA. Mol Cell 2024; 84:3706-3721. [PMID: 39366356 DOI: 10.1016/j.molcel.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
RNA is a central molecule in RNA virus biology; however, the interactions that it establishes with the host cell are only starting to be elucidated. In recent years, a methodology revolution has dramatically expanded the scope of host-virus interactions involving the viral RNA (vRNA). A second wave of method development has enabled the precise study of these protein-vRNA interactions in a life cycle stage-dependent manner, as well as providing insights into the interactome of specific vRNA species. This review discusses these technical advances and describes the new regulatory mechanisms that have been identified through their use. Among these, we discuss the importance of vRNA in regulating protein function through a process known as riboregulation. We envision that the elucidation of vRNA interactomes will open new avenues of research, including pathways to the discovery of host factors with therapeutic potential against viruses.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK.
| | - Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Louisa Iselin
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany; Department of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
10
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan Equine Encephalitis Virus Infection by targeting a late step in viral entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597282. [PMID: 38895352 PMCID: PMC11185716 DOI: 10.1101/2024.06.04.597282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Griesman T, McMillen CM, Negatu SG, Hulahan JJ, Whig K, Dohnalová L, Dittmar M, Thaiss CA, Jurado KA, Schultz DC, Hartman AL, Cherry S. The lipopeptide Pam3CSK4 inhibits Rift Valley fever virus infection and protects from encephalitis. PLoS Pathog 2024; 20:e1012343. [PMID: 38935789 PMCID: PMC11236204 DOI: 10.1371/journal.ppat.1012343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/10/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.
Collapse
Affiliation(s)
- Trevor Griesman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Seble Getenet Negatu
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Jesse J. Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Kanupriya Whig
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lenka Dohnalová
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Christoph A. Thaiss
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - David C. Schultz
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
13
|
Thompson MG, Horner SM. The Evil DExH/D: Chikungunya virus runs but cannot hide from DDX39A. Mol Cell 2023; 83:3948-3949. [PMID: 37977114 DOI: 10.1016/j.molcel.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
In this issue, Tapescu et al.1 identify DDX39A as a novel antiviral protein that acts on conserved features of alphavirus RNA to limit infection in an IFN-independent manner.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|