1
|
Wu X, Wu Z, Ye X, Pang L, Sheng Y, Wang Z, Zhou Y, Zhu J, Hu R, Zhou S, Chen J, Wang Z, Shi M, Huang J, Chen X. The Dual Functions of a Bracovirus C-Type Lectin in Caterpillar Immune Response Manipulation. Front Immunol 2022; 13:877027. [PMID: 35663984 PMCID: PMC9157488 DOI: 10.3389/fimmu.2022.877027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Parasitoids are widespread in natural ecosystems and normally equipped with diverse viral factors to defeat host immune responses. On the other hand, parasitoids can enhance the antibacterial abilities and improve the hypoimmunity traits of parasitized hosts that may encounter pathogenic infections. These adaptive strategies guarantee the survival of parasitoid offspring, yet their underlying mechanisms are poorly understood. Here, we focused on Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and found that C. vestalis parasitization decreases the number of host hemocytes, leading to disruption of the encapsulation reaction. We further found that one bracovirus C-type lectin gene, CvBV_28-1, is highly expressed in the hemocytes of parasitized hosts and participates in suppressing the proliferation rate of host hemocytes, which in turn reduces their population and represses the process of encapsulation. Moreover, CvBV_28-1 presents a classical bacterial clearance ability via the agglutination response in a Ca2+-dependent manner in response to gram-positive bacteria. Our study provides insights into the innovative strategy of a parasitoid-derived viral gene that has dual functions to manipulate host immunity for a successful parasitism.
Collapse
Affiliation(s)
- Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiachen Zhu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rongmin Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Role of Lectin in the Response of Aedes aegypti Against Bt Toxin. Front Immunol 2022; 13:898198. [PMID: 35634312 PMCID: PMC9136036 DOI: 10.3389/fimmu.2022.898198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
3
|
Xia X, You M, Rao XJ, Yu XQ. Insect C-type lectins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:70-79. [PMID: 29198776 DOI: 10.1016/j.dci.2017.11.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
C-type lectins (CTLs) are a family of proteins that contain characteristic modules of carbohydrate-recognition domains (CRDs) and they possess the binding activity to ligands in a calcium-dependent manner. CTLs play important roles in animal immune responses, and in insects, they are involved in opsonization, nodule formation, agglutination, encapsulation, melanization, and prophenoloxidase activation, as well as in maintaining gut microbiome homeostasis. In this review, we will summarize insect CTLs, compare the properties of insect CTLs with vertebrate CTLs, and focus mainly on the domain organization and functions of insect CTLs in innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
4
|
Zhan MY, Shahzad T, Yang PJ, Liu S, Yu XQ, Rao XJ. A single-CRD C-type lectin is important for bacterial clearance in the silkworm. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:330-339. [PMID: 27519466 DOI: 10.1016/j.dci.2016.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins (CTLs) depend on the carbohydrate-recognition domain (CRD) to recognize carbohydrates by a Ca(2+)-dependent mechanism. In animals, CTLs play critical roles in pathogen recognition, activation of the complement system and signaling pathways. Immulectins (Dual-CRD CTLs) in lepidopteran are involved in recognizing pathogens. However, little is known about the immune-related functions of insect single-CRD CTLs. Here, we reported the characterization of C-type lectin-S3 (CTL-S3), a single-CRD CTL from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL-S3 gene is 672 bp, which encodes a putative protein of 223 amino acids. CTL-S3 gene was expressed in a variety of tissues. Levels of CTL-S3 mRNA in fertilized eggs and whole larvae were elevated upon bacterial challenges. CTL-S3 was secreted to larval hemolymph. The recombinant protein (rCTL-S3) binds to bacterial cell wall components and bacteria. CTL-S3 inhibited the growth of Bacillus subtilis and caused agglutination of Staphylococcus aureus. More importantly, CTL-S3 facilitated the rapid clearance of Escherichia coli and Staphylococcus aureus from the body cavity of larvae. Taken together, our results suggested that CTL-S3 may function as an opsonin in larval hemolymph to enhance the clearance of pathogens.
Collapse
Affiliation(s)
- Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System. Front Physiol 2016; 7:570. [PMID: 27965582 PMCID: PMC5126049 DOI: 10.3389/fphys.2016.00570] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.
Collapse
Affiliation(s)
- Alex P Arp
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, Agricultural Research Service, United State Department of Agriculture Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| |
Collapse
|
6
|
Rao XJ, Shahzad T, Liu S, Wu P, He YT, Sun WJ, Fan XY, Yang YF, Shi Q, Yu XQ. Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:328-338. [PMID: 26187302 DOI: 10.1016/j.dci.2015.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs) represent a large family of proteins that can bind carbohydrate moieties normally in a calcium-dependent manner. CTLs play important roles in mediating cell adhesion and the recognition of pathogens in the immune system. In the present study, we have identified 23 CTL genes in domestic silkworm Bombyx mori. CTL-domain proteins (CTLDPs) are classified into three groups based on the number of carbohydrate-recognition domains (CRDs) and the domain architectures. These include twelve CTL-S (Single-CRD), six immulectins (Dual-CRD) and five CTL-X (CRD with other domains). We studied their phylogenetic features, analyzed the conserved residues, predicted tertiary structures, and examined the tissue expression profile and immune inducibility. Through bioinformatics analysis, we have putatively identified ten secretory and two cytoplasmic CTL-S; four secretory and two cytoplasmic immulectins; one secretory, one cytoplasmic and three transmembrane forms of CTL-X. Most B. mori CTLDPs form monophyletic groups with orthologs from Lepidoptera, Diptera, Coleoptera and Hymenoptera species. Immulectins of B. mori and Manduca sexta evolved from common ancestor genes perhaps due to gene duplication events of CTL-S ancestor genes. Homology modeling revealed that the overall structures of B. mori CTL domains are analogous to those of humans with a variable loop region. We examined the expression profile of CTLDP genes in naïve and immune-stimulated tissues. The expression and induction of CTLDP genes were related to the tissues and microorganisms. Together, our gene identification, sequence comparison, phylogenetic analysis, homology modeling and expression analysis laid a good foundation for the further studies of B. mori CTLDPs and comparative genomics.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Peng Wu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yan-Ting He
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei-Jia Sun
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiang-Yun Fan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yun-Fan Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qiao Shi
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
7
|
Rao XJ, Cao X, He Y, Hu Y, Zhang X, Chen YR, Blissard G, Kanost MR, Yu XQ, Jiang H. Structural features, evolutionary relationships, and transcriptional regulation of C-type lectin-domain proteins in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:75-85. [PMID: 25554596 PMCID: PMC4476918 DOI: 10.1016/j.ibmb.2014.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 05/24/2023]
Abstract
C-type lectins (CTLs) are a large family of Ca(2+)-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca(2+)-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
8
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
9
|
Li F, Terenius O, Li Y, Fang S, Li W. cDNA Cloning and Expression Analysis of Pattern Recognition Proteins from the Chinese Oak Silkmoth, Antheraea pernyi. INSECTS 2012; 3:1093-104. [PMID: 26466728 PMCID: PMC4553565 DOI: 10.3390/insects3041093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/02/2022]
Abstract
Pattern recognition receptors play an important role in insect immune defense. We cloned the β-1,3-glucan recognition protein, lectin-5 and C-type lectin 1 genes of Antheraea pernyi and examined the expression profiles of immune-stimulated pupae. After infection with Bacillus subtilis, Escherichia coli, Antheraea pernyi nuclear polyhedrosis virus (ApNPV) and Saccharomyces cerevisiae, respectively, the pupae showed different gene expression levels in the different tissues examined (midgut, fatbody, epidermis, testis, and hemocytes). ApβGRP and Aplectin-5 was induced by all the microorganisms, and mainly in epidermis and hemocytes, but not in testis; Aplectin-5 was also expressed in fatbody. Ap C-type lectin 1 was, on the contrary, highly expressed in testis and also in fatbody, but not in hemocytes. Unlike ApβGRP and Aplectin-5, Ap C-type lectin 1 was not induced by Gram-positive bacteria. The results suggest that the cloned lectins may have different functions in different tissues of A. pernyi.
Collapse
Affiliation(s)
- Fengjuan Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | - Yuan Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Suyun Fang
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Wenli Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| |
Collapse
|
10
|
Ren Q, Li M, Du J, Zhang CY, Wang W. Immune response of four dual-CRD C-type lectins to microbial challenges in giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:155-167. [PMID: 22450241 DOI: 10.1016/j.fsi.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
C-type lectins (CTLs) are believed to play important roles in the innate immunity of invertebrates and serve as pattern recognition receptors, opsonins, or effector molecules. In this study, the full-lengths cDNA of 4 CTL genes from giant freshwater prawn Macrobrachium rosenbergii were cloned and designated as MrLec1, MrLec2, MrLec3, and MrLec4. All of these 4 lectin cDNAs encode proteins with 2 carbohydrate recognition domains (CRDs). While MrLec1, MrLec3, and MrLec4 had signal peptides, no signal peptide was detected in MrLec2. Two carbohydrate recognition motifs within two CRDs of each lectin were predicted (QPE, EPG in MrLec1; EPT, EPA in MrLec2; QPT, NPR in MrLec3; KPN, EPD in MrLec4). Phylogenetic analysis showed that MrLec4 belongs to group A whereas MrLec1, MrLec2, and MrLec3 belong to group B. Positive selection in dual-CRD lectins suggested their probable roles in innate immunity, and positively selected induced amino acid diversity of lectins may confer their ability to recognize a broad range of microbes. The qRT-PCR analysis in adult prawns showed that MrLec1 is mainly expressed in the hepatopancreas, gills, and stomach, MrLec2 and MrLec4 are mainly distributed in the hepatopancreas, and MrLec3 is mainly expressed in the hepatopancreas and stomach. Time-course analysis using qRT-PCR showed that MrLec1 to MrLec4 are all upregulated by the Vibrio anguillarum challenge. MrLec1 is upregulated after 2, 12, and 24 h of white spot syndrome virus (WSSV) challenge. The expression of MrLec2 increases after 12 and 24 h of WSSV challenge, and the transcript of MrLec3 and MrLec4 are downregulated after 2 h of WSSV challenge. The results suggest the potential roles of dual-CRD lectins in the innate immunity of M. rosenbergii.
Collapse
Affiliation(s)
- Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China.
| | | | | | | | | |
Collapse
|
11
|
Liu F, Chen Y, Yang B, Wang J, Peng Q, Shao Q, Li X, Beerntsen BT, Xu Y, Li J, Yu XQ, Ling E. Drosophila melanogaster prophenoloxidases respond inconsistently to Cu2+ and have different activity in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:619-628. [PMID: 22178920 DOI: 10.1016/j.dci.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/27/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
Dipteran insects, like mosquitoes, possess more than two prophenoloxidase (PPO) genes, but it is unclear whether their gene products differ in biochemical properties and physiological functions. Here, we used three Drosophila melanogaster PPOs as models to study their properties through expression in S2 cells. Our data revealed that the PPOs were expressed in the ethanol-activatable conformation: rPPO1 and rPPO2 needed additional Cu(2+) in the medium, but rPPO3 did not. rPPO1 bound Cu(2+) within minutes; rPPO2 did that in hours when Cu(2+) were present at a higher concentration. Thus, rPPO1 and rPPO2 were expressed as apo-rPPO and became holo-PPO upon Cu(2+) binding; rPPO3 was holo-PPO immediately after expression. Surprisingly, in the absence of ethanol, the apparently intact rPPO3 catalyzed dopamine oxidation and melanization. The successful method for rPPO expression in S2 cells described in this paper will provide us with an opportunity to study the properties of a specific PPO gene in a small insect like mosquitoes in the future.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shao Q, Yang B, Xu Q, Li X, Lu Z, Wang C, Huang Y, Söderhäll K, Ling E. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J Biol Chem 2012; 287:14270-9. [PMID: 22375003 DOI: 10.1074/jbc.m112.354548] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many insects eat the green leaves of plants but excrete black feces in an as yet unknown mechanism. Insects cannot avoid ingesting pathogens with food that will be specifically detected by the midgut immune system. However, just as in mammals, many pathogens can still escape the insect midgut immune system and arrive in the hindgut, where they are excreted out with the feces. Here we show that the melanization of hindgut content induced by prophenoloxidase, a key enzyme that induces the production of melanin around invaders and at wound sites, is the last line of immune defense to clear bacteria before feces excretion. We used the silkworm Bombyx mori as a model and found that prophenoloxidase produced by hindgut cells is secreted into the hindgut contents. Several experiments were done to clearly demonstrate that the blackening of the insect feces was due to activated phenoloxidase, which served to regulate the number of bacteria in the hindgut. Our analysis of the silkworm hindgut prophenoloxidase discloses the natural secret of why the phytophagous insect feces is black and provides insight into hindgut innate immunity, which is still rather unclear in mammals.
Collapse
Affiliation(s)
- Qimiao Shao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tian YY, Liu Y, Zhao XF, Wang JX. Characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:772-779. [PMID: 19185587 DOI: 10.1016/j.dci.2009.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/27/2008] [Accepted: 01/11/2009] [Indexed: 05/27/2023]
Abstract
C-type lectins can specifically recognize sugars on the surface of microorganisms and cause a series of immune responses to effectively resist pathogenic invasions. In previous work in our laboratory, we obtained a C-type lectin from Helicoverpa armigera (Ha-lectin). It has two different carbohydrate recognition domains (CRDs) CRD1 and CRD2 arranged in tandem. In this study, recombinant CRD1 and CRD2 were expressed separately in Escherichia coli and purified. They have the ability to agglutinate Gram-negative and Gram-positive bacteria and fungi in the presence of Ca2+. They also have different spectra of sugar binding abilities. The rHa-lectin, rCRD1 and rCRD2 could inhibit the growth in quantity of Bacillus thuringiensis in vivo by increasing hemocyte phagocytosis. These results suggested that Ha-lectin and its two domains could function as a pattern recognition receptor or an opsonin in vivo to promote the hemocyte phagocytosis of pathogens and protect the insect from bacterial infection.
Collapse
Affiliation(s)
- Yuan-Yuan Tian
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | |
Collapse
|