Abstract
Dengue is the most prevalent mosquito-borne human illness worldwide. The ability to predict disease severity during the earliest days of the illness is a long-sought, but unachieved goal.
We examined human genome-wide transcript abundance patterns in daily peripheral blood mononuclear cell (PBMC) samples from 41 children hospitalized with dengue virus (DENV) infection in Nicaragua, as well as 8 healthy control subjects. Nine patients had primary dengue fever (DF1), 11 had dengue fever with serologic evidence of prior DENV infection, i.e., secondary dengue fever (DF2), 12 had dengue hemorrhagic fever (DHF), and 9 had dengue shock syndrome (DSS). We identified 2,092 genes for which transcript abundance differed significantly between patients on days 3–6 of fever and healthy subjects (FDR<1%). Prior DENV infection explained the greatest amount of variation in gene expression among patients. The number of differentially expressed genes was greatest on fever day 3 in patients with DF1, while the number in patients with DF2 or DHF/DSS was greatest on day 5. Genes associated with the mitotic cell cycle and B cell differentiation were expressed at higher levels, and genes associated with signal transduction and cell adhesion were expressed at lower levels, in patients versus healthy controls. On fever day 3, a set of interferon-stimulated gene transcripts was less abundant in patients who subsequently developed DSS than in other patient groups (p<0.05, ranksum). Patients who later developed DSS also had higher levels of transcripts on day 3 associated with mitochondrial function (p<0.01, ranksum). These day 3 transcript abundance findings were not evident on subsequent fever days.
In conclusion, we identified differences in the timing and magnitude of human gene transcript abundance changes in DENV patients that were associated with serologic evidence of prior infection and with disease severity. Some of these differential features may predict the outcome of DENV infection.
Infection with dengue virus (DENV) causes dengue fever, the most prevalent mosquito-borne illness of humans worldwide. Tens of millions of cases occur annually; up to 500,000 patients develop additional life-threatening complications, including hemorrhage and shock. The clinical course of the disease evolves rapidly, making it difficult to identify patients at risk for severe disease and suggesting that biological events associated with the development of severe disease may be short-lived. We examined gene expression patterns in the blood of children hospitalized with DENV infection, and found that patients with differences in disease severity and history of previous DENV infection shared a common set of gene expression features, but the timing and magnitude of these features differed. In our study, prior DENV infection explained the greatest amount of variation in gene expression among patients. We discovered features of gene expression on day 3 that were associated with subsequent disease severity—features that were not apparent on subsequent days, emphasizing the importance of looking at temporal patterns of gene expression in acute infection.
Collapse