1
|
Microbial biosensor for Salmonella using anti-bacterial antibodies isolated from human serum. Enzyme Microb Technol 2020; 144:109721. [PMID: 33541568 DOI: 10.1016/j.enzmictec.2020.109721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
In this work, we present a novel microbial biosensor for Salmonella based on impedance spectrometry by using isolated antibodies against a specific bacterial strain from human serum. Anti-Salmonella (or BL21(DE3)) antibodies were isolated from human serum using S. enteritidis (or BL21(DE3)) and the mutant strain ClearColi. After the purification steps, the purification yield of the antibodies was calculated to be 0.2 %. From the FACS analysis, the isolated anti-Salmonella antibodies were estimated to have more than 6-fold higher binding affinity for S. enteritidis compared to antibodies against other kinds of Gram-negative bacterial strains, including HB101, ClearColi, JM110, DH5α, and BL21(DE3). Finally, the anti-Salmonella antibodies isolated herein were used for bacterial detection using electrochemical biosensors based on impedance spectrometry and the Rct value of the antibodies was estimated for S. enteritidis from the Nyquist plot. The limit of detection of the isolated anti-Salmonella antibodies was estimated to be 1.0 × 103 cells/mL for S. enteritidis and 1.0 × 106 cells/mL for BL21(DE3), respectively.
Collapse
|
2
|
Im J, Baik JE, Lee D, Park OJ, Park DH, Yun CH, Han SH. Bacterial Lipoproteins Induce BAFF Production via TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells. Front Immunol 2020; 11:564699. [PMID: 33123136 PMCID: PMC7566273 DOI: 10.3389/fimmu.2020.564699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell activating factor (BAFF) plays a crucial role in survival, differentiation, and antibody secretion of B cells. Microbial products with B-cell mitogenic properties can indirectly promote expansion and activation of B cells by stimulating accessory cells, such as dendritic cells (DCs), to induce BAFF. Although bacterial lipoproteins are potent B-cell mitogen like lipopolysaccharides (LPSs), it is uncertain whether they can stimulate DCs to induce BAFF expression. Here, we evaluated the effect of bacterial lipoproteins on BAFF expression in mouse bone marrow-derived DCs. Lipoprotein-deficient Staphylococcus aureus mutant induced relatively low expression level of membrane-bound BAFF (mBAFF) and the mRNA compared with its wild-type strain, implying that bacterial lipoproteins can positively regulate BAFF induction. The synthetic lipopeptides Pam2CSK4 and Pam3CSK4, which mimic bacterial lipoproteins, dose-dependently induced BAFF expression, and their BAFF-inducing capacities were comparable to those of LPS in DCs. Induction of BAFF by the lipopeptide was higher than the induction by other microbe-associated molecular patterns, including peptidoglycan, flagellin, zymosan, lipoteichoic acid, and poly(I:C). Pam3CSK4 induced both mBAFF and soluble BAFF expression in a dose- and time-dependent manner. BAFF expression by Pam3CSK4 was completely absent in DCs from TLR2- or MyD88-deficient mice. Among various MAP kinase inhibitors, only JNK inhibitors blocked Pam3CSK4-induced BAFF mRNA expression, while inhibitors blocking ERK or p38 kinase had no such effect. Furthermore, Pam3CSK4 increased the DNA-binding activities of NF-κB and Sp1, but not that of C/EBP. Pam3CSK4-induced BAFF promoter activity via TLR2/1 was blocked by NF-κB or Sp1 inhibitor. Collectively, these results suggest that bacterial lipoproteins induce expression of BAFF through TLR2/MyD88/JNK signaling pathways leading to NF-κB and Sp1 activation in DCs, and BAFF derived from bacterial lipoprotein-stimulated DCs induces B-cell proliferation.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Jeon JH, Park DB, Woo SJ, Lee HR, Park OK, Park J, Rhie GE. Muramyl dipeptide potentiates a Bacillus anthracis poly-γ-d-glutamic acid capsule surrogate that induces maturation and activation of mouse dendritic cells. Cytokine 2018; 110:350-356. [PMID: 29656957 DOI: 10.1016/j.cyto.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
Poly-γ-d-glutamic acid (PGA) of anthrax is an important pathogenic factor due to its anti-phagocytic activity. Additionally, PGA has the ability to activate mouse macrophages for the secretion of cytokines through Toll-like receptor (TLR) 2. Peptidoglycan (PGN), a major bacterial cell-wall component, induces inflammatory responses in the host. We assessed whether PGA can induce maturation and cytokine expression in immature mouse dendritic cells (DCs) in the existence of muramyl dipeptide (MDP), the minimum motif of PGN with immunostimulatory activity. Stimulation of immature DCs with PGA or MDP alone augmented expression of costimulatory molecules and MHC class II proteins, which are all cell surface markers indicative of maturation. The observed effects were further enhanced by costimulation of PGA and MDP. PGA alone was sufficient to induce expression of TNF-α, IL-6, MCP-1, and MIP1-α, whereas MDP alone did not under the same conditions. Treatment with MDP enhanced PGA-induced expression of the tested inflammatory mediators; however, the synergistic effect found for PGA and MDP was not observed in TLR2- or nucleotide-binding oligomerization domain (NOD) 2-knockout DCs. Additionally, MDP augmented PGA-induced MAP kinases and NF-κB activation, which is crucial for expression of cytokines. Furthermore, MAP kinase and NF-κB inhibitors attenuated MDP enhancement of PGA-induced cytokine production. In addition, co-culture of splenocytes and PGA/MDP-matured DCs induced higher expression of IL-2 and IFN-γ compared to that of splenocytes and PGA-matured DCs. Collectively, our results suggest that PGA and MDP cooperatively induce inflammatory responses in mouse DCs through TLR2 and NOD2 via MAP kinase and NF-κB pathways, subsequently leading to lymphocyte activation.
Collapse
Affiliation(s)
- Jun Ho Jeon
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea
| | - Deok-Bum Park
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea
| | - Sun-Je Woo
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea
| | - Hae-Ri Lee
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea
| | - Ok-Kyu Park
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea
| | - Jungchan Park
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea; Protein Research Center for Bioindustry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Republic of Korea.
| |
Collapse
|
4
|
Woo SJ, Kang SS, Park SM, Yang JS, Song MK, Yun CH, Han SH. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response. Mol Immunol 2015; 67:492-500. [PMID: 26278659 DOI: 10.1016/j.molimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/16/2023]
Abstract
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.
Collapse
Affiliation(s)
- Sun-Je Woo
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jae Seung Yang
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Man Ki Song
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
5
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
6
|
Weiner ZP, Boyer AE, Gallegos-Candela M, Cardani AN, Barr JR, Glomski IJ. Debridement increases survival in a mouse model of subcutaneous anthrax. PLoS One 2012; 7:e30201. [PMID: 22393351 PMCID: PMC3290625 DOI: 10.1371/journal.pone.0030201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
Anthrax is caused by infection with Bacillus anthracis, a spore-forming gram-positive bacterium. A major virulence factor for B. anthracis is an immunomodulatory tripartite exotoxin that has been reported to alter immune cell chemotaxis and activation. It has been proposed that B. anthracis infections initiate through entry of spores into the regional draining lymph nodes where they germinate, grow, and disseminate systemically via the efferent lymphatics. If this model holds true, it would be predicted that surgical removal of infected tissues, debridement, would have little effect on the systemic dissemination of bacteria. This model was tested through the development of a mouse debridement model. It was found that removal of the site of subcutaneous infection in the ear increased the likelihood of survival and reduced the quantity of spores in the draining cervical lymph nodes (cLN). At the time of debridement 12 hours post-injection measurable levels of exotoxins were present in the ear, cLN, and serum, yet leukocytes within the cLN were activated; countering the concept that exotoxins inhibit the early inflammatory response to promote bacterial growth. We conclude that the initial entry of spores into the draining lymph node of cutaneous infections alone is not sufficient to cause systemic disease and that debridement should be considered as an adjunct to antibiotic therapy.
Collapse
Affiliation(s)
- Zachary P. Weiner
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anne E. Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maribel Gallegos-Candela
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amber N. Cardani
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian J. Glomski
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
7
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|