1
|
Tual M, Bellemare-Pelletier A, Moore S, Guipouy D, Farzam-Kia N, Jafarzadeh L, Quenneville J, Barrette B, Saba-El-Leil MK, Delisle JS, Gagnon E. MARC, a novel modular chimeric antigen receptor, improves T cell-based cancer immunotherapies by preventing early T cell exhaustion and enhancing persistence. J Immunother Cancer 2025; 13:e011829. [PMID: 40254394 PMCID: PMC12010287 DOI: 10.1136/jitc-2025-011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor T cell (CAR-T)-based immunotherapies have reshaped the therapeutic landscape of cancer treatment, in particular for patients afflicted with leukemia. However, defects in CAR behaviors and clinical complications have hindered their widespread application across diverse cancer types. Chief among these defects is high tonic signaling, absent in native activating immune receptors, which accelerates T cell exhaustion and undermines treatment efficacy. We hypothesized that these limitations arise because current CAR architectures fail to replicate the modular design of native activating immune receptors, which integrate distinct receptor and signaling modules. This modular assembly is crucial for maintaining proper receptor regulation and function. METHODS Therefore, we set forth to develop a modular chimeric antigen receptor leveraging the same assembly principles found in native activating immune receptors to reestablish the intrinsic safeguards in receptor expression and signaling. RESULTS The resulting Modular Actuation Receptor Complex (MARC) displayed surface expression levels akin to its native immune receptor counterpart, the NK cell receptor KIR2DS3, while eliminating tonic signaling. In a clinically relevant mouse leukemia model, MARC-T cells exhibited remarkable long-term persistence and a less exhausted phenotype compared with conventional CAR-T cells. CONCLUSIONS With its modular architecture, the MARC offers unparalleled opportunities for optimization and broad applicability across different cell types, paving the way for transformative advancements in cell-based therapies. This innovation holds immense promise as a next-generation therapeutic tool in clinical settings.
Collapse
Affiliation(s)
- Margaux Tual
- Département de microbiologie, Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Susan Moore
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | | | - Leila Jafarzadeh
- Médicine, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | - Jordan Quenneville
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Barrette
- Département de biologie et pathologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Marc K Saba-El-Leil
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Etienne Gagnon
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de microbiobologie, infectriologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Kapetanovic E, Weber CR, Bruand M, Pöschl D, Kucharczyk J, Hirth E, Dietsche C, Khan R, Wagner B, Belli O, Vazquez-Lombardi R, Castellanos-Rueda R, Di Roberto RB, Kalinka K, Raess L, Ly K, Rai S, Dittrich PS, Platt RJ, Oricchio E, Reddy ST. Engineered allogeneic T cells decoupling T-cell-receptor and CD3 signalling enhance the antitumour activity of bispecific antibodies. Nat Biomed Eng 2024; 8:1665-1681. [PMID: 39322719 PMCID: PMC11668682 DOI: 10.1038/s41551-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation. In mice with CD19+ tumour xenografts, treatment with the engineered human cells in combination with blinatumomab (a clinically approved biAb) led to the recognition and clearance of tumour cells in the absence of detectable alloreactivity. Our findings support the development of immunotherapies combining biAbs and 'off-the-shelf' allogeneic T cells.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- T-Lymphocytes/immunology
- Signal Transduction/drug effects
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Lymphocyte Activation/drug effects
- Cell Line, Tumor
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Engineering/methods
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Xenograft Model Antitumor Assays
- Allogeneic Cells/immunology
Collapse
Affiliation(s)
- Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel Pöschl
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Riyaz Khan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Kalinka
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Luca Raess
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Ly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shivam Rai
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
3
|
Ge L, Wang Z, Hu Y, Wang P, Qin Q, Tian Y, Wang X, Wen X, Zeng D. Transcriptomic and Proteomic Analyses of the Immune Mechanism in Pathogenetic and Resistant Chinese Soft-Shelled Turtle ( Pelodiscus sinensis) Infected with Aeromonas hydrophila. Genes (Basel) 2024; 15:1273. [PMID: 39457397 PMCID: PMC11508015 DOI: 10.3390/genes15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As intensive aquaculture practices have progressed, the prevalence of bacterial diseases in the Chinese soft-shell turtle (Pelodiscus sinensis) has escalated, particularly infections caused by Aeromonas hydrophila, such as ulcerative dermatitis and abscess disease. Despite this, little is known about their immune defenses against this pathogen. METHODS Our study pioneers an integrated analysis of transcriptomics and proteomics to investigate the immune responses of Chinese soft-shelled turtles to A. hydrophila infection. RESULTS The investigation revealed significant differences in immune-related pathways between groups susceptible and resistant to A. hydrophila infection after 4 days. A total of 4667 and 3417 differentially expressed genes (DEGs), 763 and 568 differentially expressed proteins (DEPs), and 13 and 5 correlated differentially expressed genes and proteins (cor-DEGs-DEPs) were identified in susceptible and resistant Chinese soft-shelled turtles, respectively. In the resistant group, upregulation of immune-related genes, such as CD3ε and CD45, enhanced T-cell activation and the immune response. The proteomic analysis indicated that immune proteins, such as NF-κB1, were significantly upregulated in the resistant group. The correlation analysis between transcriptomics and proteomics demonstrated that the CD40 gene and protein, differentially expressed in the resistant group compared to the control group, were commonly upregulated within the Toll-like receptor signaling pathway. CONCLUSIONS The transcriptomic and proteomic data obtained from this study provide a scientific foundation for understanding the immune mechanisms that enable the Chinese soft-shelled turtle to resist A. hydrophila infection.
Collapse
Affiliation(s)
- Lingrui Ge
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Zi’ao Wang
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Yazhou Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Pei Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qin Qin
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Yu Tian
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Xiaoqing Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Xingxing Wen
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Dan Zeng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
4
|
Jia HM, An FX, Zhang Y, Yan MZ, Zhou Y, Bian HJ. FASLG as a Key Member of Necroptosis Participats in Acute Myocardial Infarction by Regulating Immune Infiltration. Cardiol Res 2024; 15:262-274. [PMID: 39205966 PMCID: PMC11349138 DOI: 10.14740/cr1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is a major cause of human health risk. Necroptosis is a newly and recently reported mode of cell death, whose role in AMI has not been fully elucidated. This study aimed to search for necroptosis biomarkers associated with the occurrence of AMI and to explore their possible molecular mechanisms through bioinformatics analysis. Methods The dataset GSE48060 was used to perform weighted gene co-expression network analysis (WGCNA) and differential analysis. Key modules, differential genes, and necroptosis-related genes (NRGs) were intersected to obtain candidate biomarkers. Groups were classified and differentially analyzed according to the expression of the key biomarker. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, gene set enrichment analysis (GSEA), and construction of protein-protein interaction (PPI) networks are performed on differentially expressed genes (DEGs). Finally, CIBERSORT was used to assess immune cell infiltration in AMI and the correlation of key biomarkers with immune cells. Immune cell infiltration analysis revealed the correlation between FASLG and multiple screened immune cells. Results WGCNA determined that the MEsaddlebrown module was the most significantly associated with AMI. Intersecting it with DEGs as well as NRGs, we obtained two key genes, FASLG and IFNG. But only FASLG showed statistically significant differences between the AMI group and the normal control group. Further analysis suggested that the down-regulation of FASLG may exert its function through the regulation of the central genes CD247 and YES1. Furthermore, FASLG was positively correlated with T-cell CD4 memory activation and T-cell gamma delta, and negatively correlated with macrophage M0. Conclusion In conclusion, FASLG and its regulatory genes CD247 and YES1 might be involved in the development of AMI by regulating immune cell infiltration. FASLG might be a potential biomarker for AMI and provides a new direction for the diagnosis of AMI.
Collapse
Affiliation(s)
- Hui Min Jia
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- These authors contributed equally to this work
| | - Fu Xiang An
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- These authors contributed equally to this work
| | - Yu Zhang
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Mei Zhu Yan
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yi Zhou
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hong Jun Bian
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
5
|
Carr A, Mateyka LM, Scheu SJC, Bici A, Paijmans J, Reijmers RM, Dieminger N, Dildebekova S, Hamed N, Wagner K, Busch DH, D'Ippolito E. Advances in preclinical TCR characterization: leveraging cell avidity to identify functional TCRs. Biol Chem 2024; 405:517-529. [PMID: 38666334 DOI: 10.1515/hsz-2023-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 07/14/2024]
Abstract
T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.
Collapse
Affiliation(s)
- Andreas Carr
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Laura M Mateyka
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Sebastian J C Scheu
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Ana Bici
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Joris Paijmans
- LUMICKS, Paalbergweg 3, NL-1105 AG, Amsterdam, The Netherlands
| | | | - Nina Dieminger
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Shirin Dildebekova
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Noomen Hamed
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Karolin Wagner
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- CellPoint, a Galapagos Company, Oegstgeest, The Netherlands
| | - Dirk H Busch
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Elvira D'Ippolito
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
6
|
Cai X, Lin J, Liu L, Zheng J, Liu Q, Ji L, Sun Y. A novel TCGA-validated programmed cell-death-related signature of ovarian cancer. BMC Cancer 2024; 24:515. [PMID: 38654239 DOI: 10.1186/s12885-024-12245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates. Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC. Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC. METHODS By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression. We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores. RESULTS A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), 8-oxoguanine-DNA glycosylase (OGG1), HECT and RLD domain containing E3 ubiquitin protein ligase family member 1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor 1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC) (AUC3 - year =0.728, AUC5 - year = 0.730). The nomogram based on risk score has good performance in predicting the prognosis of OC patients (AUC1 - year =0.781, AUC3 - year =0.759, AUC5 - year = 0.670). Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints, programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3 (LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, qRT-PCR confirmed RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-expressed in OC cell lines. CONCLUSION Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
7
|
Chao G, Zukin S, Fortuna PRJ, Boettner B, Church GM. Progress and limitations in engineering cellular adhesion for research and therapeutics. Trends Cell Biol 2024; 34:277-287. [PMID: 37580241 DOI: 10.1016/j.tcb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Intercellular interactions form the cornerstone of multicellular biology. Despite advances in protein engineering, researchers artificially directing physical cell interactions still rely on endogenous cell adhesion molecules (CAMs) alongside off-target interactions and unintended signaling. Recently, methods for directing cellular interactions have been developed utilizing programmable domains such as coiled coils (CCs), nanobody-antigen, and single-stranded DNA (ssDNA). We first discuss desirable molecular- and systems-level properties in engineered CAMs, using the helixCAM platform as a benchmark. Next, we propose applications for engineered CAMs in immunology, developmental biology, tissue engineering, and neuroscience. Biologists in various fields can readily adapt current engineered CAMs to establish control over cell interactions, and their utilization in basic and translational research will incentivize further expansion in engineered CAM capabilities.
Collapse
Affiliation(s)
- George Chao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Stefan Zukin
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Chai W, Yao W, Pan J, Huang Z, Wang B, Xu B, Fan X, He W, Wang W, Zhang W. Moniezia benedeni drives CD3 + T cells residence in the sheep intestinal mucosal effector sites. Front Vet Sci 2024; 11:1342169. [PMID: 38371601 PMCID: PMC10869452 DOI: 10.3389/fvets.2024.1342169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction T cells are the core of the cellular immunity and play a key role in the regulation of intestinal immune homeostasis. In order to explore the impact Moniezia benedeni (M. benedeni) infection on distributions of CD3+ T cells in the small intestine of the sheep. Methods In this study, sheep pET-28a-CD3 recombinant plasmid were constructed and expressed in BL21 receptor cells, then the rabbit anti-sheep CD3 polyclonal antibody was prepared through recombinant protein inducing. The M. benedeni-infected sheep (infection group, n = 6) and healthy sheep (control group, n = 6) were selected, and the distributions of CD3+ T cells in intestinal laminae propria (LP) and mucous epitheliums were observed and analyzed systematically. Results The results showed that the rabbit anti-sheep CD3 polyclonal antibody had good potency and specificity. In the effector area of small intestine, a large number of CD3+ T cells were mainly diffusely distributed in the intestinal LP as well as in the mucous epitheliums, and the densities of intestinal LP from duodenum to jejunum to ileum were 6.01 cells/104 μm2, 7.01 cells/104 μm2 and 6.43 cells/104 μm2, respectively. Their distribution densities in mucous epitheliums were 6.71 cells/104 μm2, 7.93 cells/104 μm2 and 7.21 cells/104 μm2, respectively; in the infected group, the distributions of CD3+ T cells were similar to that of the control group, and the densities in each intestinal segment were all significantly increased (p < 0.05), meanwhile, the total densities of CD3+ T cells in duodenum, jejunum and ileum were increased by 33.43%, 14.50%, and 34.19%. In LP and mucous epitheliums, it was increased by 33.57% and 27.92% in duodenum; by 25.82% and 7.07% in jejunum, and by 27.07% and 19.23% in ileum, respectively. Discussion It was suggested that M. benedeni infection did not change the spatial distributions of CD3+ T cells in the small intestine of sheep, but significantly increased their densities, which lays a foundation for further research on the regulatory mechanism of sheep intestinal mucosal immune system against M. benedeni infection.
Collapse
Affiliation(s)
- Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Bin Xu
- Lanzhou Safari Park Management Co., Lanzhou, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Toyoda H, Tani A, Goto-Koshino Y, Motegi T, Sakamoto M, Mochizuki T, Harada K, Kobayashi T, Setoguchi A, Shizuta Y, Mizuno T, Irie M, Nakamichi J, Tsujimoto H, Ohmi A, Fukuoka R, Nakamura Y, Tomiyasu H. Gene expression profiles associated with early relapse during first remission induction in canine multicentric high-grade B-cell lymphoma. J Vet Med Sci 2024; 86:18-27. [PMID: 37952972 PMCID: PMC10849849 DOI: 10.1292/jvms.23-0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023] Open
Abstract
Although chemotherapy using CHOP-based protocol induces remission in most cases of canine multicentric high-grade B-cell lymphoma (mhBCL), some cases develop early relapse during the first induction protocol. In this study, we examined the gene expression profiles of canine mhBCL before chemotherapy and investigated their associations with early relapse during the first whole CHOP-based protocol. Twenty-five cases of mhBCL treated with CHOP-based protocol as first induction chemotherapy were included in this study. Sixteen cases completed the first whole CHOP-based protocol without relapse (S-group), and nine developed relapse during the chemotherapy (R-group). RNA-seq was performed on samples from neoplastic lymph nodes. Differentially expressed genes (DEGs) were extracted by the comparison of gene expression profiles between S- and R-groups, and the differences in the expression levels of these genes were validated by RT-qPCR. Extracted 179 DEGs included the genes related to chemokine CC motif ligand, T-cell receptor signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway. We focused on chemokine CC motif ligand, and CCL4 was confirmed to be significantly downregulated in the R-group (P=0.039). We also focused on the genes related to T-cell signaling pathway, and CD3E (P=0.039), ITK (P=0.023), and LAT (P=0.023) genes were confirmed to be significantly upregulated in the R-group. The current results suggest that both changes in tumor cells and the interactions between tumor cells and immune cells are associated with the efficacy of the chemotherapy for first remission induction.
Collapse
Affiliation(s)
- Hiroto Toyoda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiyoshi Tani
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoki Motegi
- Boston University School of Medicine, Department of Medicine, Division of Computational Biomedicine, Boston, MA, USA
| | - Mika Sakamoto
- Genome Informatics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Takako Mochizuki
- Genome Informatics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Kei Harada
- Japan Small Animal Cancer Center, Saitama, Japan
| | | | | | | | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | - Jun Nakamichi
- Japan Animal Referral Medical Center, Kanagawa, Japan
| | | | - Aki Ohmi
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ray Fukuoka
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasukazu Nakamura
- Genome Informatics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Wei W, Ye B, Huang Z, Mu X, Qiao J, Zhao P, Jiang Y, Wu J, Zhan X. Prediction of Prognosis, Immunotherapy and Chemotherapy with an Immune-Related Risk Score Model for Endometrial Cancer. Cancers (Basel) 2023; 15:3673. [PMID: 37509334 PMCID: PMC10377799 DOI: 10.3390/cancers15143673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic cancer. The overall survival remains unsatisfying due to the lack of effective treatment screening approaches. Immunotherapy as a promising therapy has been applied for EC treatment, but still fails in many cases. Therefore, there is a strong need to optimize the screening approach for clinical treatment. In this study, we employed co-expression network (GCN) analysis to mine immune-related GCN modules and key genes and further constructed an immune-related risk score model (IRSM). The IRSM was proved effective as an independent predictor of poor prognosis. The roles of IRSM-related genes in EC were confirmed by IHC. The molecular basis, tumor immune microenvironment and clinical characteristics of the IRSM were revealed. Moreover, the IRSM effectiveness was associated with immunotherapy and chemotherapy. Patients in the low-risk group were more sensitive to immunotherapy and chemotherapy than those in the high-risk group. Interestingly, the patients responding to immunotherapy were also more sensitive to chemotherapy. Overall, we developed an IRSM which could be used to predict the prognosis, immunotherapy response and chemotherapy sensitivity of EC patients. Our analysis not only improves the treatment of EC but also offers targets for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenting Huang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoling Mu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Qiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Zhao
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuehang Jiang
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Xiao H, Yun S, Huang W, Dang H, Jia Z, Chen K, Zhao X, Wu Y, Shi Y, Wang J, Zou J. IL-4/13 expressing CD3γ/δ + T cells regulate mucosal immunity in response to Flavobacterium columnare infection in grass carp. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108586. [PMID: 36740082 DOI: 10.1016/j.fsi.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Interleukin (IL) 4 and 13 are signature cytokines orchestrating Th2 immune response. Teleost fish have two homologs, termed IL-4/13A and IL-4/13B, and have been functionally characterized. However, what cells express IL-4/13A and IL-4/13B has not been investigated in fish. In this work, the recombinant IL-4/13A and IL-4/13B proteins of grass carp (Ctenopharyngodon idella) were produced in the Escherichia coli (E. coli) cells and purified. Monoclonal antibodies (mAbs) against the recombinant CiIL-4/13A and CiIL-4/13B proteins were prepared and characterized. Western blotting analysis showed that the CiIL-4/13A and CiIL-4/13B mAbs could specifically recognize the recombinant proteins expressed in the E. coli cells and HEK293T cells and did not cross-react with each other. Confocal microscopy revealed that the CiIL-4/13A+ and CiIL-4/13B+ cells were present in the gills, intestine and spleen and could be upregulated in fish infected with Flavobacterium columnare (F. columnare). Interestingly, the cells expressing CiIL-4/13A and CiIL-4/13B were mostly CD3γ/δ+ cells. The CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells were significantly upregulated in the gill filaments and the intestinal mucosa after F. columnare infection. Our results imply that the CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells are important for homeostasis and the regulation of mucosal immunity.
Collapse
Affiliation(s)
- Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
12
|
Zhang R, Zhang J, Zhou X, Zhao A, Yu C. The establishment and application of CD3E humanized mice in immunotherapy. Exp Anim 2022; 71:442-450. [PMID: 35570001 PMCID: PMC9671771 DOI: 10.1538/expanim.22-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 07/22/2024] Open
Abstract
In the field of cancer immunotherapy, monoclonal antibody drugs, bispecific antibodies, and antibody-conjugated drugs have become the focus of current research, and gene-edited animal models play an essential role in the entire drug development process. In this study, CD3E humanized mice were established by replacing the second to the seventh exon of the Cd3e mouse gene with the same exon of the human gene. The expression of human CD3E in CD3E humanized mice was detected by RT-PCR as well as flow cytometry, also a tumor model was established based on CD3E humanized mice, and the pharmacodynamic effects of CD3E monoclonal antibodies were evaluated. The results showed that CD3E humanized mice expressed only human CD3E, and the proportion of each lymphocyte in the thymus and spleen was not significantly changed compared with wild-type mice. CD3E monoclonal antibody could promote tumor growth after treatment, which may be related to the activation-induced cell death effect caused by this CD3E antibody. In contrast, Bispecific antibody blinatumomab inhibited tumor growth significantly. Thus, the CD3E humanized mice provided an adequate animal model for evaluating the efficacy and safety of CD3E antibody drugs.
Collapse
Affiliation(s)
- Rufeng Zhang
- College of life science and technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Jing Zhang
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Xiaofei Zhou
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Ang Zhao
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Changyuan Yu
- College of life science and technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
13
|
Zhang M, Shi M, Yu Y, Sang J, Wang H, Shi J, Duan P, Ge R. The Immune Subtypes and Landscape of Advanced-Stage Ovarian Cancer. Vaccines (Basel) 2022; 10:vaccines10091451. [PMID: 36146529 PMCID: PMC9501495 DOI: 10.3390/vaccines10091451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Immunotherapy has played a significant role in the treatment of a variety of hematological and solid tumors, but its application in ovarian cancer (OC) remains unclear. This study aimed to identify immune subtypes of OC and delineate an immune landscape for selecting suitable patients for immunotherapy, thereby providing potent therapeutic targets for immunotherapy drug development. Three immune subtypes (IS1–IS3) with distinctive molecular, cellular, and clinical characteristics were identified from the TCGA and GSE32062 cohorts. Compared to IS1, IS3 has a better prognosis and exhibits an immunological “hot”. IS3, in contrast, exhibits an immunological “cold” and has a worse prognosis in OC patients. Moreover, gene mutations, immune modulators, CA125, CA199, and HE4 expression, along with sensitivity either to immunotherapy or chemotherapy, were significantly different among the three immune subtypes. The OC immune landscape was highly heterogeneous between individual patients. Poor prognosis was correlated with low expression of the hub genes CD2, CD3D, and CD3E, which could act not only as biomarkers for predicting prognosis, but also as potential immunotherapy targets. Our study elucidates the immunotyping and molecular characteristics of the immune microenvironment in OC, which could provide an effective immunotherapy stratification method for optimally selecting patients, and also has clinical significance for the development of new immunotherapy as well as rational combination strategies for the treatment of OC patients.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yang Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianmin Sang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hong Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianhong Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Renshan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence:
| |
Collapse
|
14
|
Garcillán B, Megino RF, Herrero-Alonso M, Guardo AC, Perez-Flores V, Juraske C, Idstein V, Martin-Fernandez JM, Geisler C, Schamel WWA, Marin AV, Regueiro JR. The role of the different CD3γ domains in TCR expression and signaling. Front Immunol 2022; 13:978658. [PMID: 36119034 PMCID: PMC9478619 DOI: 10.3389/fimmu.2022.978658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The CD3 subunits of the T-cell antigen receptor (TCR) play a central role in regulation of surface TCR expression levels. Humans who lack CD3γ (γ—) show reduced surface TCR expression levels and abolished phorbol ester (PMA)-induced TCR down-regulation. The response to PMA is mediated by a double leucine motif in the intracellular (IC) domain of CD3γ. However, the molecular cause of the reduced TCR surface expression in γ— lymphocytes is still not known. We used retroviral vectors carrying wild type CD3γ or CD3δ or the following chimeras (EC-extracellular, TM-transmembrane and IC): δECγTMγIC (δγγ for short), γγδ, γδδ and γγ-. Expression of γγγ, γγδ, γδδ or γγ- in the γ— T cell line JGN, which lacks surface TCR, demonstrated that cell surface TCR levels in JGN were dependent on the EC domain of CD3γ and could not be replaced by the one of CD3δ. In JGN and primary γ— patient T cells, the tested chimeras confirmed that the response to PMA maps to the IC domain of CD3γ. Since protein homology explains these results better than domain structure, we conclude that CD3γ contributes conformational cues that improve surface TCR expression, likely at the assembly or membrane transport steps. In JGN cells all chimeric TCRs were signalling competent. However, an IC domain at CD3γ was required for TCR-induced IL-2 and TNF-α production and CD69 expression, indicating that a TCR without a CD3γ IC domain has altered signalling capabilities.
Collapse
Affiliation(s)
- Beatriz Garcillán
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rebeca F. Megino
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Herrero-Alonso
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alberto C. Guardo
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Veronica Perez-Flores
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Vincent Idstein
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose M. Martin-Fernandez
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang W. A. Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana V. Marin
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jose R. Regueiro
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- *Correspondence: Jose R. Regueiro,
| |
Collapse
|
15
|
Satoh T, Kayano H, Takahashi N, Tsukasaki K, Yasuda M. Diagnostic utility of the aberrant immunohistochemical expression of CD3 molecules for peripheral T-cell lymphomas. Ann Diagn Pathol 2022; 60:152013. [PMID: 35905535 DOI: 10.1016/j.anndiagpath.2022.152013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
The histological diagnosis of peripheral T-cell lymphomas (PTCLs) is often challenging. Flow cytometry (FCM) sometimes shows the loss of pan-T-cell markers for PTCLs, suggesting the neoplastic nature of these cells. Immunohistochemically, the total loss of pan-T-cell markers has been demonstrated in PTCLs. Furthermore, except for the total loss, the aberrant immunohistochemical expressions of pan-T-cell markers have also been empirically observed in PTCLs, but the details remain unexamined. Therefore, the present study semi-quantitatively evaluated the aberrant expression of cytoplasmic CD3ε (cCD3ε), the most common immunohistochemical pan-T-cell marker, in 91 PTCL cases. The expressions of the other CD3 molecules, CD3δ, CD3γ, and CD3ζ were also examined. Frequencies of the total immunohistochemical loss of CD3 molecules and loss of surface CD3ε (sCD3ε) in FCM were analyzed for comparison. The results showed atypical, aberrant expression patterns for immunohistochemical CD3 molecules: perinuclear, cytoplasmic, membranous, and partial negative. The frequency of each molecule was as follows: cCD3ε 40.7 %, CD3δ 26.4 %, CD3γ 53.8 %, and CD3ζ 54.9 %, especially the latter two showed high frequency in peripheral T-cell lymphoma, not otherwise specified, angioimmunoblastic T-cell lymphoma, and adult T-cell lymphoma/leukemia. Immunohistochemical total loss was less than aberrant expression in all CD3 molecules, with the frequency of cCD3ε being the lowest (6.6 %). The loss of sCD3ε in FCM was observed in 43.3 % of cases, with a similar frequency to the aberrant expression of cCD3ε. In conclusion, the aberrant immunohistochemical expression of cCD3ε was a useful finding as is sCD3ε loss in FCM, but CD3γ and CD3ζ were more useful, facilitating the diagnosis of PTCLs.
Collapse
Affiliation(s)
- Tsugumi Satoh
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Hidekazu Kayano
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan; Faculty of Health and Medical Care, School of Medical Technology, Saitama Medical University, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Naoki Takahashi
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Kunihiro Tsukasaki
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| |
Collapse
|
16
|
Barzilova VD, Drury J, Rogers B, Thomas E, Ahmed F, Bradfield A, Al-Lamee H, Hapangama DK. Role of Nucleolin in Endometrial Precancerous Hyperplasia and Carcinogenesis: Ex Vivo and In Silico Study. Int J Mol Sci 2022; 23:6228. [PMID: 35682908 PMCID: PMC9181237 DOI: 10.3390/ijms23116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/04/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynaecological malignancy. Nucleolin (NCL) is involved in rDNA transcription, cell proliferation, and apoptosis, with high expression associated with worse overall survival (OS) in other adenocarcinomas. Our aims were to assess NCL gene and protein expression and explore the differential expression of NCL-associated genes (NAGs) in endometrial carcinogenesis. Endometrial samples were obtained from 157 women to include healthy, hyperplastic (EH), EC, and metastatic groups. RT-qPCR and immunohistochemistry were employed to assess NCL gene and protein levels. In silico analysis of NAGs in TCGA and GEO datasets was performed, with the prognostic value determined via Human Protein Atlas. NCL mRNA level of EC was lower than in healthy post-menopausal endometrium (p < 0.01). EH samples had lower NCL immuno-expression scores than healthy pre-menopausal (p < 0.001), benign post-menopausal (p < 0.01), and EC (p < 0.0001) samples. Metastatic lesions demonstrated higher NCL quick scores than primary tissue (p = 0.04). Higher NCL Immuno quick scores carried a worse OS in high-grade EC (p = 0.01). Interrogating Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) and Uterine Carcinosarcoma (TCGA-UCS) cohorts revealed NCL to be the most highly upregulated gene in carcinosarcoma, with S100A11, LMNB2, RERG, E2F1 and CCNA2 representing key dysregulated NAGs in EC. Since NCL is implicated in transforming hyperplastic glands into cancer, with further involvement in metastasis, it is suggested to be a promising target for better-informed diagnosis, risk stratification, and management of EC.
Collapse
Affiliation(s)
- Vanya D. Barzilova
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
| | - Josephine Drury
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
| | - Bryony Rogers
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
| | - Emily Thomas
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
| | - Fareen Ahmed
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
| | - Alice Bradfield
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
| | - Hannan Al-Lamee
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Dharani K. Hapangama
- Centre for Women’s Health Research, Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7SS, UK; (V.D.B.); (J.D.); (B.R.); (E.T.); (F.A.); (H.A.-L.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
| |
Collapse
|
17
|
Harris MJ, Chen H, Cai T, Yi Y, Deng Q, Yao Y, Lan T, Guo Y, Xu X, Wen X, McGee JE, Tatang D, Brock J, Shi F, Zhou L. Generation of Allogeneic CAR T Cells through Specific Degradation of the T Cell Antigen Receptor by E3 Ubiquitin Ligase Fusion Proteins. ACS Synth Biol 2022; 11:2029-2035. [PMID: 35549091 DOI: 10.1021/acssynbio.1c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor downregulation is instrumental for many therapeutic interventions. Receptor knockout through gene-editing technologies is efficient but can introduce off-target mutations and chromothripsis. Regulation of gene expression at the protein level is a promising alternative. Here, we present results showing the targeted T cell antigen receptor (TCR) degradation using chimeric E3 fusion proteins that we call Receptor Targeting Chimeras (ReceptorTAC). We show that TCR degradation is dependent on enzymatically active, membrane-anchored E3 ligase variants. TCR specificity was achieved by direct fusion of an E3 domain to the CD3ζ transmembrane sequence. Jurkat and primary T cells stably expressing the ReceptorTAC constructs showed significantly reduced responses to TCR stimulation. We also used our ReceptorTAC technology to generate TCR-deficient, claudin18.2-specific CAR T cells, where the activity of the CAR was unaffected by the expression of the ReceptorTAC. These data indicate that our ReceptorTAC molecule can be used to generate allogeneic CAR T cells.
Collapse
Affiliation(s)
- Michael J. Harris
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - Hao Chen
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Tianyu Cai
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - Yuting Yi
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Qiaowen Deng
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Yi Yao
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Tianle Lan
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Yanfeng Guo
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Xiufang Xu
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Xian Wen
- Nanjing Boan Biotechnology Co. Ltd., 28 Gaoxin Rd., Pokou District, Nanjing, Jiangsu 210061, China
| | - Joshua E. McGee
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - Daniella Tatang
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - James Brock
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - Feng Shi
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| | - Li Zhou
- Boan Boston LLC, 19 Presidential Way, Suite 304, Woburn, Massachusetts 01801, United States
| |
Collapse
|
18
|
Tang TCY, Xu N, Nordon R, Haber M, Micklethwaite K, Dolnikov A. Donor T cells for CAR T cell therapy. Biomark Res 2022; 10:14. [PMID: 35365224 PMCID: PMC8973942 DOI: 10.1186/s40364-022-00359-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023] Open
Abstract
Adoptive cell therapy using patient-derived chimeric receptor antigen (CAR) T cells redirected against tumor cells has shown remarkable success in treating hematologic cancers. However, wider accessibility of cellular therapies for all patients is needed. Manufacture of patient-derived CAR T cells is limited by prolonged lymphopenia in heavily pre-treated patients and risk of contamination with tumor cells when isolating T cells from patient blood rich in malignant blasts. Donor T cells provide a good source of immune cells for adoptive immunotherapy and can be used to generate universal off-the-shelf CAR T cells that are readily available for administration into patients as required. Genome editing tools such as TALENs and CRISPR-Cas9 and non-gene editing methods such as short hairpin RNA and blockade of protein expression are currently used to enhance CAR T cell safety and efficacy by abrogating non-specific toxicity in the form of graft versus host disease (GVHD) and preventing CAR T cell rejection by the host.
Collapse
Affiliation(s)
- Tiffany C Y Tang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW, Australia. .,Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.
| | - Ning Xu
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Robert Nordon
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Kids Cancer Center, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Hematology, Westmead Hospital, Sydney, NSW, Australia.,Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, ICPMR Westmead, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alla Dolnikov
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Kids Cancer Center, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
19
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
20
|
Zhao J, Wei K, Chang C, Xu L, Jiang P, Guo S, Schrodi SJ, He D. DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Front Immunol 2022; 13:863703. [PMID: 35309322 PMCID: PMC8927780 DOI: 10.3389/fimmu.2022.863703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
21
|
Zhang B, Zhong W, Yang B, Li Y, Duan S, Huang J, Mao Y. Gene expression profiling reveals candidate biomarkers and probable molecular mechanisms in chronic stress. Bioengineered 2022; 13:6048-6060. [PMID: 35184642 PMCID: PMC8973686 DOI: 10.1080/21655979.2022.2040872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic stress refers to nonspecific systemic reactions under the over-stimulation of different external and internal factors for a long time. Previous studies confirmed that chronic psychological stress had a negative effect on almost all tissues and organs. We intended to further identify potential gene targets related to the pathogenesis of chronic stress-induced consequences involved in different diseases. In our study, mice in the model group lived under the condition of chronic unpredictable mild stress (CUMS) until they expressed behaviors like depression which were supposed to undergo chronic stress. We applied high-throughput RNA sequencing to assess mRNA expression and obtained transcription profiles in lung tissue from CUMS mice and control mice for analysis. In view of the prediction of high-throughput RNA sequences and bioinformatics software, and mRNA regulatory network was constructed. First, we conducted differentially expressed genes (DEGs) and obtained 282 DEGs between CUMS (group A) and the control model (group B). Then, we conducted functional and pathway enrichment analyses. In general, the function of upregulated regulated DEGs is related to immune and inflammatory responses. PPI network identified several essential genes, of which ten hub genes were related to the T cell receptor signaling pathway. qRT-PCR results verified the regulatory network of mRNA. The expressions of CD28, CD3e, and CD247 increased in mice with CUMS compared with that in control. This illustrated immune pathways are related to the pathological molecular mechanism of chronic stress and may provide information for identifying potential biomarkers and early detection of chronic stress.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, SH, China
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Shuxian Duan
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Junlong Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| |
Collapse
|
22
|
Mao T, Yang R, Luo Y, He K. Crucial role of T cells in NAFLD-related disease: A review and prospect. Front Endocrinol (Lausanne) 2022; 13:1051076. [PMID: 36457551 PMCID: PMC9705593 DOI: 10.3389/fendo.2022.1051076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a series of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis or even hepatocellular carcinoma (HCC). Its incidence is increasing worldwide. Several factors including metabolic dysfunction, oxidative stress, lipotoxicity contribute to the liver inflammation. Several immune cell-mediated inflammatory processes are involved in NAFLD in which T cells play a crucial part in the progression of the disease. In this review, we focus on the role of different subsets of both conventional and unconventional T cells in pathogenesis of NAFLD. Factors regarding inflammation and potential therapeutic approaches targeting immune cells in NASH are also discussed.
Collapse
Affiliation(s)
- Tianyu Mao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Rui Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| |
Collapse
|
23
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Liu Y, Wu Y, Zhang P, Xu C, Liu Z, He C, Liu Y, Kang Z. CXCL12 and CD3E as Indicators for Tumor Microenvironment Modulation in Bladder Cancer and Their Correlations With Immune Infiltration and Molecular Subtypes. Front Oncol 2021; 11:636870. [PMID: 33747959 PMCID: PMC7971116 DOI: 10.3389/fonc.2021.636870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) represents the ninth most common malignant tumor in the world and is characterized by high recurrence risk. Tumor microenvironment (TME) plays an important role in regulating the progression of BLCA. Immunotherapy, including Bacillus Calmette-Guerin (BCG) and programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), is closely associated with TME and is widely used for treating BLCA. But parts of BLCA patients have no response to these treatment ways, thus a better understanding of the complex TME of BLCA is still needed. We downloaded the gene expression profile and corresponding clinical information of 414 BLCA patients from the TCGA database. Via the ESTIMATE and CIBERSORT algorithm, we identified the two hub genes (CXCL12 and CD3E) and explored their correlations with immune infiltration. We found that BLCA patients with higher expression of CXCL12 and lower expression of CD3E had prolonged survival. Gene set enrichment analysis (GSEA) revealed that both CXCL12 and CD3E were enriched in immune-related pathways. We also discovered that stromal score and the level of CXCL12 were higher in luminal subtype, and immune score and the level of CD3E were higher in the basal subtype. Furtherly, we found that CXCL12 was associated with naive B cells, resting mast cell, M2 macrophages, follicular helper T cells, and dendritic cells. CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and macrophages were correlated with CD3E. In conclusions, we found that CXCL12 and CD3E might serve as indicators of TME modulation in BLCA. Therapy targeting CXCL12 and CD3E had the potential as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YuCai Wu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie Xu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZeSen Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie He
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YiMing Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZhengJun Kang
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Kitani T, Maddipatla SC, Madupuri R, Greco C, Hartmann J, Baraniuk JN, Vasudevan S. In Search of Newer Targets for Inflammatory Bowel Disease: A Systems and a Network Medicine Approach. NETWORK AND SYSTEMS MEDICINE 2021. [DOI: 10.1089/nsm.2020.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takashi Kitani
- Department of Neurology, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sushma C. Maddipatla
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ramya Madupuri
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Christopher Greco
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jonathan Hartmann
- Dahlgren Memorial Library, Graduate Health and Life Sciences Research Library, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - James N. Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sona Vasudevan
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
26
|
Kim HR, Park JS, Fatima Y, Kausar M, Park JH, Jun CD. Potentiating the Antitumor Activity of Cytotoxic T Cells via the Transmembrane Domain of IGSF4 That Increases TCR Avidity. Front Immunol 2021; 11:591054. [PMID: 33597944 PMCID: PMC7882689 DOI: 10.3389/fimmu.2020.591054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
A robust T-cell response is an important component of sustained antitumor immunity. In this respect, the avidity of TCR in the antigen-targeting of tumors is crucial for the quality of the T-cell response. This study reports that the transmembrane (TM) domain of immunoglobulin superfamily member 4 (IGSF4) binds to the TM of the CD3 ζ-chain through an interaction between His177 and Asp36, which results in IGSF4-CD3 ζ dimers. IGSF4 also forms homo-dimers through the GxxVA motif in the TM domain, thereby constituting large TCR clusters. Overexpression of IGSF4 lacking the extracellular (IG4ΔEXT) domain potentiates the OTI CD8+ T cells to release IFN-γ and TNF-α and to kill OVA+-B16F10 melanoma cells. In animal models, IG4ΔEXT significantly reduces B16F10 tumor metastasis as well as tumor growth. Collectively, the results indicate that the TM domain of IGSF4 can regulate TCR avidity, and they further demonstrate that TCR avidity regulation is critical for improving the antitumor activity of cytotoxic T cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/immunology
- Cell Line, Tumor
- Humans
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- Mice
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yasmin Fatima
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Maiza Kausar
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jin-Hwa Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
27
|
Shi M, Nguyen P, Timm MM, Otteson GE, Horna P, Olteanu H, Jevremovic D. Cytoplasmic Expression of CD3ε Heterodimers by Flow Cytometry Rapidly Distinguishes Between Mature T-Cell and Natural Killer-Cell Neoplasms. Am J Clin Pathol 2020; 154:683-691. [PMID: 32589191 DOI: 10.1093/ajcp/aqaa086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Distinguishing between T-cell and natural killer (NK)-cell neoplasms could be difficult given their overlapping immunophenotype. In this study, we investigated whether a flow cytometry assay with cytoplasmic staining for CD3 could be used for this purpose. METHODS Flow cytometry immunophenotyping was performed on 19 surface CD3 (sCD3)-negative mature T-cell neoplasms, 10 sCD3-positive mature T-cell neoplasms, 13 mature NK-cell neoplasms, and 19 normal controls. In addition to routine antibody panels (CD2, sCD3, CD4, CD5, CD7, CD8, CD16, CD45, CD56, CD57, CD94, CD158a, CD158b, CD158e, NKG2A TCRγ/δ), cytoplasmic staining for a monoclonal CD3 antibody (clone SK7/Leu-4) was assessed in all cases. A molecular study for T-cell receptor (TCR) gene rearrangement and an immunohistochemical study for TCRβ were performed. RESULTS Our data showed all T-cell neoplasms were uniformly positive for cytoplasmic CD3 (cCD3) regardless of sCD3 expression, whereas 85% of NK-cell neoplasms completely lacked cCD3 expression. The 2 cases with classic NK-cell immunophenotype but partial cCD3 expression showed no molecular genetic features of T-cell lineage by TCR gene rearrangement studies. CONCLUSIONS Uniform cCD3 positivity and homogeneous cCD3 negativity highly suggest T-cell and NK lineage, respectively. When partial cCD3 expression is encountered, additional confirmatory studies should be pursued for the most accurate lineage assignment.
Collapse
Affiliation(s)
- Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Phuong Nguyen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Michael M Timm
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gregory E Otteson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Pedro Horna
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Ishikawa Y, Terao C. Genetics of systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:192-201. [PMID: 35382527 PMCID: PMC8922623 DOI: 10.1177/2397198320913695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/23/2020] [Indexed: 01/05/2024]
Abstract
Systemic sclerosis is an autoimmune disease characterized by generalized fibrosis in connective tissues and internal organs as consequences of microvascular dysfunction and immune dysfunctions, which leads to premature death in affected individuals. The etiology of systemic sclerosis is complex and poorly understood, but as with most autoimmune diseases, it is widely accepted that both environmental and genetic factors contribute to disease risk. During the last decade, the number of genetic markers convincingly associated with systemic sclerosis has exponentially increased. In this article, we briefly mention the genetic components of systemic sclerosis. Then, we review the classical and novel genetic associations with systemic sclerosis, analyzing the firmest and replicated signals within non-human leukocyte antigen genes, identified by both candidate gene approach and genome-wide association studies. We also provide an insight into the future perspectives that will shed more light into the complex genetic background of the disease. Despite the remarkable advance of systemic sclerosis genetics during the last decade, the use of the new genetic technologies such as next-generation sequencing, as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative to identify causal variants, which leads to more targeted and effective treatment of systemic sclerosis.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
29
|
Sakai T, Terakura S, Miyao K, Okuno S, Adachi Y, Umemura K, Julamanee J, Watanabe K, Hamana H, Kishi H, Leitner J, Steinberger P, Nishida T, Murata M, Kiyoi H. Artificial T Cell Adaptor Molecule-Transduced TCR-T Cells Demonstrated Improved Proliferation Only When Transduced in a Higher Intensity. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:613-622. [PMID: 33005728 PMCID: PMC7509457 DOI: 10.1016/j.omto.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
An artificial T cell adaptor molecule (ATAM) was generated to improve persistence of T cell receptor (TCR) gene-transduced T (TCR-T) cells compared to such persistence in a preceding study. ATAMs are gene-modified CD3ζ with the intracellular domain of 4-1BB inserted in the middle of CD3ζ. NY-ESO-1 TCR-T cells transduced with an ATAM with two separated virus vectors demonstrated superior proliferation upon antigen stimulation. To further develop clinically applicable ATAM-transduced TCR-T cells, we attempted to make a single virus vector to transduce the TCR and ATAM simultaneously. Because we failed to observe improved proliferation capacity upon stimulation after one virus vector (1vv) transduction, we compared TCR-T cells transduced with 1vv and two virus vector (2vv) methods to elucidate the reason. In Jurkat reporter cells, an ATAM transduced by the 2vv method demonstrated a higher intensity than by the 1vv method, and the ATAM intensity was associated with increased nuclear factor κB (NF-κB) signals upon stimulation. In ATAM-transduced primary T cells, a transduced ATAM by the 2vv method showed higher intensity and better proliferation. ATAM-transduced TCR-T cells demonstrated improved proliferation only when the ATAM was transduced at a higher intensity. To create a simpler transduction method, we need to develop a strategy to make a higher ATAM expression to prove the efficacy of ATAM transduction in TCR-T therapy.
Collapse
Affiliation(s)
- Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Miyao
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jakrawadee Julamanee
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Clinical Hematology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Keisuke Watanabe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
30
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
31
|
Xu X, Li H, Xu C. Structural understanding of T cell receptor triggering. Cell Mol Immunol 2020; 17:193-202. [PMID: 32047259 PMCID: PMC7052162 DOI: 10.1038/s41423-020-0367-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 11/09/2022] Open
Abstract
The T cell receptor (TCR) is one of the most complicated receptors in mammalian cells, and its triggering mechanism remains mysterious. As an octamer complex, TCR comprises an antigen-binding subunit (TCRαβ) and three CD3 signaling subunits (CD3ζζ, CD3δε, and CD3γε). Engagement of TCRαβ with an antigen peptide presented on the MHC leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in CD3 cytoplasmic domains (CDs), thus translating extracellular binding kinetics to intracellular signaling events. Whether conformational change plays an important role in the transmembrane signal transduction of TCR is under debate. Attracted by the complexity and functional importance of TCR, many groups have been studying TCR structure and triggering for decades using diverse biochemical and biophysical tools. Here, we synthesize these structural studies and discuss the relevance of the conformational change model in TCR triggering.
Collapse
Affiliation(s)
- Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Hua Li
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China.
| |
Collapse
|
32
|
Walsh Z, Yang Y, Kohler ME. Immunobiology of chimeric antigen receptor T cells and novel designs. Immunol Rev 2020; 290:100-113. [PMID: 31355496 DOI: 10.1111/imr.12794] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Abstract
Advances in the development of immunotherapies have offered exciting new options for the treatment of malignant diseases that are refractory to conventional cytotoxic chemotherapies. The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has demonstrated dramatic results in clinical trials and highlights the promise of novel immune-based approaches to the treatment of cancer. As experience with CAR T cells has expanded with longer follow-up and to a broader range of diseases, new obstacles have been identified which limit the potential lifelong benefits of CAR T cell therapy. These obstacles highlight not only the gaps in knowledge of the optimal clinical application of this "living drug", but also gaps in our understanding of the fundamental biology of CAR T cells themselves. In this review, we discuss the obstacles facing CAR T cell therapy, how these relate to our current understanding of CAR T cell biology and approaches to enhance the clinical efficacy of this therapy.
Collapse
Affiliation(s)
- Zachary Walsh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yinmeng Yang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Blood and Marrow Transplantation and Cellular Therapeutics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
33
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
34
|
Jin J, Xu H, Wu R, Gao N, Wu N, Li S, Niu J. Identification of key genes and pathways associated with different immune statuses of hepatitis B virus infection. J Cell Mol Med 2019; 23:7474-7489. [PMID: 31565863 PMCID: PMC6815815 DOI: 10.1111/jcmm.14616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV-infected patients and immune cells during different stages of HBV infection was investigated. Toll-like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon-alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune-tolerant phases and between immune-tolerant and immune-clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte-associated protein 4 and mitogen-activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin-dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3- CD56+ CD16+ natural killer cells and CD14high CD16+ monocytes were identified between immune-tolerant and immune-clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.
Collapse
MESH Headings
- DNA Methylation/genetics
- DNA Methylation/immunology
- Female
- Gene Expression/genetics
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Killer Cells, Natural/immunology
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Signal Transduction/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Na Gao
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Na Wu
- Lanshan People’s HospitalLinyiChina
| | - Shibo Li
- Department of Pediatrics, Genetics LaboratoryUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| |
Collapse
|
35
|
Dube N, Marzinek JK, Glen RC, Bond PJ. The structural basis for membrane assembly of immunoreceptor signalling complexes. J Mol Model 2019; 25:277. [PMID: 31456056 DOI: 10.1007/s00894-019-4165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 μs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.
Collapse
Affiliation(s)
- Namita Dube
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, India
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore, 138671, Singapore
| | - Robert C Glen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore, 138671, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
36
|
Ilan Y, Shailubhai K, Sanyal A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: a novel gut-immune system-based therapy for metaflammation and NASH. Clin Exp Immunol 2019; 193:275-283. [PMID: 29920654 DOI: 10.1111/cei.13159] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a role in the pathogenesis of non-alcoholic steatohepatitis (NASH) underlying hepatocyte injury and fibrosis progression at all disease stages. Oral administration of anti-CD3 monoclonal antibody (mAb) has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated disorders without T cell depletion. In the present review, we summarize the concept of the oral administration of humanized anti-CD3 mAb in patients with NASH and discuss the potential of this treatment to address the current requirements of treatments for NASH. Recently published preclinical and clinical data on oral administration of anti CD3 are discussed. Human trials have shown that the oral administration of anti-CD3 in healthy volunteers, patients with chronic hepatitis C virus (HCV) infection and patients with NASH and type 2 diabetes is safe and well tolerated, as well as biologically active. Oral anti-CD3 induces regulatory T cells, suppresses the chronic inflammatory state associated with NASH and exerts a beneficial effect on clinically relevant parameters. Foralumab is a fully human anti-CD3 mAb that has recently been shown to exert a potent anti-inflammatory effect in humanized mice. It is being developed for treatment of NASH and primary biliary cholangitis (PBC). Oral administration of anti CD3 may provide an effective therapy for patients with NASH.
Collapse
Affiliation(s)
- Y Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - K Shailubhai
- Tiziana Life Sciences, R&, D Center, Doylestown, PA, USA
| | - A Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| |
Collapse
|
37
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
38
|
Miyao K, Terakura S, Okuno S, Julamanee J, Watanabe K, Hamana H, Kishi H, Sakemura R, Koyama D, Goto T, Nishida T, Murata M, Kiyoi H. Introduction of Genetically Modified CD3ζ Improves Proliferation and Persistence of Antigen-Specific CTLs. Cancer Immunol Res 2018; 6:733-744. [DOI: 10.1158/2326-6066.cir-17-0538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/18/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022]
|
39
|
Artificial Methods for T Cell Activation: Critical Tools in T Cell Biology and T Cell Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:207-219. [PMID: 30471035 DOI: 10.1007/978-981-13-0445-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antigen-specific immunity conferred by T lymphocytes is a result of complex molecular interactions at the immunological synapse. A variety of biomimetic approaches have been devised to artificially induce T cell activation either to study the T cell biology or to expand and prime the therapeutic T cell populations. Here we first briefly review the molecular and cellular, structural and phenotypical bases that are involved in T cell activation. The artificial methods for T cell activation are then discussed in two grand categories, the soluble (3D) and the surface-anchored (2D) platforms with their design parameters. With the growing number of successful adoptive T cell therapies, the spurring demands for effective and safe T cell expansion as well as precise control over resulting T cell functions and phenotypes warrant the extensions of engineering parameters in the development of novel methodologies for T cell activation.
Collapse
|
40
|
Abstract
Tango1 enables ER-to-Golgi trafficking of large proteins. We show here that loss of Tango1, in addition to disrupting protein secretion and ER/Golgi morphology, causes ER stress and defects in cell shape. We find that the previously observed dependence of smaller cargos on Tango1 is a secondary effect. If large cargos like Dumpy, which we identify as a Tango1 cargo, are removed from the cell, nonbulky proteins reenter the secretory pathway. Removal of blocking cargo also restores cell morphology and attenuates the ER-stress response. Thus, failures in the secretion of nonbulky proteins, ER stress, and defective cell morphology are secondary consequences of bulky cargo retention. By contrast, ER/Golgi defects in Tango1-depleted cells persist in the absence of bulky cargo, showing that they are due to a secretion-independent function of Tango1. Therefore, maintenance of ER/Golgi architecture and bulky cargo transport are the primary functions for Tango1.
Collapse
|
41
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Sindhu H, Chen R, Chen H, Wong J, Chaudhry R, Xu Y, Wang JC. Gamma-delta (γδ) T-cell lymphoma - another case unclassifiable by World Health Organization classification: a case report. J Med Case Rep 2017. [PMID: 28625163 PMCID: PMC5474878 DOI: 10.1186/s13256-017-1312-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background We present a case of gamma-delta T-cell lymphoma that does not fit the current World Health Organization classifications. Case presentation A 74-year-old Caribbean-American woman presented with lymphocytosis, pruritus, and non-drenching night sweats. Bone marrow and peripheral blood analyses both confirmed the diagnosis of gamma-delta T-cell lymphoma. An axillary lymph node biopsy was negative for lymphoma. Clinically absent hepatosplenomegaly and skin lesions with biopsy-proven gamma-delta T-cell lymphoma suggest that she is unclassifiable within the current classification system. Conclusions We believe this is a case of not otherwise specified gamma-delta T-cell lymphoma. Accumulation of these rare not otherwise specified cases will be important for future classification which further defines the biology of this disease.
Collapse
Affiliation(s)
- Hemant Sindhu
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, 11212, USA
| | - Ruqin Chen
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, 11212, USA
| | - Hui Chen
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, 11212, USA
| | - Jonathan Wong
- Department of Surgery, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Rashid Chaudhry
- Department of Surgery, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Yin Xu
- Genoptix Medical Laboratory, Carlsbad, CA, USA
| | - Jen C Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, 11212, USA.
| |
Collapse
|
43
|
Genetic risk factors for sclerotic graft-versus-host disease. Blood 2016; 128:1516-24. [PMID: 27313329 DOI: 10.1182/blood-2016-05-715342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Sclerotic graft-versus-host disease (GVHD) is a distinctive phenotype of chronic GVHD after allogeneic hematopoietic cell transplantation, characterized by fibrosis of skin or fascia. Sclerotic GVHD has clinical and histopathological similarities with systemic sclerosis, an autoimmune disease whose risk is influenced by genetic polymorphisms. We examined 13 candidate single-nucleotide polymorphisms (SNPs) that have a well-documented association with systemic sclerosis to determine whether these SNPs are also associated with the risk of sclerotic GVHD. The study cohort included 847 consecutive patients who were diagnosed with chronic GVHD. Genotyping was performed using microarrays, followed by imputation of unobserved SNPs. The donor rs10516487 (BANK1: B-cell scaffold protein with ankyrin repeats 1) TT genotype was associated with lower risk of sclerotic GVHD (hazard ratio [HR], 0.43; 95% confidence interval [CI], 0.21-0.87; P = .02). Donor and recipient rs2056626 (CD247: T-cell receptor ζ subunit) GG or GT genotypes were associated with higher risk of sclerotic GVHD (HR, 1.57; 95% CI, 1.13-2.18; P = .007 and HR, 1.66; 95% CI, 1.19-2.32; P = .003, respectively). Donor and recipient rs987870 (5'-flanking region of HLA-DPA1) CC genotypes were associated with higher risk of sclerotic GVHD (HR, 2.50; 95% CI, 1.22-5.11; P = .01 and HR, 2.13; 95% CI, 1.00-4.54; P = .05, respectively). In further analyses, the recipient DPA1*01:03∼DPB1*04:01 haplotype and certain amino acid substitutions in the recipient P1 peptide-binding pocket of the HLA-DP heterodimer were associated with risk of sclerotic GVHD. Genetic components associated with systemic sclerosis are also associated with sclerotic GVHD. HLA-DP-mediated antigen presentation, T-cell response, and B-cell activation have important roles in the pathogenic mechanisms of both diseases.
Collapse
|
44
|
Feige MJ, Behnke J, Mittag T, Hendershot LM. Dimerization-dependent folding underlies assembly control of the clonotypic αβT cell receptor chains. J Biol Chem 2015; 290:26821-31. [PMID: 26400083 DOI: 10.1074/jbc.m115.689471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, secretory pathway proteins must pass stringent quality control checkpoints before exiting the endoplasmic reticulum (ER). Acquisition of native structure is generally considered to be the most important prerequisite for ER exit. However, structurally detailed protein folding studies in the ER are few. Furthermore, aberrant ER quality control decisions are associated with a large and increasing number of human diseases, highlighting the need for more detailed studies on the molecular determinants that result in proteins being either secreted or retained. Here we used the clonotypic αβ chains of the T cell receptor (TCR) as a model to analyze lumenal determinants of ER quality control with a particular emphasis on how proper assembly of oligomeric proteins can be monitored in the ER. A combination of in vitro and in vivo approaches allowed us to provide a detailed model for αβTCR assembly control in the cell. We found that folding of the TCR α chain constant domain Cα is dependent on αβ heterodimerization. Furthermore, our data show that some variable regions associated with either chain can remain incompletely folded until chain pairing occurs. Together, these data argue for template-assisted folding at more than one point in the TCR α/β assembly process, which allows specific recognition of unassembled clonotypic chains by the ER chaperone machinery and, therefore, reliable quality control of this important immune receptor. Additionally, it highlights an unreported possible limitation in the α and β chain combinations that comprise the T cell repertoire.
Collapse
Affiliation(s)
| | | | - Tanja Mittag
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
45
|
Zhang X, Wei S, Shao J, Zhang S, Gao M, Zhang W, Ma B, Wang J. Molecular cloning and characterization of CD3ε in Chinese domestic goose (Anser cygnoides). Gene 2015; 564:160-7. [DOI: 10.1016/j.gene.2015.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
46
|
Martins M, Williams AH, Comeau M, Marion M, Ziegler JT, Freedman BI, Merrill JT, Glenn SB, Kelly JA, Sivils KM, James JA, Guthridge JM, Alarcón-Riquelme ME, Bae SC, Kim JH, Kim D, Anaya JM, Boackle SA, Criswell LA, Kimberly RP, Alarcón GS, Brown EE, Vilá LM, Petri MA, Ramsey-Goldman R, Niewold TB, Tsao BP, Gilkeson GS, Kamen DL, Jacob CO, Stevens AM, Gaffney PM, Harley JB, Langefeld CD, Fesel C. Genetic association of CD247 (CD3ζ) with SLE in a large-scale multiethnic study. Genes Immun 2015; 16:142-50. [PMID: 25569266 DOI: 10.1038/gene.2014.73] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/09/2022]
Abstract
A classic T-cell phenotype in systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters T-cell receptor signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multiethnic population. We typed 44 contiguous CD247 single-nucleotide polymorphisms (SNPs) in 8922 SLE patients and 8077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99 × 10(-4) < P < 4.15 × 10(-2)), where we further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-rs858554; G-G-A-G-A; P(hap) = 2.12 × 10(-5)) that exceeded the most associated single SNP rs858554 (minor allele frequency in controls = 13%; P = 4.99 × 10(-4), odds ratio = 1.32) in significance. Imputation and subsequent association analysis showed evidence of association (P < 0.05) at 27 additional SNPs within intron 1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population proportions, showed five SNPs with significant P-values (1.40 × 10(-3) < P< 3.97 × 10(-2)), with one (rs704848) remaining significant after Bonferroni correction (P(meta) = 2.66 × 10(-2)). Our study independently confirms and extends the association of SLE with CD247, which is shared by various autoimmune disorders and supports a common T-cell-mediated mechanism.
Collapse
Affiliation(s)
- M Martins
- 1] Instituto de Medicina Molecular, Lisboa, Portugal [2] Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - A H Williams
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - M Comeau
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - M Marion
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J T Ziegler
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - B I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J T Merrill
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - S B Glenn
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J A Kelly
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - K M Sivils
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J A James
- 1] Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA [2] Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - M E Alarcón-Riquelme
- 1] Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA [2] Centro de Genómica e Investigaciones Oncológicas (GENYO), Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - S-C Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - J-H Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - D Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - J-M Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota, Colombia
| | - S A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - L A Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California, San Francisco, CA, USA
| | - R P Kimberly
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G S Alarcón
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E E Brown
- Departments of Medicine and Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - M A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - T B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - B P Tsao
- Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - G S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - D L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - C O Jacob
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A M Stevens
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute Arthritis Foundation, Seattle, WA, USA
| | - P M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J B Harley
- 1] Division of Rheumatology and the Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA [2] US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - C D Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C Fesel
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
47
|
Maity PC, Yang J, Klaesener K, Reth M. The nanoscale organization of the B lymphocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:830-40. [PMID: 25450974 PMCID: PMC4547082 DOI: 10.1016/j.bbamcr.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~250nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Klaesener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
48
|
Moulana M, Taylor EB, Edholm ES, Quiniou SMA, Wilson M, Bengtén E. Identification and characterization of TCRγ and TCRδ chains in channel catfish, Ictalurus punctatus. Immunogenetics 2014; 66:545-61. [PMID: 25129471 DOI: 10.1007/s00251-014-0793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
Abstract
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) γ and δ were identified by mining of expressed sequence tag databases, and full-length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), diversity (D), joining (J), and constant (C) regions. Three TCRγ V families, seven TCRγ J sequences, and three TCRγ C sequences were identified from sequencing of cDNA. Primer walking on bacterial artificial chromosomes (BACs) confirmed that the TRG locus contained seven TRGJ segments and indicated that the locus consists of (Vγ3-Jγ6-Cγ2)-(Vγ1n-Jγ7-Cγ3)-(Vγ2-Jγ5-Jγ4-Jγ3-Jγ2-Jγ1-Cγ1). In comparison for TCRδ, two V families, four TCRδ D sequences, one TCRδ J sequence, and one TCRδ C sequence were identified by cDNA sequencing. Importantly, the finding that some catfish TCRδ cDNAs contain TCR Vα-D-Jδ rearrangements and some TCRα cDNAs contain Vδ-Jα rearrangements strongly implies that the catfish TRA and TRD loci are linked. Finally, primer walking on BACs and Southern blotting suggest that catfish have four TRDD gene segments and a single TRDJ and TRDC gene. As in most vertebrates, all three reading frames of each of the catfish TRDD segments can be used in functional rearrangements, and more than one TRDD segment can be used in a single rearrangement. As expected, catfish TCRδ CDR3 regions are longer and more diverse than TCRγ CDR3 regions, and as a group they utilize more nucleotide additions and contain more nucleotide deletions than catfish TCRγ rearrangements.
Collapse
Affiliation(s)
- Mohadetheh Moulana
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein-1 (CARMA1), a member of the membrane associated guanylate kinase (MAGUK) family of kinases, is essential for T lymphocyte activation and proliferation via T-cell receptor (TCR) mediated NF-κB activation. Recent studies suggest a broader role for CARMA1 regulating other T-cell functions as well as a role in non-TCR-mediated signaling pathways important for lymphocyte development and functions. In addition, CARMA1 has been shown to be an important component in the pathogenesis of several human diseases. Thus, comprehensively defining its mechanisms of action and regulation could reveal novel therapeutic targets for T-cell-mediated diseases and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Marly I Roche
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
50
|
The structure of the CD3ζζ transmembrane dimer in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:739-46. [PMID: 24333300 DOI: 10.1016/j.bbamem.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022]
Abstract
Virtually every aspect of the human adaptive immune response is controlled by T cells. The T cell receptor (TCR) complex is responsible for the recognition of foreign peptide sequences, forming the initial step in the elimination of germ-infected cells. The recognition leads to an extracellular conformational change that is transmitted intracellularly through the Cluster of Differentiation 3 (CD3) subunits of the TCR-CD3 complex. Here we address the interplay between the disulfide-linked CD3ζζ dimer, an essential signaling component of the TCR-CD3 complex, and its lipidic environment. The disulfide bond formation requires the absolute presence of a nearby conserved aspartic acid, a fact that has mystified the scientific community. We use atomistic simulation methods to demonstrate that the conserved aspartic acid pair of the CD3ζζ dimer leads to a deformation of the membrane. This deformation changes the local environment of the cysteines and promotes disulfide bond formation. We also investigate the role of a conserved Tyr, highlighting its possible role in the interaction with other transmembrane components of the TCR-CD3 complex.
Collapse
|