1
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol 2018; 9:2249. [PMID: 30349529 PMCID: PMC6186787 DOI: 10.3389/fimmu.2018.02249] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
Collapse
Affiliation(s)
- Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
3
|
Watson CT, Steinberg KM, Graves TA, Warren RL, Malig M, Schein J, Wilson RK, Holt RA, Eichler EE, Breden F. Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity. Genes Immun 2015; 16:24-34. [PMID: 25338678 PMCID: PMC4304971 DOI: 10.1038/gene.2014.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/24/2022]
Abstract
Germline variation at immunoglobulin (IG) loci is critical for pathogen-mediated immunity, but establishing complete haplotype sequences in these regions has been problematic because of complex sequence architecture and diploid source DNA. We sequenced BAC clones from the effectively haploid human hydatidiform mole cell line, CHM1htert, across the light chain IG loci, kappa (IGK) and lambda (IGL), creating single haplotype representations of these regions. The IGL haplotype generated here is 1.25 Mb of contiguous sequence, including four novel IGLV alleles, one novel IGLC allele, and an 11.9-kb insertion. The CH17 IGK haplotype consists of two 644 kb proximal and 466 kb distal contigs separated by a large gap of unknown size; these assemblies added 49 kb of unique sequence extending into this gap. Our analysis also resulted in the characterization of seven novel IGKV alleles and a 16.7-kb region exhibiting signatures of interlocus sequence exchange between distal and proximal IGKV gene clusters. Genetic diversity in IGK/IGL was compared with that of the IG heavy chain (IGH) locus within the same haploid genome, revealing threefold (IGK) and sixfold (IGL) higher diversity in the IGH locus, potentially associated with increased levels of segmental duplication and the telomeric location of IGH.
Collapse
Affiliation(s)
- C T Watson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K M Steinberg
- Department of Genome Sciences, University of Washington, Seattle, WA USA
- The Genome Institute, Washington University, St Louis, MO USA
| | - T A Graves
- The Genome Institute, Washington University, St Louis, MO USA
| | - R L Warren
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia Canada
| | - M Malig
- Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - J Schein
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia Canada
| | - R K Wilson
- The Genome Institute, Washington University, St Louis, MO USA
| | - R A Holt
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia Canada
| | - E E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA USA
- Howard Hughes Medical Institute, Seattle, WA USA
| | - F Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Abstract
Protein domains are the common currency of protein structure and function. Over 10000 such protein families have now been collected in the Pfam database. Using these data along with animal gene phylogenies from TreeFam allowed us to investigate the gain and loss of protein domains. Most gains and losses of domains occur at protein termini. We show that the nature of changes is similar after speciation or duplication events. However, changes in domain architecture happen at a higher frequency after gene duplication. We suggest that the bias towards protein termini is largely because insertion and deletion of domains at most positions in a protein are likely to disrupt the structure of existing domains. We can also use Pfam to trace the evolution of specific families. For example, the immunoglobulin superfamily can be traced over 500 million years during its expansion into one of the largest families in the human genome. It can be shown that this protein family has its origins in basic animals such as the poriferan sponges where it is found in cell-surface-receptor proteins. We can trace how the structure and sequence of this family diverged during vertebrate evolution into constant and variable domains that are found in the antibodies of our immune system as well as in neural and muscle proteins.
Collapse
|