1
|
Li J, Wu X, Li C, Sun G, Ding P, Li Y, Yang P, Zhang M, Wang L. Identification and Validation of Immune-Related Biomarker Gene and Construction of ceRNA Networks in Septic Cardiomyopathy. Front Cell Infect Microbiol 2022; 12:912492. [PMID: 35782126 PMCID: PMC9243365 DOI: 10.3389/fcimb.2022.912492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a cardiac dysfunction caused by severe sepsis, which greatly increases the risk of heart failure and death, and its molecular mechanism is unclear. The immune response has been reported to be an important process in septic cardiomyopathy and is present in the cardiac tissue of patients with sepsis, suggesting that the immune response may be an underlying mechanism of myocardial injury in SCM. Therefore, we explored the role of immune-related genes (IRGs) in SCM and aimed to identify pivotal immune-related targets with the aim of identifying key immune-related targets in SCM and potential therapeutic mechanisms involved in the pathological process of SCM. To explore the regulatory mechanisms of immune responses in SCM, we identified differentially expressed genes (DEGs) shared in the SCM datasets GSE179554 and GSE40180 by bioinformatics analysis and then obtained hub genes from the DEGs. Then, we obtained the immune-related hub genes (IRHGs) by intersecting the hub genes with IRGs and performed quantitative reverse transcription polymerase chain reaction to confirm the abnormal expression of IRHGs. Finally, we further constructed an immune-related lncRNA–miRNA–IRHG ceRNA regulatory network. In this study, we identified an IRHG that may be involved in the pathogenesis of SCM, which helps us to further elucidate the role of immune response in SCM and gain insights into the molecular mechanisms and potential therapeutic targets of SCM.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanyan Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Min Zhang, ; Luqiao Wang,
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Min Zhang, ; Luqiao Wang,
| |
Collapse
|
2
|
Alsagaff MY, Oktaviono YH, Dharmadjati BB, Lefi A, Al‐Farabi MJ, Gandi P, Marsudi BA, Azmi Y. Electrocardiography on admission is associated with poor outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. J Arrhythm 2021; 37:877-885. [PMID: 34386111 PMCID: PMC8339106 DOI: 10.1002/joa3.12573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electrocardiogram (ECG) is a widely accessible diagnostic tool that can easily be obtained on admission and can reduce excessive contact with coronavirus disease 2019 (COVID-19) patients. A systematic review and meta-analysis were performed to evaluate the latest evidence on the association of ECG on admission and the poor outcomes in COVID-19. METHODS A literature search was conducted on online databases for observational studies evaluating ECG parameters and composite poor outcomes comprising ICU admission, severe illness, and mortality in COVID-19 patients. RESULTS A total of 2,539 patients from seven studies were included in this analysis. Pooled analysis showed that a longer corrected QT (QTc) interval and more frequent prolonged QTc interval were associated with composite poor outcome ([WMD 6.04 [2.62-9.45], P = .001; I 2:0%] and [RR 1.89 [1.52-2.36], P < .001; I 2:17%], respectively). Patients with poor outcome had a longer QRS duration and a faster heart rate compared with patients with good outcome ([WMD 2.03 [0.20-3.87], P = .030; I 2:46.1%] and [WMD 5.96 [0.96-10.95], P = .019; I 2:55.9%], respectively). The incidence of left bundle branch block (LBBB), premature atrial contraction (PAC), and premature ventricular contraction (PVC) were higher in patients with poor outcome ([RR 2.55 [1.19-5.47], P = .016; I 2:65.9%]; [RR 1.94 [1.32-2.86], P = .001; I 2:62.8%]; and [RR 1.84 [1.075-3.17], P = .026; I 2:70.6%], respectively). T-wave inversion and ST-depression were more frequent in patients with poor outcome ([RR 1.68 [1.31-2.15], P < .001; I 2:14.3%] and [RR 1.61 [1.31-2.00], P < .001; I 2:49.5%], respectively). CONCLUSION Most ECG abnormalities on admission are significantly associated with an increased composite poor outcome in patients with COVID-19.
Collapse
Affiliation(s)
- Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Budi Baktijasa Dharmadjati
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Achmad Lefi
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Makhyan Jibril Al‐Farabi
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Parama Gandi
- Department of Cardiology and Vascular MedicineFaculty of MedicineSoetomo General HospitalUniversitas AirlanggaSurabayaIndonesia
| | - Bagas Adhimurda Marsudi
- Department of Cardiology and Vascular MedicineFaculty of MedicineHarapan Kita National Heart CenterUniversitas IndonesiaJakartaIndonesia
| | - Yusuf Azmi
- Faculty of MedicineUniversitas AirlanggaSurabayaIndonesia
| |
Collapse
|
3
|
Wang R, Xu Y, Fang Y, Wang C, Xue Y, Wang F, Cheng J, Ren H, Wang J, Guo W, Liu L, Zhang M. Pathogenetic mechanisms of septic cardiomyopathy. J Cell Physiol 2021; 237:49-58. [PMID: 34278573 DOI: 10.1002/jcp.30527] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a serious complication after infection, whose further development may lead to multiple organ dysfunction syndrome and so on. It is an important cause of death in critically ill patients who suffered an infection. Sepsis cardiomyopathy is a common complication that exacerbates the prognosis of patients. At present, though the pathogenesis of sepsis cardiomyopathy is not completely clear, in-depth study of the pathogenesis of sepsis cardiomyopathy and the discovery of its potential therapeutic targets may decrease the mortality of sepsis patients and bring clinical benefits. This article reviews mitochondrial dysfunction, mitophagy, oxidation stress, and other mechanisms in sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chiyao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fangfang Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Weber B, Lackner I, Braun CK, Kalbitz M, Huber-Lang M, Pressmar J. Laboratory Markers in the Management of Pediatric Polytrauma: Current Role and Areas of Future Research. Front Pediatr 2021; 9:622753. [PMID: 33816396 PMCID: PMC8010656 DOI: 10.3389/fped.2021.622753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Severe trauma is the most common cause of mortality in children and is associated with a high socioeconomic burden. The most frequently injured organs in children are the head and thorax, followed by the extremities and by abdominal injuries. The efficient and early assessment and management of these injuries is essential to improve patients' outcome. Physical examination as well as imaging techniques like ultrasound, X-ray and computer tomography are crucial for a valid early diagnosis. Furthermore, laboratory analyses constitute additional helpful tools for the detection and monitoring of pediatric injuries. Specific inflammatory markers correlate with post-traumatic complications, including the development of multiple organ failure. Other laboratory parameters, including lactate concentration, coagulation parameters and markers of organ injury, represent further clinical tools to identify trauma-induced disorders. In this review, we outline and evaluate specific biomarkers for inflammation, acid-base balance, blood coagulation and organ damage following pediatric polytrauma. The early use of relevant laboratory markers may assist decision making on imaging tools, thus contributing to minimize radiation-induced long-term consequences, while improving the outcome of children with multiple trauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| |
Collapse
|
5
|
McCullough SA, Goyal P, Krishnan U, Choi JJ, Safford MM, Okin PM. Electrocardiographic Findings in Coronavirus Disease-19: Insights on Mortality and Underlying Myocardial Processes. J Card Fail 2020; 26:626-632. [PMID: 32544622 PMCID: PMC7293518 DOI: 10.1016/j.cardfail.2020.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a respiratory syndrome with high rates of mortality, and there is a need for easily obtainable markers to provide prognostic information. We sought to determine whether the electrocardiogram (ECG) on hospital presentation provides prognostic information, specifically related to death. METHODS AND RESULTS We performed a retrospective cohort study in patients with COVID-19 who had an ECG at or near hospital admission. Clinical characteristics and ECG variables were manually abstracted from the electronic health record and first ECG. Our primary outcome was death. THERE WERE 756 patients who presented to a large New York City teaching hospital with COVID-19 who underwent an ECG. The mean age was 63.3 ± 16 years, 37% were women, 61% of patients were nonwhite, and 57% had hypertension; 90 (11.9%) died. In a multivariable logistic regression that included age, ECG, and clinical characteristics, the presence of one or more atrial premature contractions (odds ratio [OR] 2.57, 95% confidence interval [CI] 1.23-5.36, P = .01), a right bundle branch block or intraventricular block (OR 2.61, 95% CI 1.32-5.18, P = .002), ischemic T-wave inversion (OR 3.49, 95% CI 1.56-7.80, P = .002), and nonspecific repolarization (OR 2.31, 95% CI 1.27-4.21, P = .006) increased the odds of death. ST elevation was rare (n = 5 [0.7%]). CONCLUSIONS We found that patients with ECG findings of both left-sided heart disease (atrial premature contractions, intraventricular block, repolarization abnormalities) and right-sided disease (right bundle branch block) have higher odds of death. ST elevation at presentation was rare.
Collapse
Affiliation(s)
- S Andrew McCullough
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Parag Goyal
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York; Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Udhay Krishnan
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Justin J Choi
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Monika M Safford
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Peter M Okin
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
6
|
Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care 2020; 35:57-66. [PMID: 32506871 PMCID: PMC7280799 DOI: 10.4266/acc.2020.00248] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
It is well known that cardiac dysfunction in sepsis is associated with significantly increased mortality. The pathophysiology of sepsis-induced cardiac dysfunction can be summarized as involving impaired myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Impaired blood flow to the myocardium is associated with microvascular dysfunction, impaired endothelium, and ventriculo-arterial uncoupling. The mechanisms behind direct myocardial depression consist of downregulation of β-adrenoceptors and several myocardial suppressants (such as cytokine and nitric oxide). Recent research has highlighted that mitochondrial dysfunction, which results in energy depletion, is a major factor in sepsis-induced cardiac dysfunction. Therefore, the authors summarize the pathophysiological process of cardiac dysfunction in sepsis based on the results of recent studies.
Collapse
Affiliation(s)
| | - Insu Choi
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Kyoseon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| |
Collapse
|
7
|
Abstract
There is abundant evidence that infectious sepsis both in humans and mice with polymicrobial sepsis results in robust activation of complement. Major complement activation products involved in sepsis include C5a anaphylatoxin and its receptors (C5aR1 and C5aR2) and, perhaps, the terminal complement activation product, C5b-9. These products (and others) also cause dysfunction of the innate immune system, with exaggerated early proinflammatory responses, followed by decline of the innate immune system, leading to immunosuppression and multiorgan dysfunction. Generation of C5a during sepsis also leads to activation of neutrophils and macrophages and ultimate appearance of extracellular histones, which have powerful proinflammatory and prothrombotic activities. The distal complement activation product, C5b-9, triggers intracellular Ca fluxes in epithelial and endothelial cells. Histones activate the NLRP3 inflammasome, products of which can damage cells. C5a also activates MAPKs and Akt signaling pathways in cardiomyocytes, causing buildup of [Ca]i, defective action potentials and substantial cell dysfunction, resulting in cardiac and other organ dysfunction. Cardiac dysfunction can be quantitated by ECHO-Doppler parameters. In vivo interventions that block these complement-dependent products responsible for organ dysfunction in sepsis reduce the intensity of sepsis. The obvious targets in sepsis are C5a and its receptors, histones, and perhaps the MAPK pathways. Blockade of C5 has been considered in sepsis, but the FDA-approved antibody (eculizumab) is known to compromise defenses against neisseria and pneumonococcal bacteria, and requires immunization before the mAb to C5 can be used clinically. Small molecular blocking agents for C5aRs are currently in development and may be therapeutically effective for treatment of sepsis.
Collapse
|
8
|
Lackner I, Weber B, Baur M, Fois G, Gebhard F, Pfeifer R, Cinelli P, Halvachizadeh S, Lipiski M, Cesarovic N, Schrezenmeier H, Huber-Lang M, Pape HC, Kalbitz M. Complement Activation and Organ Damage After Trauma-Differential Immune Response Based on Surgical Treatment Strategy. Front Immunol 2020; 11:64. [PMID: 32117238 PMCID: PMC7025487 DOI: 10.3389/fimmu.2020.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The complement system is part of the innate immunity, is activated immediately after trauma and is associated with adult respiratory distress syndrome, acute lung injury, multiple organ failure, and with death of multiply injured patients. The aim of the study was to investigate the complement activation in multiply injured pigs as well as its effects on the heart in vivo and in vitro. Moreover, the impact of reamed vs. non-reamed intramedullary nailing was examined with regard to the complement activation after multiple trauma in pigs. Materials and Methods: Male pigs received multiple trauma, followed by femoral nailing with/without prior conventional reaming. Systemic complement hemolytic activity (CH-50 and AH-50) as well as the local cardiac expression of C3a receptor, C5a receptors1/2, and the deposition of the fragments C3b/iC3b/C3c was determined in vivo after trauma. Human cardiomyocytes were exposed to C3a or C5a and analyzed regarding calcium signaling and mitochondrial respiration. Results: Systemic complement activation increased within 6 h after trauma and was mediated via the classical and the alternative pathway. Furthermore, complement activation correlated with invasiveness of fracture treatment. The expression of receptors for complement activation were altered locally in vivo in left ventricles. C3a and C5a acted detrimentally on human cardiomyocytes by affecting their functionality and their mitochondrial respiration in vitro. Conclusion: After multiple trauma, an early activation of the complement system is triggered, affecting the heart in vivo as well as in vitro, leading to complement-induced cardiac dysfunction. The intensity of complement activation after multiple trauma might correlate with the invasiveness of fracture treatment. Reaming of the femoral canal might contribute to an enhanced “second hit” response after trauma. Consequently, the choice of fracture treatment might imply the clinical outcome of the critically injured patients and might be therefore crucial for their survival.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical- and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Braun CK, Schaffer A, Weber B, Huber-Lang M, Kalbitz M, Preßmar J. The Prognostic Value of Troponin in Pediatric Polytrauma. Front Pediatr 2019; 7:477. [PMID: 31824896 PMCID: PMC6879657 DOI: 10.3389/fped.2019.00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Severe trauma accounts for a great number of deaths among children and adolescents. The diagnostic value of troponin serum levels of severely injured patients has been reported for adults, but data on pediatric polytrauma (PT) are scarce. Therefore, we conducted a retrospective monocentered study analyzing the prognostic value of troponin T (TnT) in pediatric trauma patients at the time point of hospital admission. Methods: Data of 88 polytraumatized pediatric patients admitted to the emergency room of the University Hospital of Ulm, Germany, between 2007 and 2016 were analyzed retrospectively. The data source was the written and digital patient records. Interleukin-6 (IL-6), creatine kinase activity (CK activity), and lactate and TnT levels were measured by a certified clinical diagnostic laboratory; and patients were stratified for the Injury Severity Score (ISS). The prognostic value for lung contusion, organ dysfunction, and fatal outcome was statistically explored. The study was approved by the independent ethical committee of the University of Ulm (#44/18). Results: TnT levels were significantly increased in patients after severe PT compared with mild or moderate trauma severity as assessed by ISS values. Patients with TnT levels above the cutoff showed significantly increased levels of IL-6 and CK activity and a significantly prolonged stay in the intensive care unit. However, TnT levels did not correlate with absolute ISS values. TnT levels were significantly increased in patients with chest trauma and lung contusion. The incidence of lung contusion was associated with elevation of TnT. So was the onset of organ dysfunction, defined as a Sequential Organ Failure Assessment (SOFA) score ≥ 2 and fatal outcome, with a significant enhancement of plasma levels in children with organ dysfunction and in non-survivors. Conclusion: These descriptive data suggest that evaluation of TnT on admission of multiply injured children may help in predicting severity of injury and mortality in the clinical course after trauma and thus may be a useful addition to established prognostic parameters in the future.
Collapse
Affiliation(s)
- Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Annika Schaffer
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital of Ulm, Ulm, Germany
| | - Jochen Preßmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Abstract
RATIONALE Takotsubo syndrome (TTS) most commonly occurs in postmenopausal women who have been exposed to a triggering event such as acute physical or emotional distress. Sepsis-induced TTS in young premenopausal women were rarely reported. In particular, the relationship between sepsis-induced TTS and sepsis-induced cardiomyopathy (SIC) remains to be illuminated. PATIENT CONCERNS Two young premenopausal women were admitted to the hospital with sepsis and myocardial involvement. DIAGNOSIS Both patients fully met the Mayo Clinic criteria for TTS. INTERVENTIONS Both patients received anti-infection and fluid infusion treatment. OUTCOMES Both patients were discharged without complications and the follow-up ultrasonic echocardiography showed normal results. LESSONS In this report, we describe 2 young premenopausal women with sepsis-induced TTS. There is an overlap between sepsis-induced TTS and SIC, and SIC could be a special type of TTS, which occurs under the stress of sepsis.
Collapse
|
11
|
Miettinen HM, Gripentrog JM, Lord CI, Nagy JO. CD177-mediated nanoparticle targeting of human and mouse neutrophils. PLoS One 2018; 13:e0200444. [PMID: 29990379 PMCID: PMC6039027 DOI: 10.1371/journal.pone.0200444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant white blood cells, with a vital role in innate immune defense against bacterial and fungal pathogens. Although mostly associated with pathological processes directly related to immune defense, they can also play a detrimental role in inflammatory conditions and have been found to have a pro-metastatic role in the spread of cancer cells. Here, we explore ways to temporarily suppress these detrimental activities. We first examined the possibility of using siRNA and antisense oligonucleotides (ASOs) for transient knockdown of the human and mouse C5a receptor, an important chemoattractant receptor involved in neutrophil-mediated injury that is associated with myocardial infarction, sepsis, and neurodegenerative diseases. We found that siRNAs and ASOs transfected into cultured cell lines can eliminate 70–90% of C5a receptor mRNA and protein within 72 h of administration, a clinically relevant time frame after a cardiovascular event. Targeted drug delivery to specific cells or tissues of interest in a mammalian host, however, remains a major challenge. Here, using phage display technology, we have identified peptides that bind specifically to CD177, a neutrophil-specific surface molecule. We have attached these peptides to fluorescent, lipid-based nanoparticles and confirmed targeting and delivery to cultured cells ectopically presenting either human or mouse CD177. In addition, we have shown peptide-nanoparticle binding specifically to neutrophils in human and mouse blood. We anticipate that these or related tagged nanoparticles may be therapeutically useful for delivery of siRNAs or ASOs to neutrophils for transient knockdown of pro-inflammatory proteins such as the C5a receptor.
Collapse
Affiliation(s)
- Heini M. Miettinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| | - Jeannie M. Gripentrog
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Connie I. Lord
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Jon O. Nagy
- NanoValent Pharmaceuticals, Inc., Bozeman, MT, United States of America
| |
Collapse
|
12
|
Fattahi F, Frydrych LM, Bian G, Kalbitz M, Herron TJ, Malan EA, Delano MJ, Ward PA. Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol 2018; 102:32-41. [PMID: 29914696 DOI: 10.1016/j.molimm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Polymicrobial sepsis (after cecal ligation and puncture, CLP) causes robust complement activation with release of C5a. Many adverse events develop thereafter and will be discussed in this review article. Activation of complement system results in generation of C5a which interacts with its receptors (C5aR1, C5aR2). This leads to a series of harmful events, some of which are connected to the cardiomyopathy of sepsis, resulting in defective action potentials in cardiomyocytes (CMs), activation of the NLRP3 inflammasome in CMs and the appearance of extracellular histones, likely arising from activated neutrophils which form neutrophil extracellular traps (NETs). These events are associated with activation of mitogen-activated protein kinases (MAPKs) in CMs. The ensuing release of histones results in defective action potentials in CMs and reduced levels of [Ca2+]i-regulatory enzymes including sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and Na+/Ca2+ exchanger (NCX) as well as Na+/K+-ATPase in CMs. There is also evidence that CLP causes release of IL-1β via activation of the NLRP3 inflammasome in CMs of septic hearts or in CMs incubated in vitro with C5a. Many of these events occur after in vivo or in vitro contact of CMs with histones. Together, these data emphasize the role of complement (C5a) and C5a receptors (C5aR1, C5aR2), as well as extracellular histones in events that lead to cardiac dysfunction of sepsis (septic cardiomyopathy).
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lynn M Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Guowu Bian
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth A Malan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Orwoll ES, Wiedrick J, Jacobs J, Baker ES, Piehowski P, Petyuk V, Gao Y, Shi T, Smith RD, Bauer DC, Cummings SR, Nielson CM, Lapidus J. High-throughput serum proteomics for the identification of protein biomarkers of mortality in older men. Aging Cell 2018; 17. [PMID: 29399943 PMCID: PMC5847880 DOI: 10.1111/acel.12717] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 01/17/2023] Open
Abstract
The biological perturbations associated with incident mortality are not well elucidated, and there are limited biomarkers for the prediction of mortality. We used a novel high‐throughput proteomics approach to identify serum peptides and proteins associated with 5‐year mortality in community‐dwelling men age ≥65 years who participated in a longitudinal observational study of musculoskeletal aging (Osteoporotic Fractures in Men: MrOS). In a discovery phase, serum specimens collected at baseline in 2473 men were analyzed using liquid chromatography–ion mobility–mass spectrometry, and incident mortality in the subsequent 5 years was ascertained by tri‐annual questionnaire. Rigorous statistical methods were utilized to identify 56 peptides (31 proteins) that were associated with 5‐year mortality. In an independent replication phase, selected reaction monitoring was used to examine 21 of those peptides in baseline serum from 750 additional men; 81% of those peptides remained significantly associated with mortality. Mortality‐associated proteins included a variety involved in inflammation or complement activation; several have been previously linked to mortality (e.g., C‐reactive protein, alpha 1‐antichymotrypsin) and others are not previously known to be associated with mortality. Other novel proteins of interest included pregnancy‐associated plasma protein, VE‐cadherin, leucine‐rich α‐2 glycoprotein 1, vinculin, vitronectin, mast/stem cell growth factor receptor, and Saa4. A panel of peptides improved the predictive value of a commonly used clinical predictor of mortality. Overall, these results suggest that complex inflammatory pathways, and proteins in other pathways, are linked to 5‐year mortality risk. This work may serve to identify novel biomarkers for near‐term mortality.
Collapse
Affiliation(s)
| | | | - Jon Jacobs
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Erin S. Baker
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Paul Piehowski
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Vladislav Petyuk
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Yuqian Gao
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Tujin Shi
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Richard D. Smith
- Biological Science Division; Pacific Northwest National Laboratory; Richland WA USA
| | - Douglas C. Bauer
- Department of Medicine; University of California; San Francisco CA USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute; San Francisco CA USA
| | | | - Jodi Lapidus
- Oregon Health & Science University; Portland OR USA
| | | |
Collapse
|
14
|
Zhao X, Gu T, Xiu Z, Shi E, Yu L. Mild Hypothermia May Offer Some Improvement to Patients with MODS after CPB Surgery. Braz J Cardiovasc Surg 2017; 31:246-251. [PMID: 27737408 PMCID: PMC5062708 DOI: 10.5935/1678-9741.20160048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE: To summarize the effect of mild hypothermia on function of the organs in
patients with multiple organ dysfunction syndrome after cardiopulmonary
bypass surgery. METHODS: The patients were randomly divided into two groups, northermia group (n=71)
and hypothermia group (n=89). We immediately began cooling the hypothermia
group when test results showed multiple organ dysfunction syndrome,
meanwhile all patients of two groups were drawn blood to test blood gas,
liver and kidney function, blood coagulation function, and evaluated the
cardiac function using echocardiography from 12 to 36 hours. We compared the
difference of intra-aortic balloon pump, extracorporeal membrane oxygenation
rate and mortality within one month after intensive care unit admission. RESULTS: Among the 160 patients, 36 died, 10 (11.24%) patients were from the
hypothermia group and 26 (36.6%) from the northermia group
(P <0.05). In northermia group, 45 (63.38%) patients
used intra-aortic balloon pump and 4 (5.63%), extracorporeal membrane
oxygenation; in hypothermia group, 35 (39.32%) patients used intra-aortic
balloon pump and 2 (2.25%), extracorporeal membrane oxygenation(
P <0.05). The patients' heart rate decreased
significantly in the hypothermia group. The heart rate of hypothermia group
is significantly slower than the northermia group at the 36th
hour (P <0.05). But the mean arterial pressure of
hypothermia group is significantly higher than the northermia group at the
36th hour (P <0.05). In hypothermia
group, PO2, SvO2 and lactate were improved
significantly compared to pre-cooling (P <0.05), and
they were significantly better than the northermia group at the
36th hour (P <0.05%). Prothrombin time
and activated partial thromboplastin time have no significantly difference
between the two groups (P >0.05). But the platelet count
has significantly difference between the two groups at the 36th
hour (P <0.05). The aspartate transaminase, alanine
transaminase and creatinine were improved significantly in the hypothermia
group, and they were significantly better than the northermia group
(P <0.05). CONCLUSION: Mild hypothermia is feasible and safe for patients with multiple organ
dysfunction syndrome after cardiopulmonary bypass surgery.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Cardiac Surgery ICU, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Tianxiang Gu
- Department of Cardiac Surgery ICU, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Zongyi Xiu
- Department of Cardiac Surgery ICU, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Enyi Shi
- Department of Cardiac Surgery ICU, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Lei Yu
- Department of Cardiac Surgery ICU, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
15
|
Braun CK, Kalbitz M, Halbgebauer R, Eisele P, Messerer DAC, Weckbach S, Schultze A, Braumüller S, Gebhard F, Huber-Lang MS. Early structural changes of the heart after experimental polytrauma and hemorrhagic shock. PLoS One 2017; 12:e0187327. [PMID: 29084268 PMCID: PMC5662170 DOI: 10.1371/journal.pone.0187327] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Evidence is emerging that systemic inflammation after trauma drives structural and functional impairment of cardiomyocytes and leads to cardiac dysfunction, thus worsening the outcome of polytrauma patients. This study investigates the structural and molecular changes in heart tissue 4 h after multiple injuries with additional hemorrhagic shock using a clinically relevant rodent model of polytrauma. We determined mediators of systemic inflammation (keratinocyte chemoattractant, macrophage chemotactic protein 1), activated complement component C3a and cardiac troponin I in plasma and assessed histological specimen of the mouse heart via standard histomorphology and immunohistochemistry for cellular and subcellular damage and ongoing apoptosis. Further we investigated spatial and quantitative changes of connexin 43 by immunohistochemistry and western blotting. Our results show significantly increased plasma levels of both keratinocyte chemoattractant and cardiac troponin I 4 h after polytrauma and 2 h after induction of hypovolemia. Although we could not detect any morphological changes, immunohistochemical evaluation showed increased level of tissue high-mobility group box 1, which is both a damage-associated molecule and actively released as a danger response signal. Additionally, there was marked lateralization of the cardiac gap-junction protein connexin 43 following combined polytrauma and hemorrhagic shock. These results demonstrate a molecular manifestation of remote injury of cardiac muscle cells in the early phase after polytrauma and hemorrhagic shock with marked disruption of the cardiac gap junction. This disruption of an important component of the electrical conduction system of the heart may lead to arrhythmia and consequently to cardiac dysfunction.
Collapse
Affiliation(s)
- Christian K. Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Philipp Eisele
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - David A. C. Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Sebastian Weckbach
- Department of Orthopedic Surgery, University Hospital of Ulm, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
16
|
Fattahi F, Ward PA. Complement and sepsis-induced heart dysfunction. Mol Immunol 2016; 84:57-64. [PMID: 27931779 DOI: 10.1016/j.molimm.2016.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023]
Abstract
It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Khor KH, Moore TA, Shiels IA, Greer RM, Arumugam TV, Mills PC. A Potential Link between the C5a Receptor 1 and the β1-Adrenoreceptor in the Mouse Heart. PLoS One 2016; 11:e0146022. [PMID: 26727203 PMCID: PMC4699762 DOI: 10.1371/journal.pone.0146022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
Purpose Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model. Methods An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT) mice reduced heart rate (HR) and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/-) mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV) in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR) in a randomized crossover study design. Results HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P< 0.001 for all outcomes). Administration of atenolol (2.5 mg/kg) reduced the HR and increased HRV (P< 0.05, respectively) in the wild type but not in the CD88-/- mice. There was no shift of the sympathovagal balance post-atenolol in either strains of mice (P> 0.05), except for the reduced LF/HF (Lower frequency/High frequency) ratio (P< 0.05) at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001) but the HRV of CD88-/- mice were significantly increased (P< 0.05), compared with WT mice. Conclusion Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.
Collapse
Affiliation(s)
- Kuan Hua Khor
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Tyson A. Moore
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian A. Shiels
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Ristan M. Greer
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Thiruma V. Arumugam
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- * E-mail:
| |
Collapse
|
18
|
Shin DG, Cho IJ, Shim CY, Ryu SK, Chang HJ, Hong GR, Ha JW, Chung N. Transient apical wall thickening in patients with stress cardiomyopathy: Prevalence, profile, and impact on clinical course. Int J Cardiol 2015; 194:87-92. [PMID: 26011273 DOI: 10.1016/j.ijcard.2015.05.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Transient apical wall thickening (TAWT), mimicking apical hypertrophic cardiomyopathy during recovery from stress cardiomyopathy (SCM), has recently been reported. However, the clinical significance of this phenomenon has not yet been assessed. We aimed to explore the prevalence, profiles, and impact on the clinical course of TAWT in patients with SCM. METHODS We retrospectively analyzed the SCM registry from January 2009 to December 2013. Of 429 patients with SCM, 124 patients who had typical features of transient apical ballooning were included. We identified patients who showed evidence of TAWT, which became normalized on serial echocardiograms. Clinical characteristics, incidence of cardiac complications (arrhythmia, pulmonary edema, cardiogenic shock, or left ventricular thrombus), and in-hospital mortality were compared between patients with and without TAWT. RESULTS Among 124 patients, 17 (14%) patients showed TAWT. During the follow-up period, TAWT was observed 14.6 ± 10.3 days after the initial SCM diagnosis. Patients with TAWT showed a higher prevalence of septic shock as a triggering factor of SCM than those without TAWT (41.2% vs. 19.6%, p=0.048). Furthermore, cardiac complications were more prevalent in patients with TAWT compared to patients without (64.7% vs. 33.6%, p=0.03). Finally, in-hospital mortality was significantly higher in patients with TAWT group during the clinical course of SCM (p=0.009). CONCLUSION TAWT in patients with SCM is not uncommon. Patients with SCM and systemic inflammation with hemodynamic instability might be susceptible to TAWT, which is often associated with cardiac complications. These patients showed worse prognosis compared to those without TAWT during recovery from SCM.
Collapse
Affiliation(s)
- Dong Geum Shin
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In-Jeong Cho
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chi Young Shim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Kee Ryu
- Division of Cardiology, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Geu-Ru Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Won Ha
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Namsik Chung
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Patel H, Madanieh R, Kosmas CE, Vatti SK, Vittorio TJ. Reversible Cardiomyopathies. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:7-14. [PMID: 26052233 PMCID: PMC4441366 DOI: 10.4137/cmc.s19703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 01/04/2023]
Abstract
Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness-induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions.
Collapse
Affiliation(s)
- Harsh Patel
- SUNY Downstate School of Medicine, Department of Internal Medicine, Brooklyn, NY, USA
| | - Raef Madanieh
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| | - Constantine E Kosmas
- Mount Sinai School of Medicine, Zena and Michael A. Wiener Cardiovascular Institute, New York, NY, USA
| | - Satya K Vatti
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| | - Timothy J Vittorio
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| |
Collapse
|
20
|
LI FANGFANG, YUAN YUAN, LIU YUAN, WU QINGQING, JIAO RONG, YANG ZHENG, ZHOU MENGQIAO, TANG QIZHU. Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 2015; 12:2807-13. [DOI: 10.3892/mmr.2015.3712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
21
|
Bongiovanni D, Ziegler T, D’Almeida S, Zhang T, Ng JKM, Dietzel S, Hinkel R, Kupatt C. Thymosin β4 attenuates microcirculatory and hemodynamic destabilization in sepsis. Expert Opin Biol Ther 2015; 15 Suppl 1:S203-10. [DOI: 10.1517/14712598.2015.1006193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Osterbur K, Mann FA, Kuroki K, DeClue A. Multiple organ dysfunction syndrome in humans and animals. J Vet Intern Med 2014; 28:1141-51. [PMID: 24773159 PMCID: PMC4857933 DOI: 10.1111/jvim.12364] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/23/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
Multiple organ dysfunction syndrome (MODS), defined as the presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention, is a cause of high morbidity and mortality in humans and animals. Many advances have been made in understanding the pathophysiology and treatment of this syndrome in human medicine, but much still is unknown. This comparative review will provide information regarding the history and pathophysiology of MODS in humans and discuss how MODS affects each major organ system in animals.
Collapse
Affiliation(s)
- K Osterbur
- Pittsburgh Veterinary Specialty and Emergency Center, Pittsburgh, PA
| | | | | | | |
Collapse
|
23
|
Mutig N, Geers-Knoerr C, Piep B, Pahuja A, Vogt PM, Brenner B, Niederbichler AD, Kraft T. Lipoteichoic acid from Staphylococcus aureus directly affects cardiomyocyte contractility and calcium transients. Mol Immunol 2013; 56:720-8. [PMID: 23933512 DOI: 10.1016/j.molimm.2013.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
Lipoteichoic acid (LTA) is the key pathogenic factor of gram-positive bacteria and contributes significantly to organ dysfunction in sepsis, a frequent complication in critical care patients. We hypothesized that LTA directly affects cardiomyocyte function, thus contributing to cardiac failure in sepsis. This study was designed to evaluate the effects of LTA on contractile properties and calcium-transients of isolated adult rat cardiomyocytes. When myocytes were exposed to LTA for 1h prior to analysis, the amplitudes of calcium-transients as well as sarcomere shortening increased to 130% and 142% at 1 Hz stimulation frequency. Relengthening of sarcomeres as well as decay of calcium-transients was accelerated after LTA incubation. Exposure to LTA for 24 h resulted in significant depression of calcium-transients as well as of sarcomere shortening compared to controls. One of the major findings of our experiments is that LTA most likely affects calcium-handling of the cardiomyocytes. The effect is exacerbated by reduced extracellular calcium, which resembles the clinical situation in septic patients. Functionally, an early stimulating effect of LTA with increased contractility of the cardiomyocytes may be an in vitro reflection of early hyperdynamic phases in clinical sepsis. Septic disorders have been shown to induce late hypodynamic states of the contractile myocardium, which is also supported at the single-cell level in vitro by results of our 24h-exposure to LTA.
Collapse
Affiliation(s)
- Natalie Mutig
- Institute of Molecular and Cell Physiology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kumar V, Sharma A. Innate Immunity in Sepsis Pathogenesis and Its Modulation: New Immunomodulatory Targets Revealed. J Chemother 2013; 20:672-83. [DOI: 10.1179/joc.2008.20.6.672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Khan AI, Coldewey SM, Patel NSA, Rogazzo M, Collino M, Yaqoob MM, Radermacher P, Kapoor A, Thiemermann C. Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the β-common receptor. Dis Model Mech 2013; 6:1021-30. [PMID: 23519033 PMCID: PMC3701221 DOI: 10.1242/dmm.011908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is limited evidence that the tissue-protective effects of erythropoietin are mediated by a heterocomplex of the erythropoietin receptor and the β-common receptor (‘tissue-protective receptor’), which is pharmacologically distinct from the ‘classical’ erythropoietin receptor homodimer that is responsible for erythropoiesis. However, the role of the β-common receptor and/or erythropoietin in sepsis-induced cardiac dysfunction (a well known, serious complication of sepsis) is unknown. Here we report for the first time that the β-common receptor is essential for the improvements in the impaired systolic contractility afforded by erythropoietin in experimental sepsis. Cardiac function was assessed in vivo (echocardiography) and ex vivo (Langendorff-perfused heart) in wild-type and β-common receptor knockout mice, that were subjected to lipopolysaccharide (9 mg/kg body weight; young mice) for 16–18 hours or cecal ligation and puncture (aged mice) for 24 hours. Mice received erythropoietin (1000 IU/kg body weight) 1 hour after lipopolysaccharide or cecal ligation and puncture. Erythropoietin reduced the impaired systolic contractility (in vivo and ex vivo) caused by endotoxemia or sepsis in young as well as old wild-type mice in a β-common-receptor-dependent fashion. Activation by erythropoietin of the β-common receptor also resulted in the activation of well-known survival pathways (Akt and endothelial nitric oxide synthase) and inhibition of pro-inflammatory pathways (glycogen synthase kinase-3β, nuclear factor-κB and interleukin-1β). All the above pleiotropic effects of erythropoietin were lost in β-common receptor knockout mice. Erythropoietin attenuates the impaired systolic contractility associated with sepsis by activation of the β-common receptor, which, in turn, results in activation of survival pathways and inhibition of inflammation.
Collapse
Affiliation(s)
- Areeg I Khan
- Centre for Translational Medicine and Therapeutics, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, EC1M 6BQ, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
High-mobility group box 1 induces calcineurin-mediated cell hypertrophy in neonatal rat ventricular myocytes. Mediators Inflamm 2012; 2012:805149. [PMID: 22778498 PMCID: PMC3388313 DOI: 10.1155/2012/805149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/14/2012] [Accepted: 05/08/2012] [Indexed: 01/02/2023] Open
Abstract
Cardiac hypertrophy is an independent predictor of cardiovascular morbidity and mortality. In recent years, evidences suggest that high-mobility group box 1 (HMGB1) protein, an inflammatory cytokine, participates in cardiac remodeling; however, the involvement of HMGB1 in the pathogenesis of cardiac hypertrophy remains unknown. The aim of this study was to investigate whether HMGB1 is sufficient to induce cardiomyocyte hypertrophy and to identify the possible mechanisms underlying the hypertrophic response. Cardiomyocytes isolated from 1-day-old Sprague-Dawley rats were treated with recombinant HMGB1, at concentrations ranging from 50 ng/mL to 200 ng/mL. After 24 hours, cardiomyocytes were processed for the evaluation of atrial natriuretic peptide (ANP) and calcineurin A expression. Western blot and real-time RT-PCR was used to detect protein and mRNA expression levels, respectively. The activity of calcineurin was also evaluated using a biochemical enzyme assay. HMGB1 induced cardiomyocyte hypertrophy, characterized by enhanced expression of ANP, and increased protein synthesis. Meanwhile, increased calcineurin activity and calcineurin A protein expression were observed in cardiomyocytes preconditioned with HMGB1. Furthermore, cyclosporin A pretreatment partially inhibited the HMGB1-induced cardiomyocyte hypertrophy. Our findings suggest that HMGB1 leads to cardiac hypertrophy, at least in part through activating calcineurin.
Collapse
|
28
|
Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 2011; 15:605-11. [PMID: 20571889 DOI: 10.1007/s10741-010-9176-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction is a well-recognized complication of severe sepsis and septic shock. Cardiac dysfunction in sepsis is characterized by ventricular dilatation, reduction in ejection fraction and reduced contractility. Initially, cardiac dysfunction was considered to occur only during the "hypodynamic" phase of shock. But we now know that it occurs very early in sepsis even during the "hyperdynamic" phase of septic shock. Circulating blood-borne factors were suspected to be involved in the evolution of sepsis induced cardiomyopathy, but it is not until recently that the cellular and molecular events are being targeted by researchers in a quest to understand this enigmatic process. Septic cardiomyopathy has been the subject of investigation for nearly half a century now and yet controversies exist in understanding it's pathophysiology. Here, we discuss our understanding of the pathogenesis of septic cardiomyopathy and the complex roles played by nitric oxide, mitochondrial dysfunction, complements and cytokines.
Collapse
Affiliation(s)
- Anthony Flynn
- Cardiology, St. Louis University Hospital, 3635 Vista Ave. 13th Floor, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
29
|
|
30
|
Hartemink KJ, Groeneveld ABJ. The hemodynamics of human septic shock relate to circulating innate immunity factors. Immunol Invest 2010; 39:849-62. [PMID: 20718660 DOI: 10.3109/08820139.2010.502949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of innate immunity, e.g., complement activation and cytokine release in the hemodynamic alterations in the course of human septic shock is largely unknown. We prospectively studied 14 consecutive septic shock patients with a pulmonary artery catheter in place. For 3 days after admission, hemodynamic variables and plasma levels of C3a, a product of complement activation, and interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) were measured 6-hourly. Doses of vasoactive drugs were recorded. Of the 14 patients, 8 died in the ICU. Patients had a hyperdynamic circulation with tachycardia, mild hypotension, increased cardiac index, peripheral vasodilation and myocardial depression. C3a, IL-6 and TNF-α plasma levels were supranormal in 123 of 138 (89%), 132 of 138 (96%) and 83 of 111 (75%) measurements, respectively. Independently of blood culture results, treatment with vasoactive drugs and outcome, mean arterial blood pressure and systemic vascular resistance index were lower when IL-6 levels were higher and left ventricular function was less depressed when C3a levels were higher in the course of septic shock. The TNF-α levels did not invariably relate to peripheral vascular and myocardial function parameters. Our serial observations suggest that, in human septic shock, peripheral vasodilation is most strongly and independently, of all inflammatory factors, associated with IL-6 release, whereas complement activation partly offsets the myocardial depression of the syndrome. Innate immunity factors may thus differ in their contribution to the course of hemodynamic abnormalities of septic shock.
Collapse
Affiliation(s)
- Koen J Hartemink
- Department of Intensive Care and the Institute for Cardiovascular Research, University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
CARDIAC-SPECIFIC EXPRESSION OF HEAT SHOCK PROTEIN 27 ATTENUATED ENDOTOXIN-INDUCED CARDIAC DYSFUNCTION AND MORTALITY IN MICE THROUGH A PI3K/AKT-DEPENDENT MECHANISM. Shock 2009; 32:108-17. [DOI: 10.1097/shk.0b013e318199165d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Wu R, Higuchi S, Dong W, Ji Y, Zhou M, Marini CP, Ravikumar TS, Wang P. Reversing established sepsis in rats with human vasoactive hormone adrenomedullin and its binding protein. Mol Med 2008; 15:28-33. [PMID: 19009024 DOI: 10.2119/molmed.2008.00092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/09/2008] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that early administration of rat adrenomedullin (AM), a vasoactive peptide, in combination with its binding protein (human AMBP-1) produces various beneficial effects in sepsis. Human AM is a 52-amino acid peptide, but rat AM differs from human AM, having only 50 amino acid residues, with two amino acid deletions and six substitutions. It remains unknown whether a combination of human AM and human AMBP-1 (AM/AMBP-1) is also beneficial in sepsis and, if so, whether human AM/AMBP-1 reverses established sepsis in rats. To test the effects of human AM/AMBP-1, we induced sepsis in male adult rats by cecal ligation and puncture (CLP). At 10 h after CLP (i.e., severe sepsis), human AM (12-48 microg/kg body weight) was administered in combination with human AMBP-1 (40-160 microg/kg body weight). Vehicle-treated animals received a nonspecific human plasma protein (albumin). Blood and intestinal samples were collected at 20 h for various measurements. In additional groups of septic animals, the gangrenous cecum was surgically excised at 20 h after CLP. The 10-day survival was recorded. Our results showed that tissue injury, as evidenced by increased levels of transaminases and lactate, was present at 20 h after CLP. Proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6 were significantly elevated. Gut barrier dysfunction, manifested by increased mucosal permeability to hydrophilic macromolecules and increased bacterial translocation to mesenteric lymph nodes, also occurred at 20 h after CLP. Administration of human AM/AMBP-1 in established sepsis markedly attenuated tissue injury, reduced proinflammatory cytokine levels, ameliorated intestinal-barrier dysfunction, and improved the survival rate from 47% to 67%-80%. Thus, human AM/AMBP-1 can be further developed as a safe and effective therapy for patients with established sepsis.
Collapse
Affiliation(s)
- Rongqian Wu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
It has been an honor for me to write the prefatory article for Volume 4 of the Annual Review of Pathology: Mechanisms of Disease. I decided to describe the first 50 years of my career in research, which started with my entry into medical school. I have tried to outline the numerous scientific mentors who played such an important role in my development as an independent scientific investigator. In general, I have tried to avoid mention in the text of the many, many colleagues who carried out the scientific work, as I would inevitably fail to cite many of them. Rather, I have cited what I think are my most important publications, which identify many of these scientific colleagues. I am now engaged nearly full-time in research and look forward to the next period of research progress.
Collapse
Affiliation(s)
- Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-5602, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Kevin A Bybee
- Department of Medicine, University of Missouri-Kansas City, USA.
| | | |
Collapse
|
35
|
Abstract
Despite modern practices in critical care medicine, sepsis or systemic inflammatory response syndrome remains a leading cause of morbidity and mortality in the intensive care unit. Thus, the need to identify new therapeutic tools for the treatment of sepsis is urgent. In this context, carbon monoxide has become a promising therapeutic molecule that can potentially prevent uncontrolled inflammation in sepsis. In humans, carbon monoxide arises endogenously from the degradation of heme by heme oxygenase enzymes. Both endogenously synthesized and exogenously applied carbon monoxide can exert antiinflammatory and antiapoptotic effects in cells and tissues. Based on these properties, carbon monoxide, when applied at low concentration, conferred protection in a variety of cellular and rodent models of sepsis, and furthermore reduced morbidity and mortality in vivo. Therefore, application of carbon monoxide may have a major impact on the future of sepsis treatment. This review summarizes evidence for salutary effects of carbon monoxide in sepsis of various organs, including lung, heart, kidney, liver, and intestine, and discusses the potential translation of the data into human clinical trials.
Collapse
Affiliation(s)
- Alexander Hoetzel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh School of Medicine, MUH 628 NW, 3459 Fifth Ave, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
36
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|