1
|
Zhang Y, Zhang S, Zhong L, Liu G, Sui Y, Wang M, Jiang H. The role of cortisol in the acute immune regulation of channel catfish (Ictalurus punctatus) spleen stimulated by Aeromonas hydrophila. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101517. [PMID: 40305903 DOI: 10.1016/j.cbd.2025.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Channel catfish (Ictalurus punctatus), a significant aquaculture species, occupies a prominent position in the aquaculture industry due to its rapid growth, excellent adaptability, and economic value; however, the hemorrhagic disease caused by Aeromonas hydrophila has had a substantial impact on its cultivation. Researches have indicated that cortisol, the main stress hormone, is essential for regulating immune responses. Therefore, in this study, the immune regulatory effects of cortisol on the spleen tissue under Aeromonas hydrophila stimulation were analyzed. Through transcriptomic (RNA-seq) analysis, we identified 167 differentially expressed genes (DEGs) regulated by cortisol. The KEGG enrichment analysis indicated that the DEGs were predominantly associated with various biological pathways, including antigen processing and presentation, bladder cancer, autophagy in animals, lipid metabolism, and atherosclerosis. Protein-protein interaction network analysis further indicated that these DEGs participate in key signaling pathways, including HIF, JAK-STAT, and NF-KB. Our findings demonstrate that cortisol exerts an immunoregulatory effect by modulating these key signaling pathways in the spleen tissue infected with Aeromonas hydrophila, which is of significant importance for understanding the mechanism of cortisol in fish immune responses.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China.
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China.
| |
Collapse
|
2
|
Shibasaki Y, Yabu T, Shiba H, Moritomo T, Mano N, Nakanishi T. Characterization of fish-specific IFNγ-related binding with a unique receptor complex and signaling through a novel pathway. FEBS Open Bio 2024; 14:532-544. [PMID: 38321830 PMCID: PMC10988753 DOI: 10.1002/2211-5463.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.
Collapse
Affiliation(s)
| | - Takeshi Yabu
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Department of Food and NutritionNitobe Bunka CollegeNakanoJapan
| | - Hajime Shiba
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | | | - Nobuhiro Mano
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | - Teruyuki Nakanishi
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Goto Aquaculture Institute Co., Ltd.SayamaJapan
| |
Collapse
|
3
|
Li X, Yue X, Xie J. The goldfish primary kidney macrophage system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105100. [PMID: 37977243 DOI: 10.1016/j.dci.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Miodrag (Mike) Belosevic and collaborators profoundly influenced the development of primary kidney macrophage culturing system (PKM) to study fish immunology in various aspects of comparative immunology. Their application of using PKM model, opened a new path for studying the development of macrophages, regulation of hematopoiesis, and cell specific response against various pathogens. By measuring histopathological and immunological outcomes, the biological implications of a variety of cytokines and signal transduction molecules could be elucidated with the established PKM system. A variety of growth factors mediating hematopoiesis and cytokines regulating the immune responses were functionally characterized, which served as a fundamental basis for making goldfish an excellent model to study fish immunology. Specifically, using in vivo and PKM based in vitro assays, the Belosevic lab advanced the goldfish-M. marinum model to study the anti-mycobacteria responses in teleosts, thus paving a way for the development of novel therapeutic approaches which could be applied in aquaculture settings or utilized as a model for human disease. In this review, we will look at the contribution of Dr. Mike Belosevic to teleost macrophage development, multiple cytokine functional characterization, and host-pathogen interactions.
Collapse
Affiliation(s)
- Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| |
Collapse
|
4
|
Yan L, Guo J, Zhao C, Wang P, Zhang B, Zhang B, Qiu L. Type II interferons (IFN-γ and IFN-γrel) activate downstream genes through various potential receptor combinations to exert antiviral functions in spotted sea bass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109292. [PMID: 38145783 DOI: 10.1016/j.fsi.2023.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Jieyun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
5
|
Liu Y, Li K, Wenren M, Cheng W, Zhou X, Xu D, Chi C, Lü Z, Liu H. Identification, functional characterization and expression pattern of interferon-gamma (IFN-γ) and interferon-gamma receptor 1 (IFNGR1) in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109274. [PMID: 38072135 DOI: 10.1016/j.fsi.2023.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.
Collapse
Affiliation(s)
- Yongxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Kaihui Li
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mingming Wenren
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Cheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
6
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
7
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Pang AN, Chen SN, Gan Z, Li L, Li N, Wang S, Sun Z, Liu LH, Sun YL, Song XJ, Liu Y, Wang S, Nie P. Identification of type II interferons and receptors in an osteoglossiform fish, the arapaima Arapaima gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104589. [PMID: 36403789 DOI: 10.1016/j.dci.2022.104589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In mammals, type II interferon (IFN; i.e. IFN-γ) signalling transduces through its specific receptors IFN-γR1 and IFN-γR2. In an osteoglossiform fish, the arapaima Arapaima gigas, three type II IFNs, IFN-γ-like, IFN-γ and IFN-γrel, and their four possible receptor subunits IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 were identified in this study. The three type II IFN genes are composed of four exons and three introns, and they all contain IFN-γ signature motif and signal peptide, with the presence of potential nuclear localization signal (NLS) in IFN-γ-like and IFN-γ. The IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 are composed of seven exons and six introns, with predicted IFN-γR1-1 and IFN-γR1-2 proteins containing JAK1 and STAT1 binding sites, and IFN-γR2-1 and IFN-γR2-2 containing JAK2 binding sites. Gene synteny analysis showed that the type II IFN and their receptor loci are duplicated in arapaima. All these genes were expressed constitutively in all organs/tissues examined, and responded to the stimulation of polyI:C. The prokaryotic recombinant IFN-γ-like, IFN-γ and IFN-γrel proteins can significantly induce the upregulation of immune-related genes in trunk kidney leucocytes. The ligand-receptor relationship analyses revealed that recombinant IFN-γ-like, IFN-γ, and IFN-γrel transduce downstream signalling through IFN-γR1-1/IFN-γR2-1, IFN-γR1-2/IFN-γR2-2, and IFN-γR1-1, respectively, in xenogeneic cells with the overexpression of original or chimeric receptors. In addition, tyrosine (Y) 366 and Y377 in the intracellular region may be essential for the function of IFN-γR1-2 and IFN-γR1-1, respectively. The finding of type II IFN system in A. gigas thus provides different knowledge in understanding the diversity and evolution of type II IFN ligand-receptor relationships in vertebrates.
Collapse
Affiliation(s)
- An Ning Pang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shuai Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zheng Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yan Ling Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xiao Jun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
9
|
Zhu X, Wang J, Jia Z, Feng J, Wang B, Wang Z, Liu Q, Wu K, Huang W, Zhao X, Dang H, Zou J. Novel Dimeric Architecture of an IFN-γ-Related Cytokine Provides Insights into Subfunctionalization of Type II IFNs in Teleost Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2203-2214. [PMID: 36426983 DOI: 10.4049/jimmunol.2200334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Gene duplication leads to subfunctionalization of paralogs. In mammals, IFN-γ is the sole member of the type II IFN family and binds to a receptor complex consisting of IFN-γR1 and IFN-γR2. In teleost fish, IFN-γ and its receptors have been duplicated due to the teleost-specific whole-genome duplication event. In this study, the functions of an IFN-γ-related (IFN-γrel) cytokine were found to be partially retained relative to IFN-γ in grass carp (Ctenopharyngodon idella [CiIFN-γrel]). CiIFN-γrel upregulated the expression of proinflammatory genes but had lost the ability to activate genes involved in Th1 response. The results suggest that CiIFN-γrel could have been subfunctionalized from CiIFN-γ. Moreover, CiIFN-γrel induced STAT1 phosphorylation via interaction with duplicated homologs of IFN-γR1 (cytokine receptor family B [CRFB] 17 and CRFB13). Strikingly, CiIFN-γrel did not bind to the IFN-γR2 homolog (CRFB6). To gain insight into the subfunctionalization, the crystal structure of CiIFN-γrel was solved at 2.26 Å, revealing that it forms a homodimer that is connected by two pairs of disulfide bonds. Due to the spatial positions of helix A, loop AB, and helix B, CiIFN-γrel displays a unique topology that requires elements from two identical monomers to form a unit that is similar to IFN-γ. Further, mutagenesis analyses identified key residues interacting with CiIFN-γrel receptors and those required for the biological functions. Our study can help understand the subfunctionalization of duplicated IFN-γ paralogs in fish.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Quiniou SMA, Crider J, Felch KL, Bengtén E, Boudinot P. Interferons and interferon receptors in the channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:442-452. [PMID: 35304241 DOI: 10.1016/j.fsi.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, we describe the complete repertoire of channel catfish, Ictalurus punctatus, IFNs and IFN receptor genes. Based on multiple genomic and transcriptomic resources we identified 16 type I IFN genes, which represent the six type I IFN subgroups previously defined in salmonids (a-f.) No representatives of subgroup h previously only found in percomorphs were identified. An expansion in copy numbers of subgroup d IFN genes was of particular interest, as this has not been reported in other fish species to date. Furthermore, we confirmed the presence of two type II ifn genes encoding orthologs of IFNγ and the teleost-specific IFNγRel. Six homologs of IFN type I receptor genes were found in an array that shows conserved synteny with human chromosome 21. Three homologs of type II IFN receptor genes were also identified. These type I and type II receptor sequences are compatible with the dual type I IFN receptors, and the potentially more complex type II IFN receptors described in teleosts. Our data provide a comprehensive resource for future studies of channel catfish innate antiviral immunity.
Collapse
Affiliation(s)
| | | | | | - Eva Bengtén
- UMMC, Department of Microbiology, 39211, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Xu Q, Deng D, Guo H, Yuan H, Zhang W, Wang B, Lu Y, Chen D, Zhang S. Comprehensive comparison of thirteen kinds of cytokine receptors from the endangered fish Chinese sturgeon (Acipenser sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104132. [PMID: 34038788 DOI: 10.1016/j.dci.2021.104132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The interferon receptor system in teleost fish is more complex than that in mammals. In the present study, we identified 13 cytokine receptor genes (10 interferon receptor genes and 3 IL10R2-like genes) from Chinese sturgeon (Acipenser sinensis) using RNA-sequencing. Sequence analysis indicated that these receptors had conserved domains, including signal peptides, FNⅢ, and transmembrane domains. Phylogenetic analysis suggested that they belonged to the cytokine receptor family. In the present study, we named them IFNAR1-like (CRFB5a, CRFB5b), IFNAR2-like (CRFB3a, CRFB3b), IFNGR1-like (IFNGR1), IFNGR2-like (CRFB6a, CRFB6b/IFNGR2-1, CRFB6c/IFNGR2-2, CRFB6d/IFNGR2-3, CRFB6e/IFNGR2-4) and IL10R2-like (CRFB4a, CRFB4b, CRFB4c), respectively. Constitutive expression analysis revealed that these receptor genes had potential functions in immune and non-immune tissue compartments. After stimulating with Poly (I:C), the expression fold changes of CRFB3a, CRFB4a, CRFB4b, CRFB5b, and CRFB6e/IFNGR2-4 in Chinese sturgeon were higher than those of other receptor genes, which revealed that these five genes had important functions in the immune process to resist virus invasion in the host. After stimulating with IFN gamma, the expression fold changes of CRFB3a, CRFB4a, and CRFB6b/IFNGR2-1 were higher than those other receptor genes. Based on other teleost fish interferon receptor models, we speculated that IFNAR1-like (CRFB5a, CRFB5b) and IFNAR2-like (CRFB3a, CRFB3b), comprised Chinese sturgeon type Ⅰ IFN receptors; and IFNGR1-like (IFNGR1) and IFNGR2-like (CRFB6/IFNGR2) comprised Chinese sturgeon type Ⅱ IFN receptors.
Collapse
Affiliation(s)
- Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China.
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Hanwen Yuan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Wenbing Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Bei Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Yishan Lu
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Dunxue Chen
- Research Center of Fishery Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
12
|
Wang M, Chen X, Zhang R, Zhao J, Yang C, Wu L. Developmental toxicity and transcriptome analysis of 4-epianhydrotetracycline to zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139227. [PMID: 32450397 DOI: 10.1016/j.scitotenv.2020.139227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
As a primary degradation by-product of tetracycline (TC), 4-Epianhydrotetracycline (4-EATC) has been detected frequently in the aquatic environment, which may pose a potential environmental risk to aquatic organisms. Up to now, however, the toxicology study on 4-EATC to aquatic organisms is limited. In the present study, in order to better understand the toxic mechanism of 4-EATC, developmental toxicity including lethal and sublethal effects of 4-EATC and TC were investigated. The results showed that the developmental toxicity of 4-EATC to zebrafish embryos was stronger than that of TC. The 96 h LC50 value of 4-EATC to zebrafish embryos was 29.13 mg/L. Malformations seemed to be the most sensitive sublethal endpoint of 4-EATC exposure, and the 96 h EC50 value was 8.57 mg/L. Transcriptome response of 4-EATC to zebrafish embryos was determined. The results showed that 430 different expression genes (DEGs) caused by 4-EATC, and most enriched in tryptophan (TRP) metabolism pathway. Annotation of DEGs in the TRP metabolism demonstrated that expression of 4 gene products in tryptophan metabolized along the kynurenine (KYN) pathway were changed. Disorder of TRP catabolism in KYN pathway was a potential mechanism of 4-EATC toxicity to zebrafish embryos.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
14
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
15
|
Zahradník J, Kolářová L, Pařízková H, Kolenko P, Schneider B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. FISH & SHELLFISH IMMUNOLOGY 2018; 79:140-152. [PMID: 29742458 DOI: 10.1016/j.fsi.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Interferon gamma (IFN-γ) is one of the key players in the immune system of vertebrates. The evolution and properties of IFN-γ and its receptors in fish species are of special interest as they point to the origin of innate immunity in vertebrates. We studied the phylogeny, biophysical and structural properties of IFN-γ and its receptors. Our phylogeny analysis suggests the existence of two groups of IFN-γ related proteins, one specific for Acanthomorpha, the other for Cypriniformes, Characiformes and Siluriformes. The analysis further shows an ancient duplication of the gene for IFN-γ receptor 1 (IFN- γR1) and the parallel existence of the duplicated genes in all current teleost fish species. In contrast, only one gene can be found for receptor 2, IFN- γR2. The specificity of the interaction between IFN- γ and both types of IFN- γR1 was determined by microscale thermophoresis measurements of the equilibrium dissociation constants for the proteins from three fish species. The measured preference of IFN- γ for one of the two forms of receptor 1agrees with the bioinformatic analysis of the coevolution between IFN- γ and receptor 1. To elucidate structural relationships between IFN-γ of fish and other vertebrate species, we determined the crystal structure of IFN-γ from olive flounder (Paralichthys olivaceus, PoliIFN-γ) at crystallographic resolution of 2.3 Å and the low-resolution structures of Takifugu rubripes, Oreochromis niloticus, and Larimichthys crocea IFN-γ by small angle X-ray diffraction. The overall PoliIFN-γ fold is the same as the fold of the other known IFN- γ structures but there are some significant structural differences, namely the additional C-terminal helix G and a different angle between helices C and D in PoliIFN-γ.
Collapse
Affiliation(s)
- Jiří Zahradník
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Hana Pařízková
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Petr Kolenko
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| |
Collapse
|
16
|
Luo K, Zhang S, Tang D, Xia L, Gao W, Tian G, Qi Z, Xu Q, Zhang W. Analysis of the expression patterns of the cytokine receptor family B (CRFB) and interferon gamma receptor (IFNGR) in Dabry's sturgeon (Acipenser dabryanus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:420-426. [PMID: 29555551 DOI: 10.1016/j.dci.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Teleost fish have more complex interferon receptor systems than mammals. In the present study, genes encoding four cytokine receptor family B (CRFBs) and two interferon gamma receptors (IFNGRs) in Dabry's sturgeon (Acipenser dabryanus) were identified by RNA-sequencing. Sequence analysis revealed that the Dabry's sturgeon CRFBs and IFNGRs contained several conserved characteristics features, including signal peptides and a transmembrane domain. Phylogenetic analysis suggested that they belong to the CRFB3, CRFB5, and IFNGR protein families, and were named CRFB3a, CRFB3b, CRFB5a, CRFB5b, IFNGR1, and IFNGR2. The expression patterns of the CRFB and IFNGR genes were investigated in Dabry's sturgeon. The expression levels of CRFB5a, CRFB5b, and IFNGR1 showed no significant changes, suggesting that those genes do not mediate embryonic development. By contrast, the high expression levels of CRFB3a, CRFB3b, and IFNGR2 in the fertilized egg, 16-cell phase, and initial blastula stage implied the existence of maternally expression in the oocyte and association with embryonic development. Tissue distribution analysis revealed that the CRFB and IFNGR proteins have potential functions in immune and non-immune tissue compartments. Comprehensive analysis in Dabry's sturgeon revealed that the expression fold changes of CRFB3a, CRFB3b, CRFB5a, and CRFB5b in Dabry's sturgeon stimulated with poly I:C were higher than those in fish administrated with lipopolysaccharide (LPS). Conversely, the fold changes IFNGRs mRNA levels stimulated with LPS were higher than those in fish administrated with poly I: C. CRFB5a and IFNGR2 genes showed the earliest responses to the poly I: C, and the CRFB5a and IFNGR1 genes showed the earliest responses to LPS. These results implied that CRFB5a has important role in the IFN immune response. Our findings indicated that the Dabry's sturgeon CRFB and IFNGR genes have important functions in antiviral and antibacterial immune responses. The differential responses of these genes to poly I: C and LPS implied differences in the defense mechanisms against viruses and bacteria.
Collapse
Affiliation(s)
- Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Shuhuan Zhang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Lihai Xia
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Zhitao Qi
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China.
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
| |
Collapse
|
17
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Yang S, Li Q, Mu Y, Ao J, Chen X. Functional activities of interferon gamma in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2017; 70:545-552. [PMID: 28939528 DOI: 10.1016/j.fsi.2017.09.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) is a T helper cell type 1 (Th1) cytokine that plays important roles in almost all phases of immune and inflammatory responses. Although IFN-γ gene in large yellow croaker Larimichthys crocea has been reported, little is known about its bioactivity. In this study, large yellow croaker IFN-γ (LycIFN-γ) gene was found to be constitutively expressed in all tissues tested, with the highest levels in blood and heart. Based on stimulation with polyinosinic-polycytidylic acid [poly (I:C)] or inactivated trivalent bacterial vaccine, LycIFN-γ mRNA was significantly increased in spleen and head kidney tissues. LycIFN-γ transcripts were also detected in head kidney granulocytes, primary head kidney macrophages (PKM), head kidney leukocytes, and large yellow croaker head kidney cell line (LYCK), and were significantly up-regulated by poly(I:C) or lipopolysaccharide (LPS) in head kidney leukocytes. Recombinant LycIFN-γ protein (rLycIFN-γ) produced in Escherichia coli could enhance respiratory burst responses in PKM. Furthermore, rLycIFN-γ not only induced the expression of iNOS gene and release of NO, but also up-regulated the expression of proinflammatory cytokines TNF-α and IL-1β in PKM. These findings therefore indicated that LycIFN-γ has a role in mediating inflammatory response. In addition, rLycIFN-γ could significantly up-regulate expression of IFN-γ receptor CRFB13, signal transduction factor STAT1, transcription factors IRF1 and T-bet, and Th1-related cytokines IFN-γ and IL-2 in head kidney leukocytes, suggesting that LycIFN-γ may have the potential to promote Th1 immune response in large yellow croaker. Taken together, our results show that LycIFN-γ may be involved in inflammatory response and promote Th1 immune response as its mammalian counterpart.
Collapse
Affiliation(s)
- Sisi Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Qiuhua Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
19
|
Xiang Y, Liu W, Jia P, Li Y, Jin Y, Chen L, Zhang J, Jia K, Yi M. Molecular characterization and expression analysis of interferon-gamma in black seabream Acanthopagrus schlegelii. FISH & SHELLFISH IMMUNOLOGY 2017; 70:140-148. [PMID: 28870857 DOI: 10.1016/j.fsi.2017.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) is a major component in immunological signaling and plays a key role in resisting viral infection. In this study, we identified and characterized an IFN-γ gene (AsIFN-γ) in the marine fish black seabream (Acanthopagrus schlegelii). We cloned AsIFN-γ genomic sequence, which comprises four exons, three introns and an upstream promoter including several conserved regulatory elements. The complete cDNA of AsIFN-γ was 816 bp in length and encoded a putative 194 amino acids (aa) protein with a 22 aa signal peptide, six α-helices and one nuclear localization signal (NLS). Multiple alignment showed that AsIFN-γ protein shared 31-60% identity with IFN-γ of other fish but low identity with fish IFN-γrel and IFN-γ of other vertebrates. AsIFN-γ was constitutively expressed in all examined tissues with the highest expression level in immune organs, such as spleen, gill and kidney. In black seabream infected by red spotted nervous necrosis virus (RGNNV), the expression of AsIFN-γ was significantly up-regulated in most tissues, and RGNNV infection in vitro also induced significant up-regulation of AsIFN-γ, indicating that AsIFN-γ was involved in immune response to RGNNV infection. Overexpression of AsIFN-γ in cultured Acanthopagrus schlegelii brain (AsB) cells rapidly and transiently stimulated the expression of JAK-STAT signaling pathway related genes including STAT1, STAT2 and IRF9, as well as the downstream antiviral genes MX1 and ISG15. Furthermore, overexpression of AsIFN-γ was able to significantly inhibit RGNNV replication and virus production in AsB cells. In summary, we identified a conserved IFN-γ gene of black seabream, and demonstrated the rapid and strong antiviral activities of AsIFN-γ against RGNNV in black seabream.
Collapse
Affiliation(s)
- Yangxi Xiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yunlong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
20
|
Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection. Int J Mol Sci 2017; 18:ijms18071530. [PMID: 28714877 PMCID: PMC5536018 DOI: 10.3390/ijms18071530] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.
Collapse
|
21
|
Ruan BY, Chen SN, Hou J, Huang B, Laghari ZA, Li L, Nie P. Two type II IFN members, IFN-γ and IFN-γ related (rel), regulate differentially IRF1 and IRF11 in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2017; 65:103-110. [PMID: 28373105 DOI: 10.1016/j.fsi.2017.03.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Two members of type II IFNs have been identified in fish, i.e. an IFN-γ gene as in other vertebrates and a unique IFN-γ related (IFN-γ rel) gene being solely present in fish. However, the signalling pathways involved in the down-stream signalling of type II IFNs in fish remains poorly described. In this study, the type II IFNs mediated IRF1 was investigated in zebrafish, and the true homologous gene of mammalian IRF1 in fish was revealed despite the report of so-called IRF1a and IRF1b in zebrafish. As revealed in overexpression analysis, zebrafish IFN-γ had a higher induction ability than IFN-γ rel in relation with the expression of IRF1. IFN-γ stimulated the expression level of STAT1a and also STAT1b, but they had opposite trends with the increase of time; enhancement of STAT1a waned after 12 h post injection of plasmids; whereas STAT1b expression increased continuously. Zebrafish IRF1 gene promoter contained several putative transcription factor binding sites, including GAS and NF-κB motifs. Luciferase assay revealed that the GAS site was essential in the IFN-γ triggered IRF1 expression. In contrast, IRF11 contained neither GAS nor NF-κB elements, and did not respond to IFN-γ induction. It is considered that STAT1a and STAT1b are structurally and functionally similar to STAT1α and STAT1β in mammal respectively, and that IRF11, although used to be nominated as IRF1a, is not the orthologue of mammalian IRF1, but IRF1b in zebrafish should be the orthologue.
Collapse
Affiliation(s)
- Bai Ye Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
22
|
Characterization and Vaccine Potential of Membrane Vesicles Produced by Francisella noatunensis subsp. orientalis in an Adult Zebrafish Model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00557-16. [PMID: 28331079 PMCID: PMC5424235 DOI: 10.1128/cvi.00557-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/11/2017] [Indexed: 11/20/2022]
Abstract
Vaccine development against extracellular bacteria has been important for the sustainability of the aquaculture industry. In contrast, infections with intracellular pathogens remain largely an unresolved problem. Francisella noatunensis subsp. orientalis is a Gram-negative, facultative intracellular bacterium that causes the disease francisellosis in fish. Francisellosis is commonly characterized as a chronic granulomatous disease with high morbidity and can result in high mortality depending on the host. In this study, we explored the potential of bacterial membrane vesicles (MVs) as a vaccine agent against F. noatunensis subsp. orientalis. Bacterial MVs are spherical structures naturally released from the membrane of bacteria and are often enriched with selected bacterial components such as toxins and signaling molecules. MVs were isolated from broth-cultured F. noatunensis subsp. orientalis in the present work, and proteomic analysis by mass spectrometry revealed that MVs contained a variety of immunogenic factors, including the intracellular growth proteins IglC and IglB, known to be part of a Francisella pathogenicity island (FPI), as well as outer membrane protein OmpA, chaperonin GroEL, and chaperone ClpB. By using flow cytometry and electron microscopy, we observed that F. noatunensis subsp. orientalis mainly infects myelomonocytic cells, both in vivo and in vitro. Immunization with MVs isolated from F. noatunensis subsp. orientalis protects zebrafish from subsequent challenge with a lethal dose of F. noatunensis subsp. orientalis. To determine if MVs induce a typical acute inflammatory response, mRNA expression levels were assessed by quantitative real-time PCR. Expression of tnfa, il1b, and ifng, as well as mhcii, mpeg1.1, and ighm, was upregulated, thus confirming the immunogenic properties of F. noatunensis subsp. orientalis-derived MVs.
Collapse
|
23
|
Secombes CJ, Zou J. Evolution of Interferons and Interferon Receptors. Front Immunol 2017; 8:209. [PMID: 28303139 PMCID: PMC5332411 DOI: 10.3389/fimmu.2017.00209] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
The earliest jawed vertebrates (Gnathostomes) would likely have had interferon (IFN) genes, since they are present in extant cartilaginous fish (sharks and rays) and bony fish (lobe-finned and ray-finned fish, the latter consisting of the chondrostei, holostei, and teleostei), as well as in tetrapods. They are thought to have evolved from a class II helical cytokine ancestor, along with the interleukin (IL)-10 cytokine family. The two rounds of whole genome duplication (WGD) that occurred between invertebrates and vertebrates (1) may have given rise to additional loci, initially containing an IL-10 ancestor and IFN ancestor, which have duplicated further to give rise to the two loci containing the IL-10 family genes, and potentially the IFN type I and IFN type III loci (2). The timing of the divergence of the IFN type II gene from the IL-10 family genes is not clear but was also an early event in vertebrate evolution. Further WGD events at the base of the teleost fish, and in particular teleost lineages (cyprinids, salmonids), have duplicated the loci further, giving rise to additional IFN genes, with tandem gene duplication within a locus a common occurrence. Finally, retrotransposition events have occurred in different vertebrate lineages giving rise to further IFN loci, with large expansions of genes at these loci in some cases. This review will initially explore the likely IFN system present in the earliest Gnathostomes by comparison of the known cartilaginous fish genes with those present in mammals and will then explore the changes that have occurred in gene number/diversification, gene organization, and the encoded proteins during vertebrate evolution.
Collapse
Affiliation(s)
- Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen , Aberdeen , UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen , Aberdeen , UK
| |
Collapse
|
24
|
Zhang R, Liu R, Xin L, Chen H, Li C, Wang L, Song L. A CgIFNLP receptor from Crassostrea gigas and its activation of the related genes in human JAK/STAT signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:98-106. [PMID: 27373517 DOI: 10.1016/j.dci.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Interferon is a highly pleiotropic cytokine, once binding to its receptors, can activate JAK kinases and STAT transcription factors to initiate the transcription of genes downstream from interferon-stimulated response elements. In the present study, a cytokine receptor-like 3 molecule was selected and cloned from oyster Crassostrea gigas, which contained a fibronectin type III domain (designed CgIFNR-3). The expression pattern of CgIFNR-3 mRNA was detected in all the tested tissues including mantle, gills, hepatopancreas, muscle, and hemocytes, with the highest expression level in hemocytes. After poly (I: C) stimulation, the expression level of CgIFNR-3 in hemocytes was observed to significantly increase at 3 h (13.06-fold, p < 0.01). CgIFNR-3 was indicated to interact with CgIFNLP by in vitro GST pull-down assay, and to activate the expression of transcription factors including ISRE, STAT3 and GAS, in human Janus kinase signal transducer and activator of transcription (JAK/STAT) pathway after co-transfection in HEK-293T cells in the reporter luciferase activity assay. These results suggested that CgIFNR-3 could bind to CgIFNLP as an interferon receptor and participate in the activation of JAK/STAT pathway in human, which will benefit for intensive studies of interferon signaling pathway in mollusc.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
25
|
Shibasaki Y, Hatanaka C, Matsuura Y, Miyazawa R, Yabu T, Moritomo T, Nakanishi T. Effects of IFNγ administration on allograft rejection in ginbuna crucian carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:108-115. [PMID: 27156851 DOI: 10.1016/j.dci.2016.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
In vertebrates, the rejection of allografts is primarily accomplished by cell-mediated immunity. We recently identified four IFNγ isoforms with antiviral activity in ginbuna crucian carp, Carassius auratus langsdorfii. However, involvement of the IFNγ isoforms in cell-mediated immunity, especially in T cell function remains unknown. Here we investigate expression of the IFNγ isoforms and effects of administration of recombinant IFNγ (rgIFNγ) isoforms in ginbuna scale allograft rejection. All four IFNγ isoforms showed significantly higher expression with the progression of graft rejection. Administration of rgIFNγrel 1 but not rgIFNγrel 2, rgIFNγ1 nor rgIFNγ2 enhanced allograft rejection. The number of CD4(+) and CD8α(+) cells increased in early stages of rejection, while sIgM(+) cells were higher than controls at day 0 and 5 in the rgIFNγrel 1 administrated group. Expression of IFNγ1 and IFNγ2 mRNA was significantly up-regulated by rgIFNγrel 1 administration, while that of IFNγrel 1 and IFNγrel 2 was not. These results suggest different contributions of the four IFNγ isoforms toward the immune responses comprising allograft rejection.
Collapse
Affiliation(s)
- Yasuhiro Shibasaki
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Chihiro Hatanaka
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ryuichiro Miyazawa
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takeshi Yabu
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
26
|
Grayfer L, Edholm ES, Robert J. Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 58:757-66. [PMID: 26154317 DOI: 10.1387/ijdb.140271jr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Macrophage-lineage cells are indispensable to vertebrate homeostasis and immunity. In turn, macrophage development is largely regulated through colony-stimulating factor-1 (CSF1) binding to its cognate receptor (CSF1R). To study amphibian monopoiesis, we identified and characterized the X. laevis CSF1R cDNA transcript. Quantitative analysis revealed that CSF1R tissue gene expression increased with X. laevis development, with greatest transcript levels detected in the adult lung, spleen and liver tissues. Notably, considerable levels of CSF1R mRNA were also detected in the regressing tails of metamorphosing animals, suggesting macrophage involvement in this process, and in the adult bone marrow; corroborating the roles for this organ in Xenopus monopoiesis. Following animal infections with the ranavirus Frog Virus 3 (FV3), both tadpole and adult X. laevis exhibited increased kidney CSF1R gene expression. Conversely, while FV3-infected tadpoles increased their spleen and liver CSF1R mRNA levels, the FV3-challenged adults did not. Notably, FV3 induced elevated bone marrow CSF1R expression, and while stimulation of tadpoles with heat-killed E. coli had no transcriptional effects, bacterial stimulation of adult frogs resulted in significantly increased spleen, liver and bone marrow CSF1R expression. We produced the X. laevis CSF1R in recombinant form (rXlCSF1R) and determined, via in vitro cross-linking studies, that two molecules of rXlCSF1R bound the dimeric rXlCSF1. Finally, administration of rXlCSF1R abrogated the rXlCSF1-induced tadpole macrophage recruitment and differentiation as well as bacterial and FV3-elicited peritoneal leukocyte accumulation. This work marks a step towards garnering greater understanding of the unique mechanisms governing amphibian macrophage biology.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| | | | | |
Collapse
|
27
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
28
|
Chen H, Liu W, Wang B, Mao H, Sun Z, Hou Q, Mi Y, Fan L, Hu C. Cloning, identification of the two cytokine receptor family B subunits CRFB1 and CRFB5 from grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 45:211-220. [PMID: 25891274 DOI: 10.1016/j.fsi.2015.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Similar to the mammalian counterparts, fish type I interferon (IFN) performs its potential biological activities via binding to the corresponding receptor on target cell membrane. Fish type I IFN receptor, a kind of enzyme-linked receptor, consists of two subunits and belongs to the class II cytokine receptor family B (CRFB). In the present study, we cloned and identified two putative grass carp (Ctenopharyngodon idella) type I interferon receptor subunits (termed CiCRFB1 and CiCRFB5) by homology cloning techniques. Phylogenetic tree analysis suggested that CiCRFB1 and CiCRFB5 shared highly homology to Danio rerio CRFB1 and CRFB5 respectively. CiCRFB1 and CiCRFB5 were up-regulated after the stimulation with Grass Carp Hemorrhagic Virus (GCHV) and Polyinosinic-polycytidylic acid (Poly I:C), indicating that they are related to the intracellular antiviral activity. In order to know more about the roles of CiCRFB1 and CiCRFB5 in the process, the extracellular domains of CiCRFB1 (CiCRFB1-EC) and CiCRFB5 (CiCRFB5-EC), as well as grass carp type I IFN (CiIFN) were expressed in Escherichia coli BL21, and purified by affinity chromatography with the Ni-NTA His-Bind resin. Cross-linking reactions were employed to analyze the affinity of the ligand (CiIFN) with the two putative receptor subunits (CiCRFB1-EC and CiCRFB5-EC). The result suggested the formation of (CiCRFB5)2 homodimer was more easily than that of (CiCRFB1)2 under the induction of CiIFN in vitro. However, CiIFN was inclined to bind to (CiCRFB1)2 homodimer. Interestingly, although CiIFN seemed unable to facilitate the formation of (CiCRFB1 + CiCRFB5) heterodimer in the absence of DSS cross linker, however it can bind to the heterodimer in the presence of DSS. This indicated that the homodimer and the heterodimer were the potential receptor for CiIFN.
Collapse
Affiliation(s)
- Huarong Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Wenqun Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lihua Fan
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
29
|
Sun N, Chelme-Ayala P, Klamerth N, McPhedran KN, Islam MS, Perez-Estrada L, Drzewicz P, Blunt BJ, Reichert M, Hagen M, Tierney KB, Belosevic M, Gamal El-Din M. Advanced analytical mass spectrometric techniques and bioassays to characterize untreated and ozonated oil sands process-affected water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11090-11099. [PMID: 25211339 DOI: 10.1021/es503082j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes.
Collapse
Affiliation(s)
- Nian Sun
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta , Edmonton, Alberta T6G 2W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lu DQ, Leng TT, Ding X, Peng W, Yao M, Li SS, Lin HR, Zhang Y. Two IFNGR1 homologues in Tetraodon nigroviridis: Origin, expression analysis and ligand-binding preference. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:270-9. [PMID: 24412214 DOI: 10.1016/j.dci.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/31/2013] [Accepted: 01/01/2014] [Indexed: 06/03/2023]
Abstract
In the present study, the divergent properties of IFNGR1 isoforms (IFNGR1-1 and IFNGR1-2) were characterized in Tetraodon nigroviridis. Despite the structural similarities between these proteins, two T. nigroviridis IFNGR1 homologues differ from each other not only in their primary nucleotide and amino acid sequences but also in their syntenic structure. Genomic analysis demonstrates the conservation of synteny between the fish IFNGR1-2s and IFNGR1s in higher vertebrates; conversely, the IFNGR1-1 has no corresponding conservation of synteny with Gallus gallus and Homo sapiens, suggesting that the two genes were derived from two different origins. Additionally, their different sensitivities to mitogens and recombinant T. nigroviridis IFN-γs were observed. Furthermore, ligand-binding analysis strongly supported the model proposed in Danio rerio, which suggests that IFNGR1-1 is the major component of the IFN-γrel receptor complex; IFN-γ most likely binds to both IFNGR1-2 and IFNGR1-1. This study is a further step towards elucidating the teleostean IFN-γ system, which is different from that in mammals.
Collapse
Affiliation(s)
- Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
| | - Ting-Ting Leng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Xu Ding
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Mi Yao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| |
Collapse
|
31
|
Rise ML, Nash GW, Hall JR, Booman M, Hori TS, Trippel EA, Gamperl AK. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study. Mar Genomics 2014; 18 Pt A:3-20. [PMID: 24878168 DOI: 10.1016/j.margen.2014.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by family. The Atlantic cod ddc (dopa decarboxylase) complete cDNA was characterized, and has a 1461bp open reading frame encoding a 486 amino acid protein that contains all eight residues of the conserved pyridoxal 5'-phosphate binding site including the catalytic lysine. This study provides valuable new information and resources related to the Atlantic cod egg transcriptome. Some of these microarray-identified, qPCR-confirmed, Atlantic cod egg transcripts (e.g. ddc, kpna7) play important roles during embryonic development of other vertebrate species, and may have similar functions in Atlantic cod.
Collapse
Affiliation(s)
- Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Tiago S Hori
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Edward A Trippel
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB, E5B 2L9, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
32
|
Yi S, Lu D, Peng W, Wang T, Zhang Y, Lin H. Differential expression profiling of spleen microRNAs in response to two distinct type II interferons in Tetraodon nigroviridis. PLoS One 2014; 9:e96336. [PMID: 24800866 PMCID: PMC4011704 DOI: 10.1371/journal.pone.0096336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are endogenous, small non-coding RNAs approximately 18-26 nucleotides in length that regulate target gene expression at the post-transcription level. Interferon-γ (IFN-γ) is a Th1 cytokine that is involved in both the innate and adaptive immune responses. We previously identified two IFN-γ genes in green-spotted puffer fish (Tetraodon nigroviridis). To determine whether miRNAs participate in IFN-γ-related immune responses, T. nigroviridis spleen cells were treated with recombinant IFN-γ isoforms, and a Solexa high-throughput sequencing method was used to identify miRNAs. In total, 1,556, 1,538 and 1,573 miRNAs were found in the three samples, and differentially expressed miRNAs were determined. In total, 398 miRNAs were differentially expressed after rIFN-γ1 treatment, and 438 miRNAs were differentially expressed after rIFN-γ2 treatment; additionally, 403 miRNAs were differentially expressed between the treatment groups. Ten differentially expressed miRNAs were chosen for validation using qRT-PCR. Target genes for the differentially expressed miRNAs were predicted, and GO and KEGG analyses were performed. This study provides basic knowledge regarding fish IFN-γ-induced miRNAs and offers clues for further studies into the mechanisms underlying fish IFN-γ-mediated immune responses.
Collapse
Affiliation(s)
- Shibai Yi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
- * E-mail: (DL); (HL)
| | - Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Ting Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
- * E-mail: (DL); (HL)
| |
Collapse
|
33
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
34
|
Hagen MO, Katzenback BA, Islam MDS, Gamal El-Din M, Belosevic M. The analysis of goldfish (Carassius auratus L.) innate immune responses after acute and subchronic exposures to oil sands process-affected water. Toxicol Sci 2014; 138:59-68. [PMID: 24284786 PMCID: PMC3983406 DOI: 10.1093/toxsci/kft272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
We examined the immunotoxic effects of acute and subchronic exposures of goldfish to aged, fresh, and ozonated oil sands process-affected water (OSPW) using a flow-through exposure apparatus. We measured the expression of proinflammatory cytokine genes, the antimicrobial responses of primary macrophages isolated from OSPW-exposed fish, and the ability of the goldfish to control infection with a protozoan parasite, Trypanosoma carassii. After acute (1 week) exposure to aged OSPW, we observed upregulation in the expression of interferon gamma (IFN-γ), tumor necrosis factor alpha-2 (TNF-α2) in the kidney and spleen but not in gills of the fish. After subchronic (12 weeks) exposure to aged OSPW, we observed significant increases in mRNA levels of proinflammatory genes in the gill (IFN-γ, interleukin-1 beta 1 [IL1-β1], TNF-α2), kidney (IL1-β1, TNF-α2), and spleen (IL1-β1). An upregulation of immune gene expression in the gill and kidney (IFN-γ, IL1-β1, TNF-α2) and spleen (IL1-β1, TNF-α2) was observed after acute exposure of fish to diluted fresh OSPW. Following subchronic exposure to diluted fresh OSPW, we observed high mRNA levels of IL1-β1 in all tissues examined. However, there were significant decreases in the mRNA levels of IFN-γ and TNF-α2 in the kidney and spleen and gill and spleen (IL-12p35 and IL-12p40) of exposed fish. There were no changes in the expression of anti-inflammatory cytokine IL-10 after both acute and subchronic exposures to diluted fresh OSPW. In fish exposed to ozonated fresh OSPW, immune gene expression was similar to nonexposed control fish in all organs examined, with exception of IL1-β1. The ability of primary kidney macrophages to generate reactive oxygen and nitrogen intermediates was significantly reduced in fish exposed to fresh OSPW. The enhanced proinflammatory response after acute exposure to diluted fresh OSPW was confirmed by the parasite challenge experiments, where OSPW-exposed fish controlled the infection better than nonexposed fish.
Collapse
Affiliation(s)
| | | | | | | | - Miodrag Belosevic
- *Department of Biological Sciences
- ‡School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
35
|
Ping Z, Qi J, Sun Y, Lu G, Shi Y, Wang X, Gao GF, Wang M. Crystal structure of the interferon gamma receptor alpha chain from chicken reveals an undetected extra helix compared with the human counterparts. J Interferon Cytokine Res 2014; 34:41-51. [PMID: 24283193 PMCID: PMC3887454 DOI: 10.1089/jir.2012.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon gamma (IFN-γ) is an important cytokine that induces antiviral, antiproliferative, and immunomodulatory effects on target cells, and is also crucial in the early defense against intracellular parasites, such as Listeria monocytogenes and Toxoplasma gondii. The biological activity of IFN-γ relies upon the formation of a complex with its 2 receptors, the interferon gamma alpha chain (IFNGR1) and beta chain (IFNGR2), which are type II cytokine receptors. Structural models of ligand-receptor interaction and complex structure of chicken IFNs with their receptors have remained elusive. Here we report the first structure of Gallus gallus (chicken) IFNGR1 (chIFNGR1) at 2.0 Å by molecule replacement according to the structure of selenomethionine substituted chIFNGR1. The structural comparison reveals its structural similarities with other class II cytokine receptors, despite divergent primary sequences. We further investigate the ligand-receptor interaction properties of chicken IFN-γ (chIFN-γ) and chIFNGR1 using size-exclusion chromatography and surface plasmon resonance techniques. These data aid in the understanding of the interaction of chicken (avian) IFN-γ with its receptors and its signal transduction.
Collapse
Affiliation(s)
- Zhiguang Ping
- 1 National Animal Protozoa Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen SN, Huang B, Zhang XW, Li Y, Zhao LJ, Li N, Gao Q, Nie P. IFN-γ and its receptors in a reptile reveal the evolutionary conservation of type II IFNs in vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:587-96. [PMID: 23850722 DOI: 10.1016/j.dci.2013.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
In this study, interferon gamma (IFN-γ) and interferon gamma receptor (IFN-γR) genes have been identified in non-avian reptile, the North American green anole lizard (Anolis carolinensis). Like their counterparts from other jawed vertebrates, lizard IFN-γ, IFN-γR1 and IFN-γR2 show conserved features in genomic organizations, gene loci and protein sequences. The IFN-γ gene has the full cDNA sequence of 936 bp, with 522 bp open reading frame (ORF) encoding 174 amino acids, and has the genomic organization of four exons and three introns as observed in IFN-γ genes of other classes of vertebrates. The receptors, IFN-γR1 and IFN-γR2 have the ORF of 1278 and 984 bp, coding for 425 and 327 aa, respectively, with the genome organization of seven exons and six introns. In the gene loci of IFN-γ, DYRK2, IL22, IL26 and MDM1 are found with conserved synteny in vertebrates, and similar genes adjacent to IFN-γR1 and IFN-γR2 were also found. These receptors also contain conserved motifs, such as the membrane-proximal region and the C-terminal five residue motif in IFN-γR1, and intracellular conservative sequence in IFN-γR2, which have been confirmed to mediate down-stream JAK-STAT signaling pathway in mammals. IFN-γ and its receptors, IFN-γR1 and IFN-γR2 were constitutively expressed in organs/tissues examined in the lizard, and up-regulated expression of IFN-γ was observed in organs/tissues examined following the poly(I:C) stimulation, suggesting its antiviral role in lizards. The conserved features of IFN-γ and its receptors, IFN-γR1 and IFN-γR2, in gene organization and gene locus as well as in functional domain or motif may imply that the function of type II IFN system is evolutionarily conserved in the green anole lizard, as observed in other classes of vertebrates.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of the Chinese Academy of Sciences, Beijing 10049, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
38
|
Abstract
In the last five years, the zebrafish (Danio rerio) has rapidly gained popularity as a model system for studying leukocyte migration and trafficking in vivo. The optical clarity of zebrafish embryos, as well as the potential for genetic manipulation and the development of tools for live imaging, have provided new insight into how leukocytes migrate in response to directional cues in live animals. This Commentary discusses recent progress in our understanding of how leukocytes migrate in vivo, including the role of intracellular signaling through phosphatidylinositol 3-kinase (PI3K) in both random and directed migration. The importance of leukocyte reverse migration in the resolution of inflammation will also be discussed. Finally, we will highlight how zebrafish models have helped to provide new insight into leukocyte migration and the way in which migration is altered in disease.
Collapse
Affiliation(s)
- Qing Deng
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
39
|
Hodgkinson JW, Ge JQ, Grayfer L, Stafford J, Belosevic M. Analysis of the immune response in infections of the goldfish (Carassius auratus L.) with Mycobacterium marinum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:456-65. [PMID: 22885635 DOI: 10.1016/j.dci.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
The rapid doubling time and genetic relatedness of the fish pathogen Mycobacterium marinum to Mycobacterium tuberculosis has rendered the former an attractive model for investigating mycobacterial host-pathogen interactions. We employed the M. marinum-goldfish infection model to investigate the in vivo immune responses to this pathogen in the context of a natural host. Histological analysis revealed mycobacterial infiltrates in goldfish kidney and spleen tissues, peaking 28 days post infections (dpi). Quantitative gene expression analysis showed significant increases of mRNA levels of pro-inflammatory cytokines (IFNγ, IL-12p40, IL-1β1) and cytokine receptors (IFNGR1-1, TNFR2) at 7 dpi. Conversely, the gene expression levels of key anti-inflammatory cytokines TGFβ and IL-10 were elevated at 14 dpi. Furthermore, M. marinum infections markedly increased the cytokine-primed oxidative burst responses of isolated kidney phagocytes at 7 but not 56 dpi. We believe that the M. marinum-goldfish infection model will be invaluable in furthering the understanding of the mycobacterium host-pathogen interface.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
40
|
Pierrard MA, Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal Biochem 2012; 426:153-65. [DOI: 10.1016/j.ab.2012.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
|
41
|
Hagen MO, Garcia-Garcia E, Oladiran A, Karpman M, Mitchell S, El-Din MG, Martin JW, Belosevic M. The acute and sub-chronic exposures of goldfish to naphthenic acids induce different host defense responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:143-149. [PMID: 22227375 DOI: 10.1016/j.aquatox.2011.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Naphthenic acids (NAs) are believed to be the major toxic component in oil sands process-affected water (OSPW) produced by the oil sands mining industry in Northern Alberta, Canada. We recently reported that oral exposure to NAs alters mammalian immune responses, but the effect of OSPW or NAs on the immune mechanisms of aquatic organisms has not been fully elucidated. We analyzed the effects of acute and sub-chronic NAs exposures on goldfish immune responses by measuring the expression of three pro-inflammatory cytokine genes, antimicrobial functions of macrophages, and host defense after challenge with a protozoan pathogen (Trypanosoma carassii). One week after NAs exposure, fish exhibited increased expression of pro-inflammatory cytokines (IFNγ, IL-1β1, TNF-α2) in the gills, kidney and spleen. Primary macrophages from fish exposed to NAs for one week, exhibited increased production of nitric oxide and reactive oxygen intermediates. Goldfish exposed for one week to 20 mg/L NAs were more resistant to infection by T. carassii. In contrast, sub-chronic exposure of goldfish (12 weeks) to NAs resulted in decreased expression of pro-inflammatory cytokines in the gills, kidney and spleen. The sub-chronic exposure to NAs reduced the ability of goldfish to control the T. carassii infection, exemplified by a drastic increase in fish mortality and increased blood parasite loads. This is the first report analyzing the effects of OSPW contaminants on the immune system of aquatic vertebrates. We believe that the bioassays depicted in this work will be valuable tools for analyzing the efficacy of OSPW remediation techniques and assessment of diverse environmental pollutants.
Collapse
Affiliation(s)
- Mariel O Hagen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Grayfer L, Belosevic M. Identification and molecular characterization of the interleukin-10 receptor 1 of the zebrafish (Danio rerio) and the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:408-417. [PMID: 21906622 DOI: 10.1016/j.dci.2011.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
This is the first report of the identification and molecular characterization of an interleukin-10 receptor 1 in bony fish. By gene synteny analysis, we identified the zebrafish interleukin-10 receptor 1 (IL10R1) and using this IL10R1 sequence, we cloned the goldfish IL10R1 cDNA transcript. The identified fish IL10R1 protein sequences had a putative JAK1 binding site, only one of the two STAT3 binding sites, that are present in all other vertebrates IL10R1 proteins as well as C-terminal serine rich areas, believed to be responsible for the anti-inflammatory properties of IL10R1. Phylogenetically, the fish IL10R1 proteins grouped independently of the amphibian, avian and mammalian IL10R1s. Quantitative gene expression analysis of the IL10R1 of zebrafish and goldfish revealed highest mRNA levels in the spleen tissues. High mRNA levels were also observed in the zebrafish muscle in contrast to low mRNA levels in the muscle of the goldfish. Moderate IL10R1 mRNA levels were seen in most other tissues examined and lowest gene expression was in the liver of both fish species. Goldfish monocytes stimulated with a recombinant goldfish interleukin-10 (rgIL-10) or with heat killed fish pathogens, Aeromonas salmonicida or Trypanosoma carassii, exhibited significantly reduced mRNA levels of the IL10R1. Furthermore, we produced a recombinant form of the goldfish IL10R1 (rgIL10R1) and using in vitro binding studies, demonstrated that the dimerized rgIL-10 specifically interacted with rgIL10R1. Our results suggest that interleukin-10 system has been highly conserved throughout evolution.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
43
|
Martini F, Fernández C, Tarazona JV, Pablos MV. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: a dose-response study with benzo[a]pyrene and its degradation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:28-33. [PMID: 22035922 DOI: 10.1016/j.envpol.2011.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose-response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints.
Collapse
Affiliation(s)
- Federica Martini
- Laboratory for Ecotoxicology, Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Zou J, Secombes CJ. Teleost fish interferons and their role in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1376-1387. [PMID: 21781984 DOI: 10.1016/j.dci.2011.07.001] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Interferons (IFNs) are the hallmark of the vertebrate antiviral system. Two of the three IFN families identified in higher vertebrates are now known to be important for antiviral defence in teleost fish. Based on the cysteine patterns, the fish type I IFN family can be divided into two subfamilies, which possibly interact with distinct receptors for signalling. The fish type II IFN family consists of two members, IFN-γ with similar functions to mammalian IFN-γ and a teleost specific IFN-γ related (IFN-γrel) molecule whose functions are not fully elucidated. These two type II IFNs also appear to bind to distinct receptors to exert their functions. It has become clear that fish IFN responses are mediated by the host pattern recognition receptors and an array of transcription factors including the IFN regulatory factors, the Jak/Stat proteins and the suppressor of cytokine signalling (SOCS) molecules.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
45
|
Yabu T, Toda H, Shibasaki Y, Araki K, Yamashita M, Anzai H, Mano N, Masuhiro Y, Hanazawa S, Shiba H, Moritomo T, Nakanishi T. Antiviral protection mechanisms mediated by ginbuna crucian carp interferon gamma isoforms 1 and 2 through two distinct interferon gamma-receptors. J Biochem 2011; 150:635-48. [PMID: 21903635 DOI: 10.1093/jb/mvr108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Fish genomes possess three type II interferon (IFN) genes, ifnγ1, ifnγ2 and ifnγ-related (ifnγrel). The IFNγ-dependent STAT signalling pathway found in humans and mice had not been characterized in fish previously. To identify the antiviral functions and signalling pathways of the type II IFN system in fish, we purified the ifnγ1, ifnγ2 and ifnγrel proteins of ginbuna crucian carp expressed in bacteria and found them to elicit high antiviral activities against crucian carp hematopoietic necrosis virus. We also cloned two distinct ifnγ receptor alpha chain (ifngr1) isoforms, 1 and 2, and stably expressed them in HeLa cells by transfecting the cells with ifngr1-1 or ifngr1-2 cDNA. When receptor transfectants were treated with the ligands in a one-ligand-one-receptor manner (ifnγ1 and ifngr1-2 or ifnγ2 and ifngr1-1), the stat1 protein was phosphorylated at both serine-727 and tyrosine-701 residues. Gel shift mobility analysis and reporter assay clearly showed that the specific ligand-receptor interaction resulted in the binding of the stat1 protein to the GAS element and enhanced transcription. Therefore, the actions of ifnγ1 and ifnγ2 were found to be mediated by a specific receptor for each signalling pathway via a stat1-dependent mechanism.
Collapse
Affiliation(s)
- Takeshi Yabu
- Nihon University College of Bioresource Sciences 1866, Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Grayfer L, Hodgkinson JW, Belosevic M. Analysis of the antimicrobial responses of primary phagocytes of the goldfish (Carassius auratus L.) against Mycobacterium marinum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1146-1158. [PMID: 21530582 DOI: 10.1016/j.dci.2011.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 05/30/2023]
Abstract
The slow growth rate of Mycobacterium spp. that infect humans coupled with a lack of reliable in vitro infection model systems has hindered the progress of research in host cell-mycobacteria interactions. Recent studies have utilized the relatively fast growing Mycobacterium marinum to examine the host-pathogen interface in natural fish hosts. Here we describe the use of primary goldfish monocyte and mature macrophage cultures to investigate the immune cell-M. marinum interactions. Live and heat-killed M. marinum abrogated the recombinant goldfish (rg)TNFα2 and rgIFNγ-induced monocyte reactive oxygen production. Live but not heat-killed M. marinum also ablated rgIFNγrel and rg-TNFα2 induced macrophage nitric oxide production. M. marinum induced significant changes in gene expression of select NADPH oxidase components and inflammatory cytokine receptors and up-regulated the expression of immunosuppressive genes IL-10, TGFβ1 and SOCS-3. The exposure of monocytes and mature macrophages to M. marinum caused an increase in the mRNA levels of several pro-inflammatory genes. Stimulation of monocytes and macrophages with rgTNFα2, rgIFNγ, or rgIFNγrel reduced the survival of intracellular mycobacteria. The characterization of the interaction between M. marinum and natural host-derived primary phagocyte cultures will enable future studies on the host-pathogen interactions in mycobacterial infections.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
47
|
Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000-17. [PMID: 21366518 PMCID: PMC3319919 DOI: 10.2174/138945011795677809] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
48
|
López-Muñoz A, Sepulcre MP, Roca FJ, Figueras A, Meseguer J, Mulero V. Evolutionary conserved pro-inflammatory and antigen presentation functions of zebrafish IFNγ revealed by transcriptomic and functional analysis. Mol Immunol 2011; 48:1073-83. [PMID: 21354627 DOI: 10.1016/j.molimm.2011.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/17/2022]
Abstract
In mammals, IFNγ is the only type II IFN member, whereas most bony fish species have two IFNγ genes, namely IFNγ1 and IFNγ2. We report that both zebrafish IFNγ genes were unable to protect zebrafish larvae against viral infection, despite the fact that they moderately induced the expression of antiviral genes, strongly induced pro-inflammatory and antigen processing and presentation genes, and increased neutrophil numbers. Although both zebrafish IFNγs induced a similar set of immune genes, IFNγ1 was more powerful at inducing pro-inflammatory genes than IFNγ2, which correlated with its ability to promote larval death. Strikingly, IFNγ1-induced larval death was prevented by genetic ablation of the myeloid transcription factor SPI1 but not IL-1β or TNFα, suggesting that professional phagocytes are also one of the main targets of IFNγ in fish. In addition, the usefulness of the zebrafish for the identification of IFNγ-target genes is illustrated by the identification of several genes whose expression is also regulated in murine macrophages by IFNγ, namely two membrane-spanning 4-domain family members and the opioid growth factor receptor. Finally, we found for the first time that the thymic specific proteasome subunit PSMB11/β5t is regulated by IFNγ. Collectively, our data throw light on partially redundant functions of fish IFNγ genes, demonstrate that the pro-inflammatory and antigen presentation functions of IFNγ have been conserved during vertebrate evolution, and highlight the fact that zebrafish is an excellent model for studying IFNγ biology.
Collapse
Affiliation(s)
- Azucena López-Muñoz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Characterization and functional analysis of goldfish (Carassius auratus L.) interleukin-10. Mol Immunol 2011; 48:563-71. [DOI: 10.1016/j.molimm.2010.10.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 10/24/2010] [Indexed: 01/25/2023]
|
50
|
Aggad D, Stein C, Sieger D, Mazel M, Boudinot P, Herbomel P, Levraud JP, Lutfalla G, Leptin M. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6774-82. [PMID: 21048110 DOI: 10.4049/jimmunol.1000549] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The zebrafish genome contains a large number of genes encoding potential cytokine receptor genes as judged by homology to mammalian receptors. The sequences are too divergent to allow unambiguous assignments of all receptors to specific cytokines, and only a few have been assigned functions by functional studies. Among receptors for class II helical cytokines-i.e., IFNs that include virus-induced Ifns (Ifn-) and type II Ifns (Ifn-γ), together with Il-10 and its related cytokines (Il-20, Il-22, and Il-26)-only the Ifn--specific complexes have been functionally identified, whereas the receptors for the two Ifn-γ (Ifn-γ1 and Ifn-γ2) are unknown. In this work, we identify conditions in which Ifn-γ1 and Ifn-γ2 (also called IFNG or IFN-γ and IFN-gammarel) are induced in fish larvae and adults. We use morpholino-mediated loss-of-function analysis to screen candidate receptors and identify the components of their receptor complexes. We find that Ifn-γ1 and Ifn-γ2 bind to different receptor complexes. The receptor complex for Ifn-γ2 includes cytokine receptor family B (Crfb)6 together with Crfb13 and Crfb17, whereas the receptor complex for Ifn-γ1 does not include Crfb6 or Crfb13 but includes Crfb17. We also show that of the two Jak2 paralogues present in the zebrafish Jak2a but not Jak2b is involved in the intracellular transmission of the Ifn-γ signal. These results shed new light on the evolution of the Ifn-γ signaling in fish and tetrapods and contribute toward an integrated view of the innate immune regulation in vertebrates.
Collapse
Affiliation(s)
- Dina Aggad
- Dynamique des Intéractions Membranaires Normales et Pathologiques, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5235, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|